×
10.12.2014
216.013.0d11

Результат интеллектуальной деятельности: ПЛАЗМЕННЫЙ ДВИГАТЕЛЬ НА НАНОЧАСТИЦАХ МЕТАЛЛОВ ИЛИ МЕТАЛЛОИДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области ракетно-космической техники. Плазменный двигатель на наночастицах металлов или металлоидов содержит последовательно расположенные камеру сгорания, один вход в которую служит для ввода твердых наночастиц металла или металлоида в качестве топлива, а другой - для ввода окислителя топлива в виде водяного пара или кислорода, при смешении которых в камере возникает горение, хемоионизационные реакции окисления, дающие тепловой эффект, высокие температуры и образование нагретой плазмы, содержащей жидкие оксиды металлов или металлоидов, устройство охлаждения плазмы до температуры ниже температуры плавления полученных оксидов и образования в нагретой плазме твердых пылевых отрицательно заряженных оксидов металлов или металлоидов, электростатическое или электромагнитное разгонное устройство, которое разгоняет электростатическим или электромагнитным полем истекающую из устройства охлаждения нагретую плазму и создает высокоскоростной поток нагретой пылевой плазмы с высокоскростными отрицательно заряженными оксидами металлов или металлоидов, который истекает в окружающую среду и создает реактивную тягу двигателя. Металл может быть применен любым из ряда алюминий, бериллий, цирконий, железо, титан, металлоид - из ряда бор, кремний. Изобретение обеспечивает увеличение удельного импульса тяги двигателя за счет дополнительного включения тепловой энергии хемоионизационных реакций и массы более тяжелых отрицательно заряженных оксидов металлов или металлоидов пылевидной плазмы. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области ракетно-космической техники, а более точно касается плазменного двигателя на наночастицах металлов или металлоидов.

Известны ионные ракетные двигатели на газообразном топливе, относящиеся к электрическим ракетным двигателям

Принцип работы ионного двигателя заключается в ионизации газа и разгоне ионов электростатическим полем (журнал «В мире науки» №5, 2009, стр.34-42. Эдгар Чуэйри. Новый рассвет электрических ракет).

Источником ионов служит газ, например ксенон, аргон или водород. Газ из бака, стоящего в самом начале двигателя, подается в отсек ионизации (ионизатор), где образуется холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева высокоэнергетическая плазма подается в магнитное сопло, где она формируется в поток посредством магнитного поля, разгоняется и истекает в окружающую среду. Таким образом, достигается тяга.

В ионизатор подается ксенон, который сам по себе нейтрален, но при столкновении с высокоэнергетическими электронами ионизуется. Таким образом, образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов может служить трубка с катодными сетками, которая притягивает к себе электроны.

Недостатком ионного двигателя является малая тяга (порядка 50-100 миллиньютонов), поэтому пока сферой их применения является управление ориентацией и положением на орбите искусственных спутников Земли, также он может использоваться в качестве главного тягового двигателя небольшой автоматической межпланетной космической станции.

Известен плазменный двигатель (также плазменный инжектор) - ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы (Большая Советская энциклопедия. Третье издание. БСЭ. 1969-1978 г.).

Известен плазменный двигатель на ксеноне. Нейтральный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за ее пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен Вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжелые однократнозаряженные положительные ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем обеспечивает приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны все же составляют небольшую часть разрядного тока. Основной же ток разряда дают ионы ксенона. Поток однократнозаряженных ускоренных ионов, вылетающих из газоразрядной камеры, создает реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора.

Известен импульсный плазменный электрический реактивный двигатель (Патент РФ №2358153), относящийся к электрореактивным двигателям импульсного действия на жидких рабочих средах, использующих электронно-детонационный тип разряда. Двигатель состоит из анода и катода с разрядным промежутком в виде рабочей поверхности из диэлектрика, контактирующей с источником подачи жидкого или гелеобразного рабочего тела. В качестве рабочего тела применяют жидкофазный диэлектрик с низким значением давления насыщенных паров, например вакуумное масло, а рабочую поверхность выполняют из смачиваемого рабочим телом диэлектрического материала, например керамики или капролона.

