×
10.12.2014
216.013.0dfe

Результат интеллектуальной деятельности: СПОСОБ ГИДРООЧИСТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу гидроочистки углеводородного сырья с получением продуктов с низким содержанием серы. Изобретение касается способа гидроочистки, в котором осуществляют превращение углеводородного сырья с высоким содержанием серы при температуре 340-375°C, давлении 3,5-6,0 МПа, массовом расходе сырья 1,0-1,5 ч, объемном отношении водород/сырье 300-500 м/м в присутствии гетерогенного катализатора, содержащего кобальт, никель и молибден в форме биметаллических комплексных соединений [Co(HO)(L)][MoO(CHO)] и [Ni(HO)(L)][MoO(CHO)], где L - частично депротонированная форма лимонной кислоты CHO; x=0 или 2; y=0 или 1; кремний в форме аморфного алюмосиликата, алюминий в форме γ-AlO и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас.%: суммарно [Co(HO)(L)][MoO(CHO)] и [Ni(HO)(L)][MoO(CHO)] - 24,5-39,0; в том числе [Co(HO)(L)][MoO(CHO)] - 6,2-29,5; [Ni(HO)(L)][MoO(CHO)] - 6,2-29,5; аморфный алюмосиликат - 5,9-37,8; γ-AlO - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO - 14,0-24,0; суммарно CoO+NiO - 3,6-6,0; в том числе CoO - 0,9-4,5; NiO - 0,9-4,5; аморфный алюмосиликат - 6,7-42,0; AlO - остальное. Технический результат - получение нефтепродуктов с низким остаточным содержанием серы при гидроочистке углеводородного сырья в присутствии катализатора, содержащего биметаллические комплексные соединения Мо, Co, Ni и аморфный алюмосиликат. 4 з.п. ф-лы, 1 табл., 8 пр.

Изобретение относится к каталитическим способам получения малосернистых нефтепродуктов из углеводородного сырья с высоким содержанием серы.

Получение моторных топлив с низким содержанием серы является одной из наиболее важных задач современной нефтепереработки. В настоящее время Россия переходит к производству дизельных топлив и бензинов, соответствующих стандарту Евро-5 и содержащих не более 10 ppm серы. Малосернистые дизельные топлива производят на установках каталитической гидроочистки соответствующих прямогонных и смесевых фракций. Товарные бензины получают смешением бензиновых фракций различных процессов, при этом основное количество серы поступает в компаундированные бензины вместе с бензином каталитического крекинга. Содержание серы в бензинах каталитического крекинга напрямую зависит от ее содержания в исходном сырье каталитического крекинга - гидроочищенных вакуумных газойлях. Соответственно, для получения малосернистых бензинов каталитического крекинга, пригодных для получения компаундированных бензинов Евро-5, необходимо, чтобы содержание серы в сырье каталитического крекинга не превышало 300 ppm [Капустин В.М., Гуреев А.А. Технологии переработки нефти. Часть 2. Деструктивные процессы. Москва, КолосС, 2007, 334 с.]. В связи с этим чрезвычайно актуальной задачей является создание новых процессов получения малосернистых нефтепродуктов, позволяющих далее получать моторные топлива, по содержанию серы соответствующие стандарту Евро-5.

Существующие заводские установки гидроочистки работают в достаточно узком интервале температур, расходов и давлений. Так для глубокой гидроочистки дизельных топлив обычно давление не превышает 4,0 МПа, расход сырья 1-2 ч-1, объемное отношение водород/сырье 300-500 нм33; для гидроочистки вакуумных газойлей используется давление 4,5-7,0 МПа, расход сырья 1,0-1,5 ч-1, объемное отношение водород/сырье 400-600 нм33. Стартовая температура процесса гидроочистки не может выбираться в широких пределах и должна быть как можно ниже, поскольку от нее зависят скорость дезактивации и межрегенерационный пробег катализатора. Таким образом, основным инструментом, который позволяет изменять количество серы в получаемых продуктах без существенных изменений условий процесса гидроочистки и реконструкции установок, являются характеристики используемых катализаторов, из которых наиболее важной является каталитическая активность.

Известны различные способы гидроочистки углеводородного сырья, в том числе и сложные многоступенчатые процессы с высоким давлением водородсодержащего газа или процессы с многослойной загрузкой различных катализаторов, однако основным недостатком для них является высокое остаточное содержание серы в получаемых продуктах, обусловленное низкой активностью используемых катализаторов.

Так известен способ получения малосернистого дизельного топлива [РФ №2100408, C10G 65/04, 27.12.1997], по которому процесс гидроочистки осуществляется в две стадии с промежуточным подогревом газосырьевой смеси с использованием на первой стадии алюмоникельмолибденового катализатора с преобладающим радиусом пор 9-12 нм и на второй стадии алюмоникельмолибденового или алюмокобальтмолибденового катализатора с преобладающим радиусом пор 4-8 нм при массовом соотношении катализаторов первой и второй стадий 1:2-6. Процесс проводят при температуре 250-350°C на первой стадии и 320-380°C на второй стадии. Основным недостатком этого способа является высокое содержание серы в получаемом дизельном топливе, как правило оно лежит в интервале 100-500 ppm.

