×
10.12.2014
216.013.0d11

Результат интеллектуальной деятельности: ПЛАЗМЕННЫЙ ДВИГАТЕЛЬ НА НАНОЧАСТИЦАХ МЕТАЛЛОВ ИЛИ МЕТАЛЛОИДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области ракетно-космической техники. Плазменный двигатель на наночастицах металлов или металлоидов содержит последовательно расположенные камеру сгорания, один вход в которую служит для ввода твердых наночастиц металла или металлоида в качестве топлива, а другой - для ввода окислителя топлива в виде водяного пара или кислорода, при смешении которых в камере возникает горение, хемоионизационные реакции окисления, дающие тепловой эффект, высокие температуры и образование нагретой плазмы, содержащей жидкие оксиды металлов или металлоидов, устройство охлаждения плазмы до температуры ниже температуры плавления полученных оксидов и образования в нагретой плазме твердых пылевых отрицательно заряженных оксидов металлов или металлоидов, электростатическое или электромагнитное разгонное устройство, которое разгоняет электростатическим или электромагнитным полем истекающую из устройства охлаждения нагретую плазму и создает высокоскоростной поток нагретой пылевой плазмы с высокоскростными отрицательно заряженными оксидами металлов или металлоидов, который истекает в окружающую среду и создает реактивную тягу двигателя. Металл может быть применен любым из ряда алюминий, бериллий, цирконий, железо, титан, металлоид - из ряда бор, кремний. Изобретение обеспечивает увеличение удельного импульса тяги двигателя за счет дополнительного включения тепловой энергии хемоионизационных реакций и массы более тяжелых отрицательно заряженных оксидов металлов или металлоидов пылевидной плазмы. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области ракетно-космической техники, а более точно касается плазменного двигателя на наночастицах металлов или металлоидов.

Известны ионные ракетные двигатели на газообразном топливе, относящиеся к электрическим ракетным двигателям

Принцип работы ионного двигателя заключается в ионизации газа и разгоне ионов электростатическим полем (журнал «В мире науки» №5, 2009, стр.34-42. Эдгар Чуэйри. Новый рассвет электрических ракет).

Источником ионов служит газ, например ксенон, аргон или водород. Газ из бака, стоящего в самом начале двигателя, подается в отсек ионизации (ионизатор), где образуется холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева высокоэнергетическая плазма подается в магнитное сопло, где она формируется в поток посредством магнитного поля, разгоняется и истекает в окружающую среду. Таким образом, достигается тяга.

В ионизатор подается ксенон, который сам по себе нейтрален, но при столкновении с высокоэнергетическими электронами ионизуется. Таким образом, образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов может служить трубка с катодными сетками, которая притягивает к себе электроны.

Недостатком ионного двигателя является малая тяга (порядка 50-100 миллиньютонов), поэтому пока сферой их применения является управление ориентацией и положением на орбите искусственных спутников Земли, также он может использоваться в качестве главного тягового двигателя небольшой автоматической межпланетной космической станции.

Известен плазменный двигатель (также плазменный инжектор) - ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы (Большая Советская энциклопедия. Третье издание. БСЭ. 1969-1978 г.).

Известен плазменный двигатель на ксеноне. Нейтральный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за ее пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен Вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжелые однократнозаряженные положительные ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем обеспечивает приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны все же составляют небольшую часть разрядного тока. Основной же ток разряда дают ионы ксенона. Поток однократнозаряженных ускоренных ионов, вылетающих из газоразрядной камеры, создает реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора.

Известен импульсный плазменный электрический реактивный двигатель (Патент РФ №2358153), относящийся к электрореактивным двигателям импульсного действия на жидких рабочих средах, использующих электронно-детонационный тип разряда. Двигатель состоит из анода и катода с разрядным промежутком в виде рабочей поверхности из диэлектрика, контактирующей с источником подачи жидкого или гелеобразного рабочего тела. В качестве рабочего тела применяют жидкофазный диэлектрик с низким значением давления насыщенных паров, например вакуумное масло, а рабочую поверхность выполняют из смачиваемого рабочим телом диэлектрического материала, например керамики или капролона.

