×
10.12.2014
216.013.0ee3

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИТЕЛЬНОСТИ ВРЕМЕНИ ПЛАЗМОХИМИЧЕСКОГО ТРАВЛЕНИЯ ПОВЕРХНОСТИ ПОЛУПРОВОДНИКОВЫХ ПЛАСТИН ДЛЯ СУБМИКРОННЫХ ТЕХНОЛОГИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области микроэлектроники. Технический результат направлен на повышение достоверности определения типа и количества загрязняющих примесей на поверхности полупроводниковых пластин после плазмохимического травления и определения оптимального значения длительности времени травления. В способе определения длительности времени плазмохимического травления поверхности полупроводниковых пластин для удаления пленок с немаскированных поверхностей и получения чистой поверхности осуществляется травление нескольких пластин в течение разных длительностей времени, определяются количества остаточных и загрязняющих примесей на поверхностях пластин и определяется длительность времени травления по времени травления пластины с минимальным количеством загрязняющих примесей на поверхности, при этом определение количества остаточных и загрязняющих примесей на поверхностях пластин производится зондированием поверхностей ионными пучками гелия и неона с энергиями 1-5 кэВ, плотностью тока пучка менее 100 мкА/см и регистрацией энергетического спектра отраженных ионов под углом рассеяния более 90° и по энергиям и величинам максимумов в спектре определяется соответственно тип и количество загрязняющих примесей. 1 ил.
Основные результаты: Способ определения длительности времени плазмохимического травления поверхности полупроводниковых пластин для удаления пленок с немаскированных поверхностей и получения чистой поверхности, заключающийся в травлении пластин, в определении типа и количества остаточных и загрязняющих примесей на поверхности пластин и в определении длительности времени травления, отличающийся тем, что осуществляется травление нескольких пластин в течение разных длительностей времени, определяются количества остаточных и загрязняющих примесей на поверхностях пластин и определяется длительность времени травления по времени травления пластины с минимальным количеством загрязняющих примесей на поверхности, при этом определение количества остаточных и загрязняющих примесей на поверхностях пластин производится зондированием поверхностей ионными пучками гелия и неона с энергиями 1-5 кэВ, плотностью тока пучка менее 100 мкА/см и регистрацией энергетического спектра отраженных ионов под углом рассеяния более 90 и по энергиям и величинам максимумов в спектре определяется соответственно тип и количество загрязняющих примесей.

Предлагаемое изобретение относится к области нано- и микроэлектроники и аналитического приборостроения и может быть использовано при определении режимов технологических операций плазмохимического травления и других технологических операций обработки полупроводниковых пластин в производстве изделий микро- и наноэлектроники, а также в производстве чистых материалов и технологических сред.

Известен способ определения длительности времени плазмохимического травления поверхности полупроводниковых пластин для получения чистой поверхности, заключающийся в травлении пластин и в определении длительности времени травления по наибольшему проценту выхода годных изделий и по возможно более длительному времени травления пластины [Технология СБИС: В 2-кн. Кн. 1. Пер. с англ. / Под ред. С. Зи. - М.: Мир, 1986. 404 с].

Длительность времени плазмохимического травления

полупроводниковых пластин в технологии производства изделий микроэлектроники определяют по времени распыления слоя немаскированного резиста, или диэлектрика и металлической пленки, или определенного слоя полупроводника (например, оксида кремния, нитрида кремния), предположительно содержащего загрязнения, затем по выходу годных изделий корректируют это время в сторону его увеличения или уменьшения. При этом предполагается, что с увеличением времени травления количество поверхностных загрязнений уменьшается. При удалении металлических, диэлектрических пленок или слоя фоторезиста необходимо их удалять по всей поверхности немаскированных площадок. Так как при режимах распыления пленки полупроводник не распыляется, то длительность распыления в сторону увеличения времени должно обеспечивать лучшее качество удаления пленки. Недостатком известного способа является отсутствие прямых контролируемых параметров, характеризующих чистоту поверхности пластины. Процент выхода годных изделий, используемый в качестве критерия правильности выбираемого режима, зависит от большого числа других режимов и однозначно не характеризует качество удаления пленок.