Известен способ гидроочистки дизельных фракций [Смирнов В.К., Капустин В.М., Ганцев В.А., Химия и технология топлив и масел, №3, 2002, с.3], заключающийся в пропускании сырья при 330-335°C, давлении 2,5-2,7 МПа, при соотношении водородсодержащий газ/сырье 250-300 м33 и объемной скорости подачи сырья 2,5-3 ч-1 через реактор, заполненный смесью катализаторов РК-012+ТНК-2000(АКМ)+ТНК-2003(АНМ). В этом процессе достигается остаточное содержание серы в получаемой дизельной фракции на уровне 800-1200 ppm.

Чаще всего процессы гидрообессеривания нефтяного сырья проводят в присутствии катализаторов, содержащих оксиды кобальта и молибдена, нанесенные на оксид алюминия. Так известен способ каталитической гидроочистки нефтяного сырья [РФ 2192923, B01 J27/188, C10G 45/08, 20.10.2002]. Процесс проводят при 200-480°C при давлении 0,5-20 МПа при расходе сырья 0,05-20 ч-1 и расходе водорода 100-3000 л/л сырья, при этом используют катализатор на основе оксида алюминия, который содержит в пересчете на содержание оксида, мас.%: 2-10 оксида кобальта CoO, 10-30 оксида молибдена MoO3, 4-10 оксида фосфора P2O5, с площадью поверхности по методу БЭТ в интервале 100-300 м2/г и средним диаметром пор в интервале 8-11 нм.

Известен способ гидрообессеривания нефтяного сырья [заявка на патент РФ №2002124681, C10G 45/08, B01J 23/887, 2004.05.10], где процесс гидроочистки ведут при температуре 310-340°C, давлении 3,0-5,0 МПа, при соотношении водород/сырье 300-500 нм33 и объемной скорости подачи сырья 1,0-4,0 ч-1, при этом используют катализатор, содержащий в своем составе оксид кобальта, оксид молибдена и оксид алюминия, отличающийся тем, что он имеет соотношение компонентов, мас.%: оксид кобальта 3,0-9,0, оксид молибдена 10,0-24,0, оксид алюминия - остальное, удельную поверхность 160-250 м2/г, механическую прочность на раздавливание 0,6-0,8 кг/мм2. Основным недостатком такого способа проведения процесса гидроочистки является высокое содержание серы в получаемых продуктах.

Наиболее близким к предлагаемому техническому решению является процесс гидроочистки углеводородного сырья [РФ №2402380, B01J 21/02, C10G 45/08, 27.10.2010], заключающийся в превращении нефтяных дистиллятов с высоким содержанием серы при температуре 320-400°C, давлении 0,5-10 МПа, весовом расходе сырья 0,5-5 ч-1, объемном отношении водород/сырье 100-1000 м33 в присутствии гетерогенного катализатора, содержащего биметаллическое комплексное соединение [M(H2O)x(L)y]2[Mo4O11(C6H5O7)2], где L - частично депротонированная форма лимонной кислоты C6H6O7; x=0 или 2; y=0 или 1; M - Co2+ и/или Ni2 в количестве 30-45 мас.%, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 14,0-23,0; CoO и/или NiO - 3,6-6,0; B2O3 - 0,6-2,6, Al2O3 - остальное, и имеющего объем пор 0,3-0,7 мл/г, удельную поверхность 200-350 м2/г и средний диаметр пор 9-13 нм.

Общим недостатком для прототипа и всех вышеперечисленных процессов гидроочистки и катализаторов для этих процессов является то, что с их использованием не удается достичь остаточного содержания серы в дизельных топливах на уровне 10 ppm и ниже и остаточного содержания серы в гидроочищенных вакуумных газойлях ниже 300 ppm.

Изобретение решает задачу создания улучшенного способа гидроочистки углеводородного сырья, характеризующегося низким содержанием серы в получаемых продуктах при достаточно мягких условиях проведения процесса.

Задача решается проведением процесса гидроочистки углеводородного сырья с высоким содержанием серы при температуре 340-375°C, давлении 3,5-6,0 МПа, весовом расходе сырья 1,0-1,5 ч-1, объемном отношении водород/сырье 300-500 м33 в присутствии катализатора, имеющего объем пор 0,4-0,7 см3/г, удельную поверхность 150-300 м2/г и средний диаметр пор 7-15 нм и представляющего собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм, содержащего одновременно два биметаллических соединения - [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2], где L - частично депротонированная форма лимонной кислоты C6H6O7; x=0 или 2; y=0 или 1; нанесенных на носитель, содержащий оксид алюминия и аморфный алюмосиликат. Компоненты в катализаторе содержатся в следующих концентрациях, мас.%: суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 24,5-39,0; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,2-29,5; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,2-29,5; аморфный алюмосиликат - 5,9-37,8; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 14,0-24,0; суммарно CoO+NiO - 3,6-6,0; в том числе CoO - 0,9-4,5; NiO - 0,9-4,5; аморфный алюмосиликат - 6,7-42,0; Al2O3 - остальное.

