×
10.12.2014
216.013.0d08

Результат интеллектуальной деятельности: СПОСОБ КОСВЕННОГО КОНТРОЛЯ ТЕМПЕРАТУРЫ ПРОВОДА ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ

Вид РИД

Изобретение

Аннотация: Использование: в области электроэнергетики. Технический результат - обеспечение точного контроля без необходимости непосредственных измерений и снижение числа контролируемых факторов с обеспечением точности контроля. Согласно способу измеряют токи, протекающие по проводу, и с использованием результатов измерений рассчитывают мощность Р нагрева провода, выделяющуюся на участке провода длиной L (величина L гораздо больше диаметра провода). При этом используют тестовый образец длиной L, помещенный на высоте подвеса контролируемого провода и имеющий такие же физические характеристики, определяющие процесс охлаждения провода, как и контролируемый провод. Тестовый образец имеет теплоемкость, равную теплоемкости провода длиной L. При этом на тестовый образец подают мощность нагрева, равную рассчитанной мощности Р нагрева провода, измеряют температуру тестового образца, причем температуру провода приравнивают к измеренной температуре тестового образца. Предлагаемый способ позволяет автоматически учитывать изменяющиеся внешние условия охлаждения, такие как температура окружающей среды, влажность, скорость ветра, дождь, снег, туман. 1 ил.
Основные результаты: Способ косвенного контроля температуры провода воздушных линий электропередачи, заключающийся в том, что измеряют токи, протекающие по проводу, и с использованием результатов измерений рассчитывают мощность Р нагрева провода, выделяющуюся на участке провода длиной L, при этом величина L гораздо больше диаметра провода, отличающийся тем, что используют тестовый образец длиной L, который помещают на высоте подвеса контролируемого провода, причем тестовый образец имеет такие же физические характеристики, определяющие процесс охлаждения провода, как и контролируемый провод, имеет теплоемкость, равную теплоемкости провода длиной L, на тестовый образец подают мощность Р нагрева, равную рассчитанной мощности нагрева провода, измеряют температуру тестового образца, при этом температуру провода приравнивают к измеренной температуре тестового образца.

Изобретение относится к электроэнергетике и может быть применено для максимального использования пропускной способности воздушных линий электропередачи, защиты от пережога провода воздушной линии электропередачи при проведении на ней плавки гололеда.

Трудности измерения температуры проводов воздушных линий электропередачи связаны с высоким напряжением на проводах линии, от 6 до 500 киловольт, в результате стоимость прямого контактного способа измерения температуры провода довольно большая.

Известен бесконтактный способ контроля температуры, использующий зависимость интенсивности теплового излучения объекта контроля от его температуры (Туричин А.М. Электрические измерения неэлектрических величин. Л.: "Энергия", 5-е изд., 1975; Низкотемпературные пирометры с тепловыми приемниками излучения / Е.И. Фандеев, Б.В. Васильев, А.П. Бараненко, В.М. Горбачев. М: Энергоатомиздат, 1993). Этот способ не требует формирования специального канала передачи информации с высоковольтного датчика - термопреобразователя на потенциал земли, однако практически непригоден для контроля температуры провода воздушной линии из-за влияния поглощающих тепловое излучение атмосферных осадков - тумана, дождя, снега.

Известен способ косвенного контроля температуры провода, основанный на измерении линейного температурного удлинения провода, нагреваемого электрическим током (Электрические и магнитные измерения. Под ред. Е.Г. Шрамкова. Л., М., 1937, стр.134-135).

Недостаток данного способа - существенная зависимость удлинения провода не только от его температуры, но и от изменяющихся механических нагрузок на провод - гололедной и ветровой.

Известен выбранный в качестве прототипа способ косвенного контроля температуры провода воздушной линии электропередачи, заключающийся в том, что измеряют ток линий и с использованием результатов измерений рассчитывают численным методом, исходя из уравнения теплового баланса провода, параметры математической модели экспоненциального с постоянной времени Т нарастания температуры нагреваемого провода от начальной в момент t0 температуры до установившегося значения (Петрова Т.Е., Фигурнов Е.П. Защита от перегрузки по току проводов воздушных линий электропередачи. Электричество, 1991, N 8, стр.29-34).

Согласно способу-прототипу при расчете параметров математической модели нагрева провода непосредственно измеряют значения тока линии, скорости ветра и температуры окружающей среды, а другие факторы, влияющие на теплоотдачу провода, учитывают в виде их оценочных значений.

Недостаток прототипа состоит в том, что необходимо контролировать на высоте подвески проводов или учитывать в виде оценочных значений многие атмосферные факторы, влияющие на теплоотдачу провода воздушной линии. К таким факторам, помимо температуры окружающей среды, относятся: скорость и направление ветра, влажность воздуха, степень турбулизации воздушного потока, прозрачность атмосферы, уровень солнечной радиации и т.п. Без непосредственного контроля этих факторов способ-прототип не обеспечивает достаточную точность оперативного измерения температуры провода.