Наиболее близким к предлагаемому изобретению является способ определения длительности времени плазмохимического травления поверхности полупроводниковых пластин для удаления пленок с немаскированных поверхностей и получения чистой поверхности, заключающийся в травлении пластин, в определении типа и количества остаточных и загрязняющих примесей на поверхности пластин и в определении длительности времени травления (Технология СБИС: В 2-кн. Кн. 2. Пер. с англ. / Под ред. С. Зи. - М.: Мир, 1986. 453 с.(Могаб К., Фрейзер Д., Фичтнер У., Паррильо Л., Маркус Л., Стейдел К., Бертрем У.)

Известный способ осуществляется с использованием оже-электронного спектрометра для определения элементного состава поверхности и количества загрязняющих примесей на поверхности пластин. Недостатком известного способа является недостаточная чувствительность метода оже-спектроскопии к загрязнениям во внешнем моноатомном слое поверхности пластин. При сведениях в литературе о толщине анализируемого слоя 3-5 Å реальная глубина выхода оже-электронов в полупроводниках превышает 10 Å. При этом из-за энергетической зависимости сечения ионизации атомов вероятность возбуждения атомов первого слоя меньше, чем нижележащих слоев. В целом, чувствительность (предел обнаружения) загрязняющих примесей метода оже-спектроскопии оказывется недостаточной для контроля чистоты операции плазмохимического травления.

Технический результат направлен на повышение достоверности определения типа и количества загрязняющих примесей на поверхности полупроводниковых пластин после плазмохимического травления и определения оптимального значения длительности времени травления.

Технический результат достигается тем, что в способе определения длительности времени плазмохимического травления поверхности полупроводниковых пластин для удаления пленок с немаскированных поверхностей и получения чистой поверхности, заключающемся в травлении пластин, в определении типа и количества остаточных и загрязняющих примесей на поверхности пластин и в определении длительности времени травления, при этом осуществляется травление нескольких пластин в течение разных длительностей времени, определяются количества остаточных и загрязняющих примесей на поверхностях пластин и определяется длительность времени травления по времени травления пластины с минимальным количеством загрязняющих примесей на поверхности, при этом определение количества остаточных и загрязняющих примесей на поверхностях пластин производится зондированием поверхностей ионными пучками гелия и неона с энергиями 1-5 кэВ, плотностью тока пучка менее 100 мкА/см2 и регистрацией энергетического спектра отраженных ионов под углом рассеяния более 90° и по энергиям и величинам максимумов в спектре определяется соответственно тип и количество загрязняющих примесей.

На рисунке приведены структура пленок на поверхности кремниевой пластины (а) и спектры рассеянных ионов (б) поверхности пленок на кремнии после операции плазмохимического травления (1) и после удаления монослойной пленки атомов фтора (2).

Сущность предлагаемого способа определения длительности времени плазмохимического травления поверхности полупроводниковых пластин для получения чистой поверхности заключается в обнаружении неизвестного ранее процесса накопления технологических загрязнений на поверхности обрабатываемых пластин на финишной стадии травления, когда появляются чистые участки поверхности подложки. Экспериментальными исследованиями на промышленных технологических операциях травления показано, что в процессе травления плазма загрязняется технологическими загрязнениями, в частности атомами деталей, окружающих обрабатываемую пластину. Эти и другие технологические загрязнения адсорбируются на поверхности пластины. Загрязнения с поверхности пленки (например, резиста) удаляются вместе с резистом. На очищенной поверхности подложки, в частности кремния, загрязняющие примеси адсорбируются с большой энергией связи и плазмой удаляются плохо. В зависимости от чистоты технологического оборудования и сред скорость распыления может оказаться меньше скорости адсорбции, и загрязняющие примеси после очистки поверхности подложки от пленки (резиста) будут накапливаться на поверхности пластины. Так как плазма положку не распыляет, то при чистом оборудовании время травления не ограничивается - чем дольше производится травление, тем меньше остаточных загрязнений от удаляемой пленки. Однако любое технологическое оборудование имеет некоторый уровень фоновых загрязнений, которые могут селективно накапливаться на поверхности очищенной пластины. Это предположение было подтверждено экспериментально. Поэтому существует оптимум времени травления, при котором суммарное количество поверхностных загрязнений минимально. Оно соответствует времени травления, при котором количество накапливающиеся технологических загрязнений не превышает количество остаточные загрязнения от удаляемой пленки.