В катализаторе массовое отношение [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2]=0,33-3,00.

Входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом отношении Si/Al=0,9 и характеризуется рентгенограммами, содержащими пик с максимумом 23,0°.

Основным отличительным признаком предлагаемого способа гидроочистки углеводородного сырья по сравнению с прототипом является то, что процесс гидроочистки проводят при температуре 340-375°C, давлении 3,5-6,0 МПа, массовом расходе сырья 1,0-1,5 ч-1, объемном отношении водород/сырье 300-500 м33 в присутствии гетерогенного катализатора, содержащего одновременно два биметаллических соединения - [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2], где: L - частично депротонированная форма лимонной кислоты C6H6O7; x=0 или 2; y=0 или 1; нанесенных на носитель, содержащий оксид алюминия и аморфный алюмосиликат. Компоненты в катализаторе содержатся в следующих концентрациях, мас.%: суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 24,5-39,0; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,2-29,5; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,2-29,5; аморфный алюмосиликат - 5,9-37,8; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 14,0-24,0; суммарно CoO+NiO - 3,6-6,0; в том числе, CoO - 0,9-4,5; NiO - 0,9-4,5; аморфный алюмосиликат - 6,7-42,0; Al2O3 - остальное.

В катализаторе массовое отношение [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2]=0,33-3,00.

Вторым отличительным признаком является использование в гидроочистке катализатора, в состав носителя которого входит 10-50% аморфного алюмосиликата. Такой носитель способствует дальнейшему образованию нанесенного активного компонента, обладающего повышенной активностью в реакциях гидроочистки.

Третьим отличительным признаком является то, что входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом отношении Si/Al=0,9 и характеризуется рентгенограммами, содержащими пик с максимумом 23,0°. Алюмосиликат такого состава имеет мягкую крекирующую активность, что облегчает превращение крупных серосодержащих органических молекул в условиях гидроочистки и, тем самым, способствует снижению содержания серы в гидроочищенных продуктах.

Технический эффект предлагаемого способа гидроочистки углеводородного сырья складывается из следующих составляющих:

1. Проведение гидроочистки в присутствии катализатора, в составе которого одновременно содержатся два биметаллических соединения и аморфный алюмосиликат, обеспечивает получение продуктов с пониженным содержанием серы при условиях процесса, используемых на существующих промышленных установках гидроочистки.

2. Использование в процессе гидроочистки катализатора, содержащего два биметаллических соединения и аморфный алюмосиликат, позволяет получать дизельные топлива, содержащие менее 10 ppm серы и соответствующие по этому показателю стандарту Евро-5.

3. Использование в процессе гидроочистки катализатора, содержащего два биметаллических соединения и аморфный алюмосиликат, позволяет получать гидроочищенный вакуумный газойль, содержащий менее 300 ppm серы, что далее позволяет использовать получаемый бензин каталитического крекинга для производства компаундированных бензинов, по содержанию серы соответствующих стандарту Евро-5.

Описание предлагаемого технического решения

Гидроочистку прямогонного дизельного топлива с содержанием серы 1,45% S и концом кипения 360°C проводят при температуре 345°C, давлении 3,5 МПа, массовом расходе дизельного топлива 1,5 ч-1, объемном отношении водород/дизельное топливо 400 нм33, а гидроочистку вакуумного газойля с содержанием серы 2,68 мас.% S и концом кипения 540°C проводят при 375°C, давлении 6,0 МПа, массовом расходе вакуумного газойля 1 ч-1, объемном отношении водород/сырье 500 нм33 в присутствии катализатора, содержащего кобальт, никель и молибден в форме биметаллических комплексных соединений [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2], где L - частично депротонированная форма лимонной кислоты C6H6O7; x=0 или 2; y=0 или 1; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3 и аморфного алюмосиликата, при этом содержащего компоненты в следующих концентрациях, мас.%: суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 24,5-39,0; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,2-29,5; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,2-29,5; аморфный алюмосиликат - 5,9-37,8; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 14,0-24,0; суммарно CoO+NiO - 3,6-6,0; в том числе CoO - 0,9-4,5; NiO - 0,9-4,5; аморфный алюмосиликат - 6,7-42,0; Al2O3 - остальное.

Объемную механическую прочность определяют по методу Shell SMS 1471 не менее 1,0 МПа.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. (Согласно известному техническому решению.)