В известных технических решениях рабочей средой служат газообразные или жидкие среды, ионизирующиеся и разгоняющиеся только за счет работы электрического поля системы электродов (фактически использующие для этого только энергию солнечного излучения в солнечных батареях) и создающие малую реактивную тягу двигателя. Увеличение импульса тяги требует теоретически требует больших затрат энергии для разгона их до больших скоростей. Это требует увеличения площади солнечных батарей, что трудно достижимо в космических условиях из-за возрастания при этом массы выводимой полезной нагрузки, возникновения проблем развертывания и стабилизации крупногабаритных солнечных батарей.

Плазменных или ионных двигателей на твердых средах, наночастицах металлов или металлоидов и использующих химическую энергию в ионизации и разгоне не выявлено.

В основу изобретения положена задача - создать двигатель, предназначенный преимущественно для работы в космосе, позволяющий достичь большего значения силы тяги.

Технический результат - увеличение тяги за счет дополнительного удельного импульса, создаваемого тепловым эффектом хемоионизационных реакций и массы более тяжелых отрицательно заряженных оксидов металлов или металлоидов пылевидной плазмы.

Поставленная задача решается тем, что плазменный двигатель на наночастицах металлов или металлоидов, предназначенный преимущественно для работы в космосе, содержит последовательно расположенные камеру сгорания, один вход в которую служит для ввода твердых наночастиц металла или металлоида в качестве топлива, а другой - для ввода окислителя топлива в виде водяного пара или кислорода, при смешении которых в камере возникает горение, хемоионизационные реакции окисления, дающие тепловой эффект, высокие температуры и образование нагретой плазмы, содержащей жидкие оксиды металлов или металлоидов, устройство охлаждения плазмы до температуры ниже температуры плавления полученных оксидов и образования в нагретой плазме твердых пылевых отрицательно заряженных оксидов металлов или металлоидов, электростатическое или электромагнитное разгонное устройство, которое разгоняет электростатическим или электромагнитным полем истекающую из устройства охлаждения нагретую плазму и создает высокоскоростной поток нагретой пылевой плазмы с высокоскоростными отрицательно заряженными оксидами металлов или металлоидов, который истекает в окружающую среду и создает реактивную тягу двигателя.

В дальнейшем изобретение поясняется описанием и рисунком.

На рисунке показана принципиальная схема плазменного двигателя на наночастицах металлов и металлоидов, согласно изобретению.

Показанный на рисунке плазменный двигатель на наночастицах металлов и металлоидов содержит последовательно расположенные камеру 1 сгорания, устройство 2 охлаждения плазмы, полученной в камере сгорания, электростатическое или электромагнитное разгонное устройство 3.

Металл может быть применен любым из ряда алюминий, бериллий, цирконий, железо, титан, металлоид - из ряда бор, кремний.

Камера 1 сгорания имеет один вход 5 для ввода топлива в виде наночастиц металла или металлоида, и другой вход 6 - для ввода окислителя топлива в виде водяного пара или кислорода. Камера 1 сгорания предназначена для сжигания наночастиц. При смешении топлива и окислителя происходит химическая (хемоионизационная) реакция окисления наночастиц водяным паром или кислородом до оксидов в жидком состоянии и выделяется тепло, создающее в камере сгорания высокие температуры (до 3800°-4000° К) и образование нагретой плазмы, содержащей жидкие оксиды металлов или металлоидов.

Устройство 2 охлаждения плазмы предназначено для снижения температуры образовавшейся в камере 1 плазмы до температуры ниже температуры плавления оксидов и образования при этом в плазме твердых пылевых отрицательно заряженных оксидов металлов или металлоидов, Устройство 2 охлаждения плазмы может быть выполнено, например, как сопло Лаваля, где происходит расширение образовавшейся смеси, или теплообменника.

Электростатическое или электромагнитное разгонное устройство 3 разгоняет электростатическим или электромагнитным полем истекающую из устройства охлаждения плазму и создает высокоскоростной поток пылевой плазмы с высокоскростными отрицательно заряженными оксидами металлов или металлоидов, который вытекает в окружающую среду и создает реактивную тягу двигателя создавая на выходе двигателя высокоскоростную реактивную струю 10.

Разгонное устройство 3 может быть выполнено в виде разгонной камеры с разгонным участком, где размещена система электродов 7, в которой, по меньшей мере, один, первый по потоку, электрод имеет отрицательный потенциал и является компенсатором для положительно заряженных ионов, а второй по потоку электрод (и, при необходимости, последующие, по потоку), имеет положительный потенциал.