Задача изобретения - создание способа косвенного контроля температуры провода воздушных линий электропередачи, не требующего непосредственного измерения или оценки большого числа факторов, влияющих на тепловой баланс провода, и позволяющего снизить число контролируемых факторов без ущерба для точности определения температуры провода.

Предметом изобретения является способ косвенного контроля температуры провода воздушных линий электропередачи, заключающийся в том, что измеряют токи, протекающие по проводу, и с использованием результатов измерений рассчитывают мощность Р нагрева провода, выделяющуюся на участке провода длиной L, при этом величина L гораздо больше диаметра провода. Отличие предлагаемого изобретения в том, что используют тестовый образец длиной L, помещенный в близкие с контролируемым проводом внешние условия, которые определяют процесс охлаждения провода, причем тестовый образец имеет близкие с контролируемым проводом физические характеристики, определяющие процесс охлаждения провода, а также имеет теплоемкость, равную теплоемкости провода длиной L. При этом на тестовый образец подают мощность нагрева, равную рассчитанной мощности Р нагрева провода, измеряют температуру тестового образца, причем температуру провода приравнивают к измеренной температуре тестового образца.

В основе метода лежит утверждение, что если два объекта, А (контролируемый объект) и Б (тестовый образец), имеющие близкие физические характеристики, которые определяют процесс охлаждения объектов, имеющие равные теплоемкости, поместить в одинаковые внешние условия и подать на оба объекта одинаковую мощность нагрева, то температуры объектов А и Б будут равны.

Единственная проблема в том, что линейные размеры проводов очень большие: длина проводов воздушных линий электропередачи исчисляется километрами. Сделать тестовый образец таких размеров затруднительно.

Но процесс охлаждения проводов при одинаковых внешних условиях одинаков на каждом метре длины провода. Поэтому достаточно создать тестовый образец с единичной длиной и подать на тестовый образец удельную мощность Руд нагрева, выделяемую на участке провода с единичной длиной.

В нашем случае объект А - это контролируемый провод, по которому протекает ток I, нагревающий данный провод. Зная удельное сопротивление Rуд провода и измерив ток I, подсчитаем удельную мощность Руд нагрева провода, приходящуюся на единичную длину провода, по формуле Руд=I2*Rуд, где Rуд - сопротивление единицы длины провода.

В качестве объекта Б будем использовать тестовый образец, помещенный в близкие с контролируемым проводом внешние условия, которые определяют процесс охлаждения (например, высоту подвеса, такую же как высота подвеса провода воздушной линии электропередачи), имеющий близкие с контролируемым проводом А физические характеристики, которые определяют процесс охлаждения провода (такие как диаметр, форма, цвет, фактура поверхности и т.д.), имеющий теплоемкость С, равную теплоемкости Суд, приходящуюся на единичную длину провода. На тестовый объект подадим мощность нагрева, равную рассчитанной удельной мощности нагрева провода Руд.

При таких условиях температура тестового образца Б будет равна температуре провода А.

Таким образом, измерив ток I, протекающий по проводу, рассчитав удельную мощность Руд нагрева провода, подав точно такую же мощность нагрева Руд на тестовый образец, имеющий единичную длину, и измерив температуру Т тестового образца, определяем температуру провода, которая будет равна температуре Т тестового образца.

Рассмотрим воздушную линию электропередачи, у которых на опорах 1 (фиг.1) подвешены провода 2.

По всей длине линии протекает один и тот же ток I, соответственно на каждом метре длины провода 2 выделяется одна и та же удельная мощность Руд нагрева, определяемая по формуле Руд=I2*Rуд, где I - ток, протекающий по проводу 2, Rуд - удельное, приходящееся на один метр длины сопротивление провода 2.

Для контроля температуры проводов 2 создадим тестовый образец 3 длиной один метр непосредственно из материала провода 2 воздушной линии электропередачи или тестовый образец, имеющий такие же физические характеристики, которые определяют процесс охлаждения провода линии (такие как диаметр, форма, цвет, фактура поверхности и т.д.), имеющий теплоемкость С, равную теплоемкости Суд одного метра провода линии.

Поместим тестовый образец 3 на высоте подвеса провода линии электропередачи. От системы 4 контроля температуры подадим на тестовый образец 3 мощность Руд нагрева, такую же, что и выделяется на одном метре длины провода 2. Измерим температуру Т тестового образца 3, это и будет температура провода 2 воздушной линии электропередачи.

При этом единичная длина тестового образца 3 в один метр выбрана исключительно для простоты рассмотрения. В качестве единичной длины мы можем выбрать любую длину L, соответственно длина тестового образца может быть любая.