Сначала готовят катализатор гидроочистки, для чего 50 г оксида алюминия, сформованного в виде экструдатов диаметром не более 2 мм и длиной не более 10 мм и имеющего удельную поверхность 330 м2/г, объем пор 0,7 см3/г и средний диаметр пор , пропитывают избытком раствора биметаллического комплексного соединения, который готовят следующим образом: в 40 см3 дистиллированной воды растворяют при перемешивании 18,0 г моногидрата лимонной кислоты C6H8O7×H2O. К полученному раствору при продолжающемся перемешивании порциями присыпают 24,5 г парамолибдата аммония (NH4)6Mo7O24×4H2O. После полного растворения компонентов в растворе образуется комплексное соединение H(NH4)3[Mo4O11(C6H5O7)2]. К раствору комплексного соединения молибдена при перемешивании добавляют 18,7 г нитрата кобальта Co(NO3)2×6H2O и перемешивание продолжают до его полного растворения. В растворе образуется биметаллическое комплексное соединение [Co(H2O)2]2[Mo4O11(C6H5O7)2]. После этого к раствору добавляют 4,0 г борной кислоты H3BO3, перемешивание продолжают до отсутствия в растворе видимых взвешенных частиц. Далее объем раствора доводят дистиллированной водой до 73,5 см2.

Пропиточный раствор и носитель контактируют в течение 20 мин, далее избыток раствора сливают, катализатор переносят в чашку Петри и далее помещают в сушильный шкаф, в котором выдерживают 4 ч при 120°C.

Полученный катализатор имеет следующий состав, мас.%: биметаллическое комплексное соединение [Co(H2O)2]2[Mo4O11(C6H5O7)2] - 35, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 16,0; CoO - 4,2; B2O3 - 2,0; Al2O3 - остальное.

Далее проводят гидроочистку углеводородного сырья, для чего навеску катализатора, эквивалентную 22 г прокаленного катализатора, смешивают с 50 г карбида кремния (0,2-0,6 мм), помещают в проточный реактор из нержавеющей стали и нагревают в токе водорода и сульфидирующей смеси, представляющей собой прямогонное дизельное топливо с содержанием серы 1,45% S, в которое дополнительно добавлен диметилдисульфид с концентрацией 12 г/л. Сульфидирование проводят при 3,5 МПа, расходе сульфидирующей смеси 2 ч-1 и объемном отношении водород/сульфидирующая смесь 500 нм33 4 ч при 240°C, а затем 4 ч при 260°C и затем 8 ч при 340°C.

Гидроочистку прямогонного дизельного топлива с содержанием серы 1,45 мас.% S и концом кипения 360°C проводят при температуре 345°C, давлении 3,5 МПа, массовом расходе дизельного топлива 1,5 ч-1, объемном отношении водород/дизельное топливо 400 нм33.

Гидроочистку вакуумного газойля с содержанием серы 2,68 мас.% S и концом кипения 540°C проводят при 375°C, давлении 6,0 МПа, массовом расходе вакуумного газойля 1 ч-1, объемном отношении водород/сырье 500 нм33.

Остаточное содержание серы в продуктах гидроочистки углеводородного сырья приведено в таблице.

Примеры 2-8 иллюстрируют предлагаемое техническое решение.

Пример 2

Гидроочистку углеводородного сырья проводят в присутствии катализатора, который готовят следующим образом: сначала готовят носитель, содержащий 50 мас.% аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 66,7 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита, и 62,5 г порошка аморфного алюмосиликата с массовым отношением Si/Al=0,9. К смеси добавляют 150 мл воды и 10,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1,6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°C и прокаливают 4 ч при температуре 550°C. Получают 100 г готового носителя.

Готовят водный раствор, содержащий 8,1 г [Co(H2O)2]2[Mo4O11(C6H5O7)2] и 24,3 г [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 60 мл воды при 70°C и перемешивании последовательно растворяют 11,03 г лимонной кислоты C6H8O7, 20,29 г парамолибдата аммония (NH4)6Mo7O24×4H2O, 1,34 г гидроксида кобальта (II) и 5,3 г основного карбоната никеля NiCO3·mNi(OH)2·nH2O. Далее добавлением воды объем раствора доводят до 80 мл. 100 г носителя пропитывают по влагоемкости 80 мл полученного раствора. Катализатор сушат на воздухе при 120°C. Рентгенограмма полученного катализатора содержит пик с максимумом 23,0°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0,9.

Полученный катализатор содержит, мас.%: суммарно

[Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 24,5; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,15; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 18,35; аморфный алюмосиликат - 37,8; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 14,0; суммарно CoO+NiO - 3,6; в том числе CoO - 0,9; NiO - 2,7; аморфный алюмосиликат - 42,0; Al2O3 - остальное.

Массовое отношение [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] в катализаторе равно 0,33. Катализатор имеет объем пор 0,7 см3/г, удельную поверхность 300 м2/г и средний диаметр пор 15 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,2 МПа.

Далее проводят гидроочистку углеводородного сырья - прямогонного дизельного топлива или вакуумного газойля - аналогично примеру 1. Результаты тестирования приведены в таблице.