В известных технических решениях рабочей средой служат газообразные или жидкие среды, ионизирующиеся и разгоняющиеся только за счет работы электрического поля системы электродов (фактически использующие для этого только энергию солнечного излучения в солнечных батареях) и создающие малую реактивную тягу двигателя. Увеличение импульса тяги требует теоретически требует больших затрат энергии для разгона их до больших скоростей. Это требует увеличения площади солнечных батарей, что трудно достижимо в космических условиях из-за возрастания при этом массы выводимой полезной нагрузки, возникновения проблем развертывания и стабилизации крупногабаритных солнечных батарей.

Плазменных или ионных двигателей на твердых средах, наночастицах металлов или металлоидов и использующих химическую энергию в ионизации и разгоне не выявлено.

В основу изобретения положена задача - создать двигатель, предназначенный преимущественно для работы в космосе, позволяющий достичь большего значения силы тяги.

Технический результат - увеличение тяги за счет дополнительного удельного импульса, создаваемого тепловым эффектом хемоионизационных реакций и массы более тяжелых отрицательно заряженных оксидов металлов или металлоидов пылевидной плазмы.

Поставленная задача решается тем, что плазменный двигатель на наночастицах металлов или металлоидов, предназначенный преимущественно для работы в космосе, содержит последовательно расположенные камеру сгорания, один вход в которую служит для ввода твердых наночастиц металла или металлоида в качестве топлива, а другой - для ввода окислителя топлива в виде водяного пара или кислорода, при смешении которых в камере возникает горение, хемоионизационные реакции окисления, дающие тепловой эффект, высокие температуры и образование нагретой плазмы, содержащей жидкие оксиды металлов или металлоидов, устройство охлаждения плазмы до температуры ниже температуры плавления полученных оксидов и образования в нагретой плазме твердых пылевых отрицательно заряженных оксидов металлов или металлоидов, электростатическое или электромагнитное разгонное устройство, которое разгоняет электростатическим или электромагнитным полем истекающую из устройства охлаждения нагретую плазму и создает высокоскоростной поток нагретой пылевой плазмы с высокоскоростными отрицательно заряженными оксидами металлов или металлоидов, который истекает в окружающую среду и создает реактивную тягу двигателя.

В дальнейшем изобретение поясняется описанием и рисунком.

На рисунке показана принципиальная схема плазменного двигателя на наночастицах металлов и металлоидов, согласно изобретению.

Показанный на рисунке плазменный двигатель на наночастицах металлов и металлоидов содержит последовательно расположенные камеру 1 сгорания, устройство 2 охлаждения плазмы, полученной в камере сгорания, электростатическое или электромагнитное разгонное устройство 3.

Металл может быть применен любым из ряда алюминий, бериллий, цирконий, железо, титан, металлоид - из ряда бор, кремний.

Камера 1 сгорания имеет один вход 5 для ввода топлива в виде наночастиц металла или металлоида, и другой вход 6 - для ввода окислителя топлива в виде водяного пара или кислорода. Камера 1 сгорания предназначена для сжигания наночастиц. При смешении топлива и окислителя происходит химическая (хемоионизационная) реакция окисления наночастиц водяным паром или кислородом до оксидов в жидком состоянии и выделяется тепло, создающее в камере сгорания высокие температуры (до 3800°-4000° К) и образование нагретой плазмы, содержащей жидкие оксиды металлов или металлоидов.

Устройство 2 охлаждения плазмы предназначено для снижения температуры образовавшейся в камере 1 плазмы до температуры ниже температуры плавления оксидов и образования при этом в плазме твердых пылевых отрицательно заряженных оксидов металлов или металлоидов, Устройство 2 охлаждения плазмы может быть выполнено, например, как сопло Лаваля, где происходит расширение образовавшейся смеси, или теплообменника.