Целесообразно снабдить разгонное устройство 3 блоком 4 солнечных батарей для создания разности потенциалов на системе электродов.

Лучшим вариантом осуществления изобретения является применение в качестве топлива наночастиц алюминия Al.

Один вход 5 камеры 1 сгорания служит для ввода топлива в виде наночастиц Al, другой вход 6 - для ввода окислителя в виде водяного пара или кислорода. При сжигания наночастиц Al происходит химическая (хемоионизационная) реакция окисления водяным паром или кислородом до частиц Al2O3, и выделяется тепло, создающее в камере 1 сгорания температуру до 3800 К. Образуется плазма из жидких наночастиц Al2O3, положительных ионов и электронов, которая поступает в устройство 2.

Образовавшиеся продукты поступают (по направлению 8) в охлаждающее устройство 2, которое выполнено в виде сопла Лаваля, соответствующего рассчитанным тепловым нагрузкам.

Устройство 2 понижает температуру поступивших продуктов горения (по сравнению с температурой в камере 1 сгорания) до температуры ниже температуры плавления наночастиц Al2O3, но выше температуры нуклеации нейтральных частиц карбида Al2O3, чтобы в плазме образовывались отрицательно заряженные твердые наночастицы Al2O3 (температура около 1200 К). Как следствие, происходит замораживание химических реакций и образование в основном отрицательно заряженных твердых наночастиц оксидов металлов (например, наночастиц Al2O3 с зарядом -10-20е и диаметром 50-100 нм).

Такие частицы могут быть дополнительно разогнаны до 800 км/с в электростатическом или даже в электромагнитном поле заданной напряженности, в разгонном устройстве 3.

Образовавшаяся в устройстве 2 комплексная пылевая плазмы с отрицательно заряженными твердыми наночастицами Al2O3 истекает (по направлению 9) в электростатическое или электромагнитное разгонное устройство 3, где разгоняется электростатическим или электромагнитным полем, с образованием высокоскоростного потока пылевой плазмы, создающего при истечении в окружающую среду реактивную тягу двигателя. В разгонном устройстве 3 отрицательно заряженные твердые наночастицы Al2O3 многократно увеличивают свой импульс за счет взаимодействия с электростатическим (или электромагнитным) полем, созданным системой электродов 7, на которые подана разность потенциалов от блока солнечных батарей 4, и создают на выходе двигателя высокоскоростную реактивную струю 10. Первый из электродов (по потоку) имеет отрицательный потенциал и является компенсатором для положительно заряженных ионов, второй электрод имеет положительный потенциал.

Поскольку масса частиц Al2O3 на несколько порядков больше массы ионов, то создаваемый удельный импульс тяги гораздо больше, нежели в известных двигателях, плазменных и ионных, использующих при создании импульса массу ионов. Кроме того, предложенное в изобретении рабочее тело за счет теплового эффекта хемоионизационных реакций окисления создает дополнительный удельный импульс, в отличие от известных плазменных или ионных двигателей на инертном газе, например ксеноне.

Таким образом, за счет обоих эффектов достигается существенный прирост силы тяги отнесенной к единице массы рабочего тела при фиксированном расходе последнего (например, для топлива на основе наночастиц алюминия удельная тяга возрастает примерно в 20 раз) или экономится рабочее тело при фиксированной удельной тяге.

Дополнительным преимуществом такого двигателя является возможность посредством изменения интенсивности и конфигурации электромагнитных полей организовать без инерционное и простое управление тягой (т.к. управляющий механизм не содержит никаких подвижных частей).

Изобретение может быть использовано в космосе, например для межорбитальных буксиров и межпланетных полетов, оно способствует экономному расходу рабочего тела. В отличие от ионных двигателей предлагаемый плазменный двигатель может создавать тягу, на порядки большую (для топлива на основе наночастиц алюминия примерно в 20 раз), а поэтому пригоден не только для ориентации космического аппарата.