С уменьшением топологической нормы, особенно меньше 2 мкм, и при переходе на наноразмерные структуры существенно повысились требования к минимальной концентрации загрязнений в целом. Поэтому суммарное количество поверхностных загрязнений должно удовлетворять еще этому требованию, которое можно определять в оптимуме времени травления.

Тип и количество поверхностных загрязнений определяется методом спектроскопии обратно рассеянных ионов низких энергий, позволяющим анализировать элементный состав одного внешнего моноатомного слоя поверхности. Такой спектрометр разработан с участием авторов предлагаемого изобретения. Аналитические возможности спектрометра: диапазон анализируемых элементов - все (кроме H и He); толщина анализируемого слоя 1 монослой атомов; диаметр зондирующего ионного пучка - 0.1-1 мм; предел обнаружения - 10+11 ат/см2. Экспериментально установлено, что режимы анализа состава внешнего монослоя применительно к реализации ока пучка менее 100 мкА/см2 и регистрацией энергетического спектра отраженных ионов под углом рассеяния более 90°.

Так как прямой анализ поверхности вскрытых окон на операциях с литографией невозможен из-за большого диаметра зондирующего пучка спектрометра, то контрольно-измерительные операции производятся на тест-площадках, имеющихся или специально создаваемых на поверхности обрабатываемой пластины. Для демонстрации аналитических возможностей спектрометра на рисунке приведены структура пленок на поверхности кремниевой пластины (а) и спектры поверхности до и после ионной бомбардировки. На поверхности кремниевой пластины нанесена пленка окиси кремния SiO2, на которую нанесена пленка нитрида кремния S3N4. Для получения заданного рисунка на поверхность S3N4 была нанесена пленка фоторезиста. После плазмохимического травления фоторезиста с пленкой S3N4 необходимо получить чистую поверхность окиси кремния. Анализ поверхности кремниевых пластин показал, что после плазмохимического травления в HF6 с целью создания заданной топологии внешний монослой на поверхности SiO2 полностью состоит из атомов фтора. После удаления пленки атомов фтора ионной бомбардировкой пучком ионов неона плотностью тока 10-4 А/см2 в течение 100 сек на поверхности кремния обнаружились загрязняющие примеси углерода. График спектра 1 демонстрирует монослойную чувствительность на примере пленки фтора. Под пленкой фтора элементы не видны, а второй и третий слои фтора не могут присутствовать из-за малой энергии связи - газовые атомы одного типа не образуют полиатомные пленки. В результате исследований определены режимы регистрации спектров. Зондирование анализируемой поверхности производится ионными пучками гелия и неона с энергиями 1-5 кэВ с плотностью тока пучка менее 100 мкА/см2. Энергетический спектр отраженных от анализируемой поверхности ионов регистрируется под углом рассеяния более 90о.

Сопоставительный анализ с прототипом и экспериментальные исследования показали, что на поверхности пластин после снятия резиста (пленки) происходит накопление технологических примесей на поверхности и существует оптимальное время травления для получения наиболее чистой поверхности пластины. Для анализа поверхностных загрязнений наиболее чувствительным является спектрометр обратно рассеянных ионов низких энергий с толщиной анализируемого слоя в 1 монослой, что осуществляется при зондировании поверхностей ионными пучками гелия и неона с энергиями 1-5 кэВ с плотностью тока пучка менее 100 мкА/см2 и регистрацией энергетического спектра отраженных ионов под углом рассеяния более 90°. В сравнении с прототипом вводится оптимум времени травления, что предотвращает бесконтрольное загрязнение поверхности подложки после снятия резиста (пленки). Чувствительность контрольного оборудования в сравнении с прототипом лучше более чем на порядок.