Электростатическое или электромагнитное разгонное устройство 3 разгоняет электростатическим или электромагнитным полем истекающую из устройства охлаждения плазму и создает высокоскоростной поток пылевой плазмы с высокоскростными отрицательно заряженными оксидами металлов или металлоидов, который вытекает в окружающую среду и создает реактивную тягу двигателя создавая на выходе двигателя высокоскоростную реактивную струю 10.

Разгонное устройство 3 может быть выполнено в виде разгонной камеры с разгонным участком, где размещена система электродов 7, в которой, по меньшей мере, один, первый по потоку, электрод имеет отрицательный потенциал и является компенсатором для положительно заряженных ионов, а второй по потоку электрод (и, при необходимости, последующие, по потоку), имеет положительный потенциал.

Целесообразно снабдить разгонное устройство 3 блоком 4 солнечных батарей для создания разности потенциалов на системе электродов.

Лучшим вариантом осуществления изобретения является применение в качестве топлива наночастиц алюминия Al.

Один вход 5 камеры 1 сгорания служит для ввода топлива в виде наночастиц Al, другой вход 6 - для ввода окислителя в виде водяного пара или кислорода. При сжигания наночастиц Al происходит химическая (хемоионизационная) реакция окисления водяным паром или кислородом до частиц Al2O3, и выделяется тепло, создающее в камере 1 сгорания температуру до 3800 К. Образуется плазма из жидких наночастиц Al2O3, положительных ионов и электронов, которая поступает в устройство 2.

Образовавшиеся продукты поступают (по направлению 8) в охлаждающее устройство 2, которое выполнено в виде сопла Лаваля, соответствующего рассчитанным тепловым нагрузкам.

Устройство 2 понижает температуру поступивших продуктов горения (по сравнению с температурой в камере 1 сгорания) до температуры ниже температуры плавления наночастиц Al2O3, но выше температуры нуклеации нейтральных частиц карбида Al2O3, чтобы в плазме образовывались отрицательно заряженные твердые наночастицы Al2O3 (температура около 1200 К). Как следствие, происходит замораживание химических реакций и образование в основном отрицательно заряженных твердых наночастиц оксидов металлов (например, наночастиц Al2O3 с зарядом -10-20е и диаметром 50-100 нм).

Такие частицы могут быть дополнительно разогнаны до 800 км/с в электростатическом или даже в электромагнитном поле заданной напряженности, в разгонном устройстве 3.

Образовавшаяся в устройстве 2 комплексная пылевая плазмы с отрицательно заряженными твердыми наночастицами Al2O3 истекает (по направлению 9) в электростатическое или электромагнитное разгонное устройство 3, где разгоняется электростатическим или электромагнитным полем, с образованием высокоскоростного потока пылевой плазмы, создающего при истечении в окружающую среду реактивную тягу двигателя. В разгонном устройстве 3 отрицательно заряженные твердые наночастицы Al2O3 многократно увеличивают свой импульс за счет взаимодействия с электростатическим (или электромагнитным) полем, созданным системой электродов 7, на которые подана разность потенциалов от блока солнечных батарей 4, и создают на выходе двигателя высокоскоростную реактивную струю 10. Первый из электродов (по потоку) имеет отрицательный потенциал и является компенсатором для положительно заряженных ионов, второй электрод имеет положительный потенциал.

Поскольку масса частиц Al2O3 на несколько порядков больше массы ионов, то создаваемый удельный импульс тяги гораздо больше, нежели в известных двигателях, плазменных и ионных, использующих при создании импульса массу ионов. Кроме того, предложенное в изобретении рабочее тело за счет теплового эффекта хемоионизационных реакций окисления создает дополнительный удельный импульс, в отличие от известных плазменных или ионных двигателей на инертном газе, например ксеноне.

Таким образом, за счет обоих эффектов достигается существенный прирост силы тяги отнесенной к единице массы рабочего тела при фиксированном расходе последнего (например, для топлива на основе наночастиц алюминия удельная тяга возрастает примерно в 20 раз) или экономится рабочее тело при фиксированной удельной тяге.