ПЛАЗМЕННЫЙ ДВИГАТЕЛЬ НА НАНОЧАСТИЦАХ МЕТАЛЛОВ ИЛИ МЕТАЛЛОИДОВ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 215.
27.09.2013
№216.012.702a

Нагрузочное устройство для исследования торцевого демпфирования колебаний лопаток вентилятора газотурбинного двигателя на вибростенде

Нагрузочное устройство для исследования торцевого демпфирования колебаний лопаток вентиляторов газотурбинного двигателя на вибростенде содержит узел фиксации, предназначенный для удержания и фиксации демпфирующего устройства, узел ориентации, размещенный на станине вибростенда, выполненный с...
Тип: Изобретение
Номер охранного документа: 0002494365
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.739e

Лопатка осевой лопаточной машины

Изобретение относится к области лопаточных машин, в частности к конструкции композиционных лопаток осевых вентиляторов и компрессоров авиадвигателей. Лопатка лопаточной машины содержит профилированное перо, комлевую часть, а также хвостовик типа «ласточкин хвост» и выполнена из ориентированных...
Тип: Изобретение
Номер охранного документа: 0002495255
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.73ad

Способ определения полноты сгорания топливной смеси в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя

Способ определения полноты сгорания топливной смеси в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя заключается в том, что двигатель жестко соединяют с горизонтальной мерительной платформой, платформу устанавливают на поперечные упругие опоры и соединяют с датчиком...
Тип: Изобретение
Номер охранного документа: 0002495270
Дата охранного документа: 10.10.2013
27.10.2013
№216.012.7a65

Поршневой двигатель с компрессионным зажиганием и способ его работы

Изобретение относится к области двигателестроения и позволяет расширить диапазон рабочих режимов двигателя с компрессионным зажиганием за счет повышения устойчивости воспламенения топливовоздушной смеси в цилиндре ДВС. Техническим результатом является упрощение конструкции двигателя и снижение...
Тип: Изобретение
Номер охранного документа: 0002496995
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a67

Двигатель внутреннего сгорания и способ его работы

Изобретение относится к области двигателестроения и обеспечивает низкоэмиссионное сгорание топливовоздушной смеси, снижает риск взрыва топливовоздушной смеси. Техническим результатом является упрощение конструкции двигателя, повышение надежности и снижение токсичности продуктов сгорания....
Тип: Изобретение
Номер охранного документа: 0002496997
Дата охранного документа: 27.10.2013
10.01.2014
№216.012.93c1

Способ изготовления накладки передней кромки композиционной лопатки вентилятора

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении накладки передней кромки композиционной лопатки вентилятора газотурбинного двигателя. Заготовку из титанового сплава профилируют в вертикальной и горизонтальной плоскостях. После профилирования...
Тип: Изобретение
Номер охранного документа: 0002503519
Дата охранного документа: 10.01.2014
27.01.2014
№216.012.9c6b

Камера сгорания газотурбинного двигателя и способ ее работы

Камера сгорания газотурбинного двигателя содержит корпус, жаровую трубу с зонами горения и разбавления, систему подачи топлива, систему подачи первичного и вторичного потоков воздуха, снабженную устройством воздействия на поток вторичного воздуха в полости кольцевого канала между стенками...
Тип: Изобретение
Номер охранного документа: 0002505749
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f18

Устройство оптимизации радиальных зазоров многоступенчатого осевого компрессора авиационного газотурбинного двигателя

Устройство для оптимизации радиальных зазоров многоступенчатого осевого компрессора газотурбинного авиационного двигателя сжатым воздухом, отводимым из компрессора, содержит корпус с проточной частью. Сжатый воздух последовательно проходит внутренние полости ступеней компрессора. Ротор каждой...
Тип: Изобретение
Номер охранного документа: 0002506436
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b41f

Гибридный турбореактивный авиационный двигатель

Гибридный турбореактивный авиационный двигатель содержит камеру сгорания и расположенный вне камеры электрохимический генератор на топливных элементах, связанные входом с источником углеводородного топлива и потоком сжатого в двигателе воздуха, и контроллер. Выход камеры сгорания связан через...
Тип: Изобретение
Номер охранного документа: 0002511829
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b45e

Способ сжигания углеводородного топлива в газотурбинных двигателе или установке

Способ сжигания углеводородного топлива в газотурбинных двигателе или установке, содержащих камеру сгорания, заключается в поступлении на ее вход потока углеводородного топлива и потока воздуха, сжатого в компрессоре до высокого давления. Топливовоздушную смесь воспламеняют, а полученные при...
Тип: Изобретение
Номер охранного документа: 0002511893
Дата охранного документа: 10.04.2014
Показаны записи 11-20 из 95.
27.09.2013
№216.012.702a

Нагрузочное устройство для исследования торцевого демпфирования колебаний лопаток вентилятора газотурбинного двигателя на вибростенде