Пример 3

Гидроочистку углеводородного сырья проводят в присутствии катализатора, приготовленного аналогично примеру 2, с той разницей, что пропиточный раствор содержит 24,3 г [Co(H2O)2]2[Mo4O11(C6H5O7)2] и 8,1 г [Ni(H2O)2]2[Mo4O11(C6H5O7)2].

Полученный катализатор содержит, мас.%: суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 24,5; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 18,35 [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,15; аморфный алюмосиликат - 37,8; γ-Al2O3- остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 14,0; суммарно CoO+NiO - 3,6; в том числе CoO - 2,7; NiO - 0,9; аморфный алюмосиликат - 42,0; Al2O3 - остальное.

Массовое отношение [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] в катализаторе равно 3. Катализатор имеет объем пор 0,7 см3/г, удельную поверхность 300 м2/г, средний диаметр пор 15 нм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,15 МПа.

Результаты гидроочистки дизельного топлива и вакуумного газойля аналогично предыдущим примерам приведены в таблице.

Пример 4

Гидроочистку углеводородного сырья проводят в присутствии катализатора, приготовленного следующим образом: сначала готовят носитель, содержащий 10 мас.% аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 120 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита, и 12,5 г порошка аморфного алюмосиликата с массовым отношением Si/Al=0,9. К смеси добавляют 120 мл воды и 3,3 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 минут и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1,6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°C и прокаливают 4 ч при температуре 550°C. Получают 100 г готового носителя.

Далее готовят водный раствор, содержащий 48,3 г [Co(H2O)2]2[Mo4O11(C6H5O7)2] и 16,1 г [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 50 мл воды при 70°C и перемешивании последовательно растворяют 21,9 г лимонной кислоты C6H8O7, 40,28 г парамолибдата аммония (NH4)6Mo7O24×4H2O, 7,96 г гидроксида кобальта (II) и 3,51 г основного карбоната никеля NiCO3·mNi(OH)2·nH2O. Далее добавлением воды объем раствора доводят до 70 мл. 100 г носителя пропитывают по влагоемкости 70 мл полученного раствора. Катализатор сушат на воздухе при 100°C. Рентгенограмма полученного катализатора содержит пик с максимумом 23,0°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0,9.

Полученный катализатор содержит, мас.%: суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 39,0; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 29,25; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 9,75; аморфный алюмосиликат 6,1; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, масс.%: MoO3 - 24,0; суммарно CoO+NiO - 6,0; в том числе CoO - 4,5; NiO - 1,5; аморфный алюмосиликат 7,0; Al2O3 - остальное.

Массовое отношение [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] в катализаторе равно 3. Катализатор имеет объем пор 0,4 см3/г, удельную поверхность 150 м2/г и средний диаметр пор 7 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,6 МПа.

Результаты гидроочистки дизельного топлива и вакуумного газойля аналогично предыдущим примерам приведены в таблице.

Пример 5

Гидроочистку углеводородного сырья проводят в присутствии катализатора, приготовленного аналогично примеру 4, с той разницей, что пропиточный раствор содержит 16,1 г [Co(H2O)2]2[Mo4O11(C6H5O7)2] и 48,3 г [Ni(H2O)2]2[Mo4O11(C6H5O7)2].

Полученный катализатор содержит, мас.%: суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 39,0; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 9,75; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 29,25; аморфный алюмосиликат - 6,1; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 24,0; суммарно CoO+NiO - 6,0; в том числе CoO - 1,5; NiO - 4,5; аморфный алюмосиликат 7,0; Al2O3 - остальное.

Массовое отношение [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] в катализаторе равно 0,33. Катализатор имеет объем пор 0,4 см3/г, удельную поверхность 150 м2/г, средний диаметр пор 7 нм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,55 МПа.

Результаты гидроочистки дизельного топлива и вакуумного газойля аналогично предыдущим примерам приведены в таблице.

Пример 6

Гидроочистку углеводородного сырья проводят в присутствии катализатора, приготовленного следующим образом: носитель, содержащий 10% аморфного алюмосиликата готовят аналогично примеру 4. Далее готовят водный раствор, содержащий 36,32 г [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и 36,32 г [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2], для чего в 100 мл воды при 70°C и перемешивании последовательно растворяют 24,73 г лимонной кислоты C6H8O7, 45,48 г парамолибдата аммония (NH4)6Mo7O24×4H2O, 11,98 г гидроксида кобальта (II) и 15,83 г основного карбоната никеля NiCO3·mNi(OH)2·nH2O. Далее добавлением воды объем раствора доводят до 150 мл. Далее катализатор готовят методом вакуумной пропитки, для чего 100 г носителя помещают в колбу Шленка и вакуумируют до остаточного давления 15 Торр, в колбу всасывают 150 мл пропиточного раствора, после чего давление уравнивают с атмосферным. Раствор и носитель контактируют 20 минут при 70°C, после чего избыток раствора сливают и используют для приготовления других партий катализатора. Влажный катализатор сушат при 250°C 4 часа.