Единственное требование - чтобы длина L тестового образца была гораздо больше диаметра провода, поскольку при этих условиях процесс охлаждения тестового образца будет совпадать с процессом охлаждения участка провода длиной L (охлаждение концов тестового образца будет вносить малый вклад в общую мощность охлаждения тестового образца).

Таким образом, предлагаемый способ косвенного контроля температуры провода воздушных линий электропередачи позволяет автоматически учитывать изменяющиеся внешние условия охлаждения, такие как температура окружающей среды, влажность, скорость ветра, дождь, снег, туман. Предлагаемый способ косвенного контроля температуры может использоваться для максимального использования пропускной способности воздушных линий электропередачи, защиты от пережога провода воздушной линии электропередачи при проведении на ней плавки гололеда.

Способ косвенного контроля температуры провода воздушных линий электропередачи, заключающийся в том, что измеряют токи, протекающие по проводу, и с использованием результатов измерений рассчитывают мощность Р нагрева провода, выделяющуюся на участке провода длиной L, при этом величина L гораздо больше диаметра провода, отличающийся тем, что используют тестовый образец длиной L, который помещают на высоте подвеса контролируемого провода, причем тестовый образец имеет такие же физические характеристики, определяющие процесс охлаждения провода, как и контролируемый провод, имеет теплоемкость, равную теплоемкости провода длиной L, на тестовый образец подают мощность Р нагрева, равную рассчитанной мощности нагрева провода, измеряют температуру тестового образца, при этом температуру провода приравнивают к измеренной температуре тестового образца.
СПОСОБ КОСВЕННОГО КОНТРОЛЯ ТЕМПЕРАТУРЫ ПРОВОДА ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 166.
10.06.2014
№216.012.d1df

Счетчик активной энергии переменного тока

Изобретение относится к устройствам для учета потребляемой из электросети активной электрической энергии. Cчетчик переменного тока содержит провода электросети и провода нагрузки, а также электрически связанные между собой трансформатор, датчик тока, датчик напряжения, преобразователь мощности...
Тип: Изобретение
Номер охранного документа: 0002519498
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d820

Аккумуляторная батарея

Изобретение относится к устройствам для накапливания электрической энергии и последующего использования ее и преобразования в автономном режиме для функционирования различных аппаратов и может быть использовано, например, в двигателях транспортных средств, эксплуатирующихся в северных районах с...
Тип: Изобретение
Номер охранного документа: 0002521106
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dc42

Трансформатор источника питания подвесных измерительных датчиков

Изобретение относится к устройству источников питания подвесных измерительных датчиков, устанавливаемых на высоковольтные линии электропередачи. Технический результат состоит в расширении диапазона нагрузок. Трансформатор источника питания переводит его в режим насыщения, при котором выходное...
Тип: Изобретение
Номер охранного документа: 0002522164
Дата охранного документа: 10.07.2014
27.07.2014
№216.012.e5b4

Система впрыска воды осевого многоступенчатого компрессора

Изобретение относится к стационарным газотурбинным установкам (СГТУ), имеющим в своем составе осевой многоступенчатый компрессор. Технический результат достигается тем, что система впрыска воды осевого многоступенчатого компрессора, имеющая трубки и выпускные каналы, дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002524594
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e770

Способ работы газораспределительной станции

Способ предназначен для комбинированной выработки электроэнергии, промышленного холода и конденсата. Способ заключается в следующем: природный газ забирают из магистрали высокого давления перед редуцирующим устройством и через байпасный газопровод направляют в магистраль низкого давления, при...
Тип: Изобретение
Номер охранного документа: 0002525041
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e85c

Способ лечения кожных заболеваний и лазерное терапевтическое устройство для его осуществления

Группа изобретений относится к медицине. При осуществлении способа воздействуют на поверхность кожи дискретным по времени когерентным лазерным излучением, формируемым лазерным терапевтическим устройством. При этом длину волны выбирают в пределах от 300 нм до 1020 нм и дискретное лазерное...
Тип: Изобретение
Номер охранного документа: 0002525277
Дата охранного документа: 10.08.2014
10.09.2014
№216.012.f3c7

Детандер-генераторный агрегат

Изобретение относится к детандер-генераторным агрегатам. Детандер-генераторный агрегат содержит первую ступень детандера для привода электрогенератора, вторую ступень детандера для привода компрессора, теплообменник, дроссель, испаритель, газопроводы высокого и низкого давления, первую, вторую...
Тип: Изобретение
Номер охранного документа: 0002528230
Дата охранного документа: 10.09.2014
20.09.2014
№216.012.f56a

Лазерное терапевтическое устройство

Изобретение относится к медицинской технике и может найти применение в терапевтических целях. Технический результат - обеспечение стабильности параметров воздействующих факторов и упрощение конструкции терапевтического устройства. Лазерное терапевтическое устройство включает в себя источник...
Тип: Изобретение
Номер охранного документа: 0002528659
Дата охранного документа: 20.09.2014
27.09.2014
№216.012.f7dc