Нагрузочное устройство для исследования торцевого демпфирования колебаний лопаток вентиляторов газотурбинного двигателя на вибростенде содержит узел фиксации, предназначенный для удержания и фиксации демпфирующего устройства, узел ориентации, размещенный на станине вибростенда, выполненный с...
Тип: Изобретение
Номер охранного документа: 0002494365
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.739e

Лопатка осевой лопаточной машины

Изобретение относится к области лопаточных машин, в частности к конструкции композиционных лопаток осевых вентиляторов и компрессоров авиадвигателей. Лопатка лопаточной машины содержит профилированное перо, комлевую часть, а также хвостовик типа «ласточкин хвост» и выполнена из ориентированных...
Тип: Изобретение
Номер охранного документа: 0002495255
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.73ad

Способ определения полноты сгорания топливной смеси в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя

Способ определения полноты сгорания топливной смеси в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя заключается в том, что двигатель жестко соединяют с горизонтальной мерительной платформой, платформу устанавливают на поперечные упругие опоры и соединяют с датчиком...
Тип: Изобретение
Номер охранного документа: 0002495270
Дата охранного документа: 10.10.2013
27.10.2013
№216.012.7a65

Поршневой двигатель с компрессионным зажиганием и способ его работы

Изобретение относится к области двигателестроения и позволяет расширить диапазон рабочих режимов двигателя с компрессионным зажиганием за счет повышения устойчивости воспламенения топливовоздушной смеси в цилиндре ДВС. Техническим результатом является упрощение конструкции двигателя и снижение...
Тип: Изобретение
Номер охранного документа: 0002496995
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a67

Двигатель внутреннего сгорания и способ его работы

Изобретение относится к области двигателестроения и обеспечивает низкоэмиссионное сгорание топливовоздушной смеси, снижает риск взрыва топливовоздушной смеси. Техническим результатом является упрощение конструкции двигателя, повышение надежности и снижение токсичности продуктов сгорания....
Тип: Изобретение
Номер охранного документа: 0002496997
Дата охранного документа: 27.10.2013
10.01.2014
№216.012.93c1

Способ изготовления накладки передней кромки композиционной лопатки вентилятора

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении накладки передней кромки композиционной лопатки вентилятора газотурбинного двигателя. Заготовку из титанового сплава профилируют в вертикальной и горизонтальной плоскостях. После профилирования...
Тип: Изобретение
Номер охранного документа: 0002503519
Дата охранного документа: 10.01.2014
27.01.2014
№216.012.9c6b

Камера сгорания газотурбинного двигателя и способ ее работы

Камера сгорания газотурбинного двигателя содержит корпус, жаровую трубу с зонами горения и разбавления, систему подачи топлива, систему подачи первичного и вторичного потоков воздуха, снабженную устройством воздействия на поток вторичного воздуха в полости кольцевого канала между стенками...
Тип: Изобретение
Номер охранного документа: 0002505749
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f18

Устройство оптимизации радиальных зазоров многоступенчатого осевого компрессора авиационного газотурбинного двигателя

Устройство для оптимизации радиальных зазоров многоступенчатого осевого компрессора газотурбинного авиационного двигателя сжатым воздухом, отводимым из компрессора, содержит корпус с проточной частью. Сжатый воздух последовательно проходит внутренние полости ступеней компрессора. Ротор каждой...
Тип: Изобретение
Номер охранного документа: 0002506436
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b41f

Гибридный турбореактивный авиационный двигатель

Гибридный турбореактивный авиационный двигатель содержит камеру сгорания и расположенный вне камеры электрохимический генератор на топливных элементах, связанные входом с источником углеводородного топлива и потоком сжатого в двигателе воздуха, и контроллер. Выход камеры сгорания связан через...
Тип: Изобретение
Номер охранного документа: 0002511829
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b45e

Способ сжигания углеводородного топлива в газотурбинных двигателе или установке

Способ сжигания углеводородного топлива в газотурбинных двигателе или установке, содержащих камеру сгорания, заключается в поступлении на ее вход потока углеводородного топлива и потока воздуха, сжатого в компрессоре до высокого давления. Топливовоздушную смесь воспламеняют, а полученные при...
Тип: Изобретение
Номер охранного документа: 0002511893
Дата охранного документа: 10.04.2014
+ добавить свой РИД