Дополнительным преимуществом такого двигателя является возможность посредством изменения интенсивности и конфигурации электромагнитных полей организовать без инерционное и простое управление тягой (т.к. управляющий механизм не содержит никаких подвижных частей).

Изобретение может быть использовано в космосе, например для межорбитальных буксиров и межпланетных полетов, оно способствует экономному расходу рабочего тела. В отличие от ионных двигателей предлагаемый плазменный двигатель может создавать тягу, на порядки большую (для топлива на основе наночастиц алюминия примерно в 20 раз), а поэтому пригоден не только для ориентации космического аппарата.


ПЛАЗМЕННЫЙ ДВИГАТЕЛЬ НА НАНОЧАСТИЦАХ МЕТАЛЛОВ ИЛИ МЕТАЛЛОИДОВ
Источник поступления информации: Роспатент

Показаны записи 141-150 из 215.
23.02.2019
№219.016.c60b

Способ определения истинного объёмного газосодержания

Изобретение относится к способам определения физических свойств двухфазных потоков, а именно к способам определения истинного объемного газосодержания потока масловоздушной эмульсии в трубопроводе, в частности в системах смазки газотурбинных двигателей. Способ заключается в том, что в...
Тип: Изобретение
Номер охранного документа: 0002680416
Дата охранного документа: 21.02.2019
23.02.2019
№219.016.c6f3

Реактивное метательное устройство

Изобретение относится к боеприпасам, а именно к устройствам ствольного сверхзвукового разгона реактивных снарядов кинетического действия. Технический результат - обеспечение разгона снаряда кинетического действия в стволе реактивного метательного устройства за счет полного сгорания заряда...
Тип: Изобретение
Номер охранного документа: 0002680568
Дата охранного документа: 22.02.2019
26.02.2019
№219.016.c811

Турбомашина с надроторным устройством

Изобретение относится к энергетическому машиностроению и может быть использовано в осевых турбокомпрессорах для газотурбинных двигателей и установок. Турбомашина с надроторным устройством содержит корпус с проточным трактом, рабочее колесо с лопатками, установленное в проточном тракте между...
Тип: Изобретение
Номер охранного документа: 0002680634
Дата охранного документа: 25.02.2019
26.02.2019
№219.016.c81f

Система охлаждения многоконтурной газотурбинной установки

Изобретение относится к газотурбостроению и может быть использовано в системах охлаждения авиационных многоконтурных газотурбинных двигателей. Система охлаждения многоконтурной газотурбинной установки содержит многосекционный кольцевой рекуперативный теплообменник, размещенный в потоке...
Тип: Изобретение
Номер охранного документа: 0002680636
Дата охранного документа: 25.02.2019
01.03.2019
№219.016.c905

Способ регистрации воспламенения топливовоздушной смеси в форсажной камере

Изобретение относится к области авиационной техники, в частности авиационного двигателестроения. Для правильного функционирования автоматики авиационного газотурбинного двигателя, контроля за режимами его работы и надежности эксплуатации необходимо иметь объективную информацию о включении или...
Тип: Изобретение
Номер охранного документа: 0002263808
Дата охранного документа: 10.11.2005
08.03.2019
№219.016.d4bc

Способ отсечки и регулирования тяги прямоточных воздушно-реактивных двигателей на твердом топливе и устройство для его осуществления

Способ отсечки и регулирования тяги прямоточных воздушно-реактивных двигателей на твердом топливе заключается в том, что в зону циркуляционного течения со стабилизированным пламенем, образующуюся за стабилизатором пламени, осуществляют подачу инертного газа. Инертный газ подают в виде кольцевой...
Тип: Изобретение
Номер охранного документа: 0002316668
Дата охранного документа: 10.02.2008
08.03.2019
№219.016.d500

Способ определения прочностных свойств высокотемпературных теплозащитных покрытий деталей и устройство для его осуществления