Полученный катализатор содержит, мас.%: суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 26,64; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 13,32; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 13,32; аморфный алюмосиликат - 5,9; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 16,0; суммарно CoO+NiO - 4,0; в том числе CoO - 2,0; NiO - 2,0; аморфный алюмосиликат 6,7; Al2O3 - остальное.

Массовое отношение [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] в катализаторе равно 1. Катализатор имеет объем пор 0,5 см3/г, удельную поверхность 200 м2/г, средний диаметр пор 9 нм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,50 МПа.

Результаты гидроочистки дизельного топлива и вакуумного газойля аналогично предыдущим примерам приведены в таблице.

Пример 7

Гидроочистку углеводородного сырья проводят в присутствии катализатора, приготовленного следующим образом: готовят носитель, содержащий 30% аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 93,3 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита, и 37,5 г порошка аморфного алюмосиликата с массовым отношением Si/Al=0,9. К смеси добавляют 120 мл воды и 6,5 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 минут и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1,6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°C и прокаливают 4 ч при температуре 550°C. Получают 100 г готового носителя. Далее готовят водный раствор, содержащий 9,08 г [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и 27,24 г [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2], для чего в 50 мл воды при 70°C и перемешивании последовательно растворяют 12,36 г лимонной кислоты C6H8O7, 22,72 г парамолибдата аммония (NH4)6Mo7O24×4H2O, 1,5 г гидроксида кобальта (II) и 5,94 г основного карбоната никеля NiCO3·mNi(OH)2·nH2O. Далее добавлением воды объем раствора доводят до 70 мл. Полученным раствором пропитывают по влагоемкости 100 г носителя, катализатор сушат при 120°C.

Полученный катализатор содержит, масс.%: суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 26,64; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,66; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 19,98; аморфный алюмосиликат - 21,9; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 16,0; суммарно CoO+NiO - 4,0; в том числе СоО - 1,0; NiO - 3,0; аморфный алюмосиликат - 25,0; Al2O3 - остальное. Массовое отношение [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] в катализаторе равно 0,33. Катализатор имеет объем пор 0,45 см3/г, удельную поверхность 180 м2/г, средний диаметр пор 10 нм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,45МПа.

Результаты гидроочистки дизельного топлива и вакуумного газойля аналогично предыдущим примерам приведены в таблице.

Пример 8

Гидроочистку углеводородного сырья проводят в присутствии катализатора, приготовленного следующим образом: носитель готовят аналогично примеру 7. Далее готовят водный раствор, содержащий 54,48 г [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и 18,16 г, [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2], для чего в 100 мл воды при 70°C и перемешивании последовательно растворяют 24,72 г лимонной кислоты C6H8O7, 45,44 г парамолибдата аммония (NH4)6Mo7O24×4H2O, 9,0 г гидроксида кобальта (II) и 3,66 г основного карбоната никеля NiCO3·mNi(OH)2·nH2O. Далее добавлением воды объем раствора доводят до 150 мл. Проводят пропитку из избытка раствора, для чего 100 г носителя помещают в наклонную колбу роторного аппарата, приливают к нему 150 мл пропиточного раствора и пропитку проводят при 50°C и вращении 2 об/мин в течение 1 ч. Далее избыток раствора сливают, катализатор сушат при 120°C.

Полученный катализатор содержит, мас.%: суммарно [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 26,64; в том числе [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 19,98; [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 6,66; аморфный алюмосиликат - 21,9; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°C катализаторе, мас.%: MoO3 - 16,0; суммарно CoO+NiO - 4,0; в том числе CoO - 3,0; NiO - 1,0; аморфный алюмосиликат - 25,0; Al2O3 - остальное.

Массовое отношение [Co(H2O)x(L)y]2[Mo4O11(C6H5O7)2]/[Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] в катализаторе равно 3. Катализатор имеет объем пор 0,5 см3/г, удельную поверхность 185 м2/г, средний диаметр пор 9 нм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,35 МПа.

Результаты гидроочистки дизельного топлива и вакуумного газойля аналогично предыдущим примерам приведены в таблице.

Остаточное содержание серы в продуктах после гидроочистки углеводородного сырья
№ примера 1 (прототип) 2 3 4 5 6 7 8
Остаточное содержание серы в продуктах, ppm
Гидроочистка дизельного топлива* 20 10 10 9 9 8 8 9
Гидроочистка вакуумного газойля** 340 300 280 260 260 205 250 240
* - Гидроочистку дизельного топлива (1,45% серы, к.к. 360°C) проводят при температуре 345°C, давлении 3,5 МПа, массовом расходе дизельного топлива 1,5 ч-1, объемном отношении водород/дизельное топливо 400.
** - Гидроочистку вакуумного газойля (2,68% серы, к.к. 540°C) проводят при 375°C, давлении 6,0 МПа, массовом расходе вакуумного газойля 1 ч-1, объемном отношении водород/сырье 500.