Способ повышения эффективности работы осевого многоступенчатого компрессора

Изобретение относится к компрессоростроению и может быть использовано в теплоэнергетике, газоперекачивающих станциях, наземных и судовых транспортных средствах в стационарных газотурбинных установках, имеющих в своем составе осевой многоступенчатый компрессор. Способ повышения эффективности...
Тип: Изобретение
Номер охранного документа: 0002529289
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.ffa3

Способ подготовки топочного мазута к сжиганию

Изобретение относится к теплоэнергетике и может быть использовано для улучшения физико-химических и эксплуатационных характеристик топочных мазутов на тепловых электрических станциях, в котельных промышленных предприятий, котельных агропромышленного комплекса и ЖКХ. В способе подготовки...
Тип: Изобретение
Номер охранного документа: 0002531299
Дата охранного документа: 20.10.2014
Показаны записи 31-40 из 184.
10.04.2014
№216.012.b3f2

Горелка для сжигания газа

Изобретение относится к технологии сжигания газообразного топлива в топках котлов и печах. Задачей изобретения является повышение качества сжигания топлива на всех режимах работы горелки. Технический результат достигается тем, что в горелку для сжигания газа, содержащую цилиндрический корпус,...
Тип: Изобретение
Номер охранного документа: 0002511783
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b43c

Теплообменная труба

Предлагаемое изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники. В теплообменной трубе канал образован гладкими участками трубы и выступами, при этом выступы выполнены с дополнительным интенсификатором...
Тип: Изобретение
Номер охранного документа: 0002511859
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b497

Газотурбинный двигатель со свободнопоршневым генератором газа

Газотурбинный двигатель со свободнопоршневым генератором газа (СПГГ) состоит из связанных между собой СПГГ, газосборника и газовой турбины. СПГГ содержит рабочий цилиндр двигателя, рабочие поршни двигателя, поршни компрессора, синхронизирующий механизм движения рабочих поршней двигателя и...
Тип: Изобретение
Номер охранного документа: 0002511952
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c0d9

Способ измерения пористости хлебобулочного изделия и устройство для осуществления

Изобретение относится к области технологического контроля пористости хлебобулочных изделий в процессе их производства и может быть использовано при отработке оптимального режима технологии получения заданной пористости в цеховых лабораторных условиях. В способе измерения пористости...
Тип: Изобретение
Номер охранного документа: 0002515118
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c0dc

Способ определения допустимых величины и длительности перегрузки силового маслонаполненного трансформаторного оборудования

Изобретение относится к области электроэнергетики, в частности к автоматизированным системам управления и диагностики трансформаторного оборудования электрических подстанций. Технический результат: повышение эксплуатационной надежности трансформаторного оборудования за счет более достоверного...
Тип: Изобретение
Номер охранного документа: 0002515121
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c13a

Цифровое прогнозирующее и дифференцирующее устройство

Изобретение относится к цифровому прогнозирующему и дифференцирующему устройству. Технический результат заключается в упрощении аппаратной реализации и расширении функциональных возможностей устройства. Прогнозирующее и дифференцирующее устройство содержит блок сглаживания, блок прогноза,...
Тип: Изобретение
Номер охранного документа: 0002515215
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c6bf

Кавитатор

Изобретение относится к устройствам для генерации кавитационных явлений и может быть использовано в теплоэнергетике, нефтехимической промышленности, а именно в гидродинамических теплогенераторах, системах подготовки углеводородных топлив к сжиганию, установках для очистки воды, в кавитационных...
Тип: Изобретение
Номер охранного документа: 0002516638
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c6fd

Провод для высоковольтных линий электропередачи

Изобретение относится к электротехнике, а именно к конструкциям грозозащитных и фазовых проводов высоковольтных воздушных линий электропередачи с использованием их в качестве телекоммуникационной сети на основе оптоволоконной технологии. В проводе для высоковольтных линий электропередачи,...
Тип: Изобретение
Номер охранного документа: 0002516700
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c95e

Адаптивное цифровое прогнозирующее устройство

Изобретение относится к автоматике и вычислительной технике и может быть использовано для прогнозирования стационарных и нестационарных случайных процессов, повышения качества и точности управления в цифровых динамических системах контроля. Технический результат заключается в снижении...
Тип: Изобретение
Номер охранного документа: 0002517316
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c95f

Адаптивное цифровое прогнозирующее и дифференцирующее устройство

Изобретение относится к автоматике и вычислительной технике и может быть использовано для прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в возможности получения оценки второй производной по формуле численного дифференцирования для...
Тип: Изобретение
Номер охранного документа: 0002517317
Дата охранного документа: 27.05.2014
+ добавить свой РИД