Изобретение относится к области машиностроения, а именно к испытаниям высокотемпературных покрытий деталей, преимущественно ГТД. В процессе нагрева, при достижении заданной максимальной температуры в цикле, к рабочей лопатке или модели с теплозащитным покрытием, преимущественно столбчатой...
Тип: Изобретение
Номер охранного документа: 0002339930
Дата охранного документа: 27.11.2008
11.03.2019
№219.016.dc29

Устройство для оценки качества смазочных масел

Изобретение относится к испытательной технике для оценки качества смазочных масел, преимущественно авиационных моторных масел, в частности к оценке их коррозионной активности на конструкционные и уплотнительные материалы, и может быть использовано в химической и авиационной промышленности для...
Тип: Изобретение
Номер охранного документа: 0002455629
Дата охранного документа: 10.07.2012
13.03.2019
№219.016.deb1

Способ стендовых испытаний турбореактивного двухконтурного двигателя

Изобретение относится к области техники испытаний газотурбинных двигателей, а именно к способам стендовых испытаний турбореактивных двухконтурных двигателей (ТРДД) с проверкой отсутствия автоколебаний рабочих лопаток вентилятора двигателя. В способе стендовых испытаний турбореактивного...
Тип: Изобретение
Номер охранного документа: 0002681548
Дата охранного документа: 11.03.2019
13.03.2019
№219.016.dec2

Способ стендовых испытаний турбореактивного двухконтурного двигателя

Изобретение относится к области техники испытаний газотурбинных двигателей, а именно к способам стендовых испытаний турбореактивных двухконтурных двигателей (ТРДД) с проверкой отсутствия автоколебаний рабочих лопаток вентилятора двигателя. В способе стендовых испытаний турбореактивного...
Тип: Изобретение
Номер охранного документа: 0002681550
Дата охранного документа: 11.03.2019
Показаны записи 91-95 из 95.
10.07.2018
№218.016.6ebf

Способ инициирования импульсной детонации

Изобретение относится к способам детонационного сжигания топлива и может быть использовано для инициирования импульсной детонации в топливно-воздушной смеси в энергетических установках, импульсных детонационных двигателях. Способ инициирования импульсной детонации топливно-воздушной смеси...
Тип: Изобретение
Номер охранного документа: 0002659415
Дата охранного документа: 02.07.2018
19.06.2019
№219.017.8b56

Импульсный детонационный ракетный двигатель

Импульсный детонационный ракетный двигатель содержит камеру сгорания, вход которой служит для порционного ввода детонационного топлива, систему импульсного зажигания и устройство запирания выхода камеры сгорания в момент заполнения ее порцией детонационного топлива и тяговое осесимметричное...
Тип: Изобретение
Номер охранного документа: 0002442008
Дата охранного документа: 10.02.2012
02.10.2019
№219.017.ccd4

Способ диспергирования трудновоспламеняемых наночастиц бора

Изобретение относится к тепловым двигателям, в которых для производства механической работы используется теплота сгорания твердого топлива, в частности топлива из трудновоспламеняемых наночастиц бора. Способ характеризуется тем, что наночастицы бора пассивируют твердыми покрытиями с...
Тип: Изобретение
Номер охранного документа: 0002701249
Дата охранного документа: 25.09.2019
20.04.2023
№223.018.4b54

Способ удаления кислорода из жидкого топлива

Способ может применяться в системах подачи жидкого топлива в камеру сгорания авиационных двигателей в процессе их работы, в топливных магистралях нефтеперерабатывающих комплексов и иных топливных системах. Для удаления кислорода на жидкое топливо одновременно в течение заданного времени...
Тип: Изобретение
Номер охранного документа: 0002766511
Дата охранного документа: 15.03.2022
23.05.2023
№223.018.6ed7

Способ диспергирования трудновоспламеняемых наночастиц

Изобретение относится к тепловым двигателям, в которых для производства механической работы используется теплота сгорания твердого топлива из трудновоспламеняемых наночастиц. Способ диспергирования трудновоспламеняемых наночастиц, состоящих из ядра и оболочки, заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002744462
Дата охранного документа: 09.03.2021
+ добавить свой РИД