Таким образом, как видно из приведенных примеров, предлагаемый способ гидроочистки углеводородного сырья позволяет получать продукты, имеющие гораздо меньшее остаточное содержание серы, чем достигаемое при использовании способа-прототипа.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 135.
20.01.2013
№216.012.1bb3

Катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Группа изобретении относится к катализаторам получения нефтяных дистиллятов с низким содержанием серы, способам приготовления таких катализаторов и способам приготовления носителей для этих катализаторов. Описан катализатор, имеющий объем пор 0,3-0,7 см/г, удельную поверхность 170-300 м/г,...
Тип: Изобретение
Номер охранного документа: 0002472585
Дата охранного документа: 20.01.2013
10.02.2013
№216.012.230c

Катализатор, способ его приготовления и способ получения малосернистого дизельного топлива

Изобретение относится к катализаторам гидроочистки дизельного топлива, способам приготовления таких катализаторов и способам получения малосернистого дизельного топлива. Описан катализатор, содержащий соединение [Со(СНО)][МоО(СНО)] в количестве 30-45 мас.%, диоксид титана 0,8-6,0 мас.%, AlO -...
Тип: Изобретение
Номер охранного документа: 0002474474
Дата охранного документа: 10.02.2013
10.03.2013
№216.012.2d7e

Способ приготовления катализатора для разложения закиси азота и процесс обезвреживания газовых выбросов, содержащих закись азота

Изобретение относится к способу обезвреживания закиси азота, в том числе и низкоконцентрированных выбросов закиси азота, например, в отходящих газах производства азотной кислоты с использованием катализатора на основе железосодержащего цеолита. Описан способ приготовления катализатора для...
Тип: Изобретение
Номер охранного документа: 0002477177
Дата охранного документа: 10.03.2013
10.04.2013
№216.012.3255

Катализатор гидроочистки углеводородного сырья, носитель для катализатора гидроочистки, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Изобретение относится к катализаторам гидроочистки, способам приготовления таких катализаторов, носителям для катализаторов, способам приготовления носителей и способам получения нефтепродуктов с низким содержанием серы. Описан катализатор, содержащий, мас.%: Мо - 8,0-15,0; Со или Ni - 2,0-5,0;...
Тип: Изобретение
Номер охранного документа: 0002478428
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.3980

Катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота

Изобретение относится к катализатору, способу его приготовления и способу очистки отходящих газов от NO в окислительных условиях в присутствии углеводорода. Катализатор для очистки отходящих газов от оксидов азота каталитическим восстановлением метаном в окислительной атмосфере, содержит в...
Тип: Изобретение
Номер охранного документа: 0002480281
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4b72

Регенерированный катализатор гидроочистки углеводородного сырья, способ регенерации дезактивированного катализатора и процесс гидроочистки углеводородного сырья

Изобретение относится к регенерированному катализатору гидроочистки, способу регенерации дезактивированных катализаторов и способу гидроочистки нефтяных дистиллятов. Описан регенерированный катализатор гидроочистки углеводородного сырья, имеющий объем пор 0,3-0,8 мл/г, удельную поверхность...
Тип: Изобретение
Номер охранного документа: 0002484896
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c32

Способ прямой конверсии низших парафинов c-c в оксигенаты

Изобретение относится к способу прямой конверсии низших парафинов С-С в оксигенаты, такие как спирты и альдегиды, которые являются ценными промежуточными продуктами органического синтеза и могут применяться в качестве компонентов моторного топлива и/либо исходного сырья для получения...
Тип: Изобретение
Номер охранного документа: 0002485088
Дата охранного документа: 20.06.2013
10.08.2013
№216.012.5c25

Элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций

Изобретение относится к области каталитического сжигания топлив, а именно к способам приготовления элементов малообъемных каталитических насадок для осуществления сжигания газообразных, жидких и твердых топлив в организованном псевдоожиженном слое частиц инертного материала. Описан элемент...
Тип: Изобретение
Номер охранного документа: 0002489210
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.614f

Каталитический реактор - парогенератор

Изобретение относится к теплоэнергетике и может быть использовано при экологически безопасной выработке пара для получения электроэнергии и теплоснабжения потребителей. Технический результат заключается в снижении расхода дефицитного и дорогостоящего катализатора и уменьшении содержания...
Тип: Изобретение
Номер охранного документа: 0002490543
Дата охранного документа: 20.08.2013
27.09.2013
№216.012.6e5f

Поглотитель, способ его приготовления (варианты) и способ удаления диоксида углерода из газовых смесей