Способ определения длительности времени плазмохимического травления поверхности полупроводниковых пластин для удаления пленок с немаскированных поверхностей и получения чистой поверхности, заключающийся в травлении пластин, в определении типа и количества остаточных и загрязняющих примесей на поверхности пластин и в определении длительности времени травления, отличающийся тем, что осуществляется травление нескольких пластин в течение разных длительностей времени, определяются количества остаточных и загрязняющих примесей на поверхностях пластин и определяется длительность времени травления по времени травления пластины с минимальным количеством загрязняющих примесей на поверхности, при этом определение количества остаточных и загрязняющих примесей на поверхностях пластин производится зондированием поверхностей ионными пучками гелия и неона с энергиями 1-5 кэВ, плотностью тока пучка менее 100 мкА/см и регистрацией энергетического спектра отраженных ионов под углом рассеяния более 90 и по энергиям и величинам максимумов в спектре определяется соответственно тип и количество загрязняющих примесей.
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИТЕЛЬНОСТИ ВРЕМЕНИ ПЛАЗМОХИМИЧЕСКОГО ТРАВЛЕНИЯ ПОВЕРХНОСТИ ПОЛУПРОВОДНИКОВЫХ ПЛАСТИН ДЛЯ СУБМИКРОННЫХ ТЕХНОЛОГИЙ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 99.
13.01.2017
№217.015.7901

Способ изготовления электродов электронных приборов

Изобретение относится к технологии получения материалов, поверхность которых обладает стабильными электрофизическими свойствами, в частности электродов газоразрядных и электровакуумных приборов (холодных катодов газоразрядных лазеров, контакт-деталей герконов, электродов масс-спектрометров и...
Тип: Изобретение
Номер охранного документа: 0002599389
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7c6b

Обнаружитель-измеритель когерентно-импульсных радиосигналов

Изобретение относится к радиолокации и предназначено для обнаружения когерентно-импульсных неэквидистантных радиосигналов и измерения радиальной скорости движущегося объекта; может быть использовано в радиолокационных системах управления воздушным движением для обнаружения и измерения скорости...
Тип: Изобретение
Номер охранного документа: 0002600111
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7e97

Устройство измерения потенциала поверхности диэлектрических покрытий

Изобретение относится к методам исследования электрофизических свойств диэлектрических покрытий и может быть использовано, в частности, для изучения электронно-индуцированных процессов зарядки, накопления и кинетики зарядов в диэлектриках. Устройство содержит неподвижный измерительный электрод...
Тип: Изобретение
Номер охранного документа: 0002601248
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8c66

Способ и устройство определения температурных характеристик антиэмиссионных материалов

Изобретение относится к электронной промышленности, области тонкопленочных технологий, нанесения и контроля пленочных покрытий с заданными характеристиками для эмиссионной электроники. Технический результат - повышение достоверности и информативности измерений. Определяется содержание атомов...
Тип: Изобретение
Номер охранного документа: 0002604836
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8d73

Способ восстановления изображений при неизвестной аппаратной функции

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным системам наблюдения за объектами с помощью сканирующего радиометра, а также может быть использовано в радиолокации, радиоастрономии и в оптико-электронных системах. Достигаемый технический результат - нахождение...
Тип: Изобретение
Номер охранного документа: 0002604720
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.97f8

Фазометр когерентно-импульсных радиосигналов

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) неэквидистантных когерентно-импульсных радиосигналов на фоне шума; может быть использовано в радиолокационных и навигационных системах для однозначного измерения...
Тип: Изобретение
Номер охранного документа: 0002609438
Дата охранного документа: 01.02.2017
25.08.2017
№217.015.9f10

Способ исследования информационной емкости поверхности наноструктурированных материалов

Изобретение относится к областям микро- и наноэлектроники, физики поверхности и может быть использовано для исследования информационных характеристик поверхности наноструктурированных и самоорганизующихся твердотельных материалов. Сущность способа заключается в том, что получают изображения...
Тип: Изобретение
Номер охранного документа: 0002606089
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.abf1

Электровакуумный прибор свч

Изобретение относится к электронной технике, а именно к электровакуумным двухрезонаторным генераторам СВЧ клистронного типа с двухзазорным первым резонатором. Первый резонатор обеспечивает самовозбуждение генератора в режиме автогенерации на противофазном виде колебаний и достаточно эффективное...
Тип: Изобретение
Номер охранного документа: 0002612028
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b03d

Способ развертки спектров масс линейной ионной ловушкой с дипольным возбуждением

Изобретение относится к области масс-спектрометрического анализа вещества и может быть использовано для улучшения конструктивных и коммерческих параметров ионных ловушек с дипольным возбуждением ионов. Технический результат - упрощение системы развертки масс и высокочастотного питания...
Тип: Изобретение
Номер охранного документа: 0002613347
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b1d7