Изобретение относится к области адсорбционного разделения газов. Предложен поглотитель диоксида углерода, содержащий карбонат калия, нанесенный на пористую матрицу из оксида иттрия. Описаны два варианта метода приготовления поглотителя. Предложен способ удаления диоксида углерода из газовых...
Тип: Изобретение
Номер охранного документа: 0002493906
Дата охранного документа: 27.09.2013
Показаны записи 1-10 из 195.
20.01.2013
№216.012.1bb3

Катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Группа изобретении относится к катализаторам получения нефтяных дистиллятов с низким содержанием серы, способам приготовления таких катализаторов и способам приготовления носителей для этих катализаторов. Описан катализатор, имеющий объем пор 0,3-0,7 см/г, удельную поверхность 170-300 м/г,...
Тип: Изобретение
Номер охранного документа: 0002472585
Дата охранного документа: 20.01.2013
10.02.2013
№216.012.230c

Катализатор, способ его приготовления и способ получения малосернистого дизельного топлива

Изобретение относится к катализаторам гидроочистки дизельного топлива, способам приготовления таких катализаторов и способам получения малосернистого дизельного топлива. Описан катализатор, содержащий соединение [Со(СНО)][МоО(СНО)] в количестве 30-45 мас.%, диоксид титана 0,8-6,0 мас.%, AlO -...
Тип: Изобретение
Номер охранного документа: 0002474474
Дата охранного документа: 10.02.2013
10.03.2013
№216.012.2d7e

Способ приготовления катализатора для разложения закиси азота и процесс обезвреживания газовых выбросов, содержащих закись азота

Изобретение относится к способу обезвреживания закиси азота, в том числе и низкоконцентрированных выбросов закиси азота, например, в отходящих газах производства азотной кислоты с использованием катализатора на основе железосодержащего цеолита. Описан способ приготовления катализатора для...
Тип: Изобретение
Номер охранного документа: 0002477177
Дата охранного документа: 10.03.2013
10.04.2013
№216.012.3255

Катализатор гидроочистки углеводородного сырья, носитель для катализатора гидроочистки, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Изобретение относится к катализаторам гидроочистки, способам приготовления таких катализаторов, носителям для катализаторов, способам приготовления носителей и способам получения нефтепродуктов с низким содержанием серы. Описан катализатор, содержащий, мас.%: Мо - 8,0-15,0; Со или Ni - 2,0-5,0;...
Тип: Изобретение
Номер охранного документа: 0002478428
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.3980

Катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота

Изобретение относится к катализатору, способу его приготовления и способу очистки отходящих газов от NO в окислительных условиях в присутствии углеводорода. Катализатор для очистки отходящих газов от оксидов азота каталитическим восстановлением метаном в окислительной атмосфере, содержит в...
Тип: Изобретение
Номер охранного документа: 0002480281
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4b72

Регенерированный катализатор гидроочистки углеводородного сырья, способ регенерации дезактивированного катализатора и процесс гидроочистки углеводородного сырья

Изобретение относится к регенерированному катализатору гидроочистки, способу регенерации дезактивированных катализаторов и способу гидроочистки нефтяных дистиллятов. Описан регенерированный катализатор гидроочистки углеводородного сырья, имеющий объем пор 0,3-0,8 мл/г, удельную поверхность...
Тип: Изобретение
Номер охранного документа: 0002484896
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c32

Способ прямой конверсии низших парафинов c-c в оксигенаты

Изобретение относится к способу прямой конверсии низших парафинов С-С в оксигенаты, такие как спирты и альдегиды, которые являются ценными промежуточными продуктами органического синтеза и могут применяться в качестве компонентов моторного топлива и/либо исходного сырья для получения...
Тип: Изобретение
Номер охранного документа: 0002485088
Дата охранного документа: 20.06.2013
10.08.2013
№216.012.5c25

Элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций

Изобретение относится к области каталитического сжигания топлив, а именно к способам приготовления элементов малообъемных каталитических насадок для осуществления сжигания газообразных, жидких и твердых топлив в организованном псевдоожиженном слое частиц инертного материала. Описан элемент...
Тип: Изобретение
Номер охранного документа: 0002489210
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.614f

Каталитический реактор - парогенератор

Изобретение относится к теплоэнергетике и может быть использовано при экологически безопасной выработке пара для получения электроэнергии и теплоснабжения потребителей. Технический результат заключается в снижении расхода дефицитного и дорогостоящего катализатора и уменьшении содержания...
Тип: Изобретение
Номер охранного документа: 0002490543
Дата охранного документа: 20.08.2013
27.09.2013
№216.012.6e5f

Поглотитель, способ его приготовления (варианты) и способ удаления диоксида углерода из газовых смесей

Изобретение относится к области адсорбционного разделения газов. Предложен поглотитель диоксида углерода, содержащий карбонат калия, нанесенный на пористую матрицу из оксида иттрия. Описаны два варианта метода приготовления поглотителя. Предложен способ удаления диоксида углерода из газовых...
Тип: Изобретение
Номер охранного документа: 0002493906
Дата охранного документа: 27.09.2013
+ добавить свой РИД