Вычислитель радиальной скорости движущегося объекта

Изобретение относится к вычислительной технике и предназначено для вычисления на основе корреляционного принципа радиальной скорости движущегося объекта; может использоваться в автоматизированных системах управления воздушным движением для обнаружения и измерения скорости летательных аппаратов....
Тип: Изобретение
Номер охранного документа: 0002613037
Дата охранного документа: 14.03.2017
Показаны записи 81-90 из 125.
20.05.2016
№216.015.41a9

Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур. Сущность изобретения заключается в том, что магнитопрозрачный кантилевер соединен с...
Тип: Изобретение
Номер охранного документа: 0002584179
Дата охранного документа: 20.05.2016
12.01.2017
№217.015.5b95

Способ изготовления холодного катода гелий-неонового лазера

Изобретение относится к технологии изготовления холодных катодов гелий-неоновых лазеров и может быть использовано в газоразрядной технике и микроэлектронике. Способ включает в себя нагрев заготовок катода из алюминия в вакууме не ниже 10 мм рт.ст. и последующее термическое окисление ее...
Тип: Изобретение
Номер охранного документа: 0002589731
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.61d2

Способ рафинирования металлургического кремния

Изобретение относится к области очистки кремния, пригодного для изготовления солнечных элементов, полупроводниковых приборов, МЭМС устройств, а также использования в химической и фармацевтической промышленности. Способ рафинировании кремния, находящегося в твердой фазе, производят в графитовом...
Тип: Изобретение
Номер охранного документа: 0002588627
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.778a

Адаптивный режектор пассивных помех

Изобретение относится к радиотехнике и может быть использовано в радиоприемных устройствах когерентно-импульсных радиолокационных систем для выделения сигналов движущихся целей на фоне пассивных помех при вобуляции периода повторения зондирующих импульсов. Достигаемый технический результат -...
Тип: Изобретение
Номер охранного документа: 0002599621
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7901

Способ изготовления электродов электронных приборов

Изобретение относится к технологии получения материалов, поверхность которых обладает стабильными электрофизическими свойствами, в частности электродов газоразрядных и электровакуумных приборов (холодных катодов газоразрядных лазеров, контакт-деталей герконов, электродов масс-спектрометров и...
Тип: Изобретение
Номер охранного документа: 0002599389
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7c6b

Обнаружитель-измеритель когерентно-импульсных радиосигналов

Изобретение относится к радиолокации и предназначено для обнаружения когерентно-импульсных неэквидистантных радиосигналов и измерения радиальной скорости движущегося объекта; может быть использовано в радиолокационных системах управления воздушным движением для обнаружения и измерения скорости...
Тип: Изобретение
Номер охранного документа: 0002600111
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7e97

Устройство измерения потенциала поверхности диэлектрических покрытий

Изобретение относится к методам исследования электрофизических свойств диэлектрических покрытий и может быть использовано, в частности, для изучения электронно-индуцированных процессов зарядки, накопления и кинетики зарядов в диэлектриках. Устройство содержит неподвижный измерительный электрод...
Тип: Изобретение
Номер охранного документа: 0002601248
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8c66

Способ и устройство определения температурных характеристик антиэмиссионных материалов

Изобретение относится к электронной промышленности, области тонкопленочных технологий, нанесения и контроля пленочных покрытий с заданными характеристиками для эмиссионной электроники. Технический результат - повышение достоверности и информативности измерений. Определяется содержание атомов...
Тип: Изобретение
Номер охранного документа: 0002604836
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8d73

Способ восстановления изображений при неизвестной аппаратной функции

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным системам наблюдения за объектами с помощью сканирующего радиометра, а также может быть использовано в радиолокации, радиоастрономии и в оптико-электронных системах. Достигаемый технический результат - нахождение...
Тип: Изобретение
Номер охранного документа: 0002604720
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.97f8

Фазометр когерентно-импульсных радиосигналов

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) неэквидистантных когерентно-импульсных радиосигналов на фоне шума; может быть использовано в радиолокационных и навигационных системах для однозначного измерения...
Тип: Изобретение
Номер охранного документа: 0002609438
Дата охранного документа: 01.02.2017
+ добавить свой РИД