×
27.11.2014
216.013.0be8

Результат интеллектуальной деятельности: МЕТЕОДАТЧИК СИСТЕМЫ КОНТРОЛЯ ТЕМПЕРАТУРЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам для измерения метеорологических параметров в системах контроля температуры нагреваемого оборудования. Сущность: устройство содержит шарообразный датчик (1), внутри которого расположены датчик (2) температуры и нагревательный элемент (3) с постоянной мощностью нагрева. Кроме того, устройство содержит блок (4) определения коэффициента теплоотдачи, датчик (5) температуры окружающей среды, датчик (6) мощности солнечного излучения, блок (7) вычисления мощности теплового излучения шарообразного датчика (1), блок (8) связи. Датчик (2) температуры, нагревательный элемент (3), датчик (5) температуры окружающей среды, датчик (6) мощности солнечного излучения, блок (7) вычисления мощности теплового излучения и блок (8) связи соединены с блоком (4) определения коэффициента теплоотдачи. Технический результат: повышение точности определения температуры. 1 ил.
Основные результаты: Метеодатчик системы контроля температуры, содержащий шарообразный датчик, внутри которого расположены датчик температуры и нагревательный элемент с постоянной мощностью нагрева, а также блок определения коэффициента теплоотдачи и датчик температуры окружающей среды, при этом датчик температуры и нагревательный элемент шарообразного датчика, а также датчик температуры окружающей среды подсоединены к блоку определения коэффициента теплоотдачи, отличающийся тем, что в него дополнительно введены датчик мощности солнечного излучения, блок вычисления мощности теплового излучения шарообразного датчика и блок связи, которые подсоединены к блоку определения коэффициента теплоотдачи.

Изобретение относится к электроэнергетике и может быть использовано в системах контроля температуры нагреваемого оборудования энергетики, например проводов воздушных линий электропередачи, силовых трансформаторов.

Известны защиты проводов от перегрева с вычислением температуры провода на основе решения уравнения теплового баланса, в которое входит коэффициент теплоотдачи провода, определяемый в нелинейном преобразователе в зависимости от скорости ветра (Авторское свидетельство СССР №854768, кл. В60М 3/00, 1981; Авторское свидетельство СССР №1778852, кл. Н02Н 5/04, В60М 3/00, Н02Н 3/08, 1992).

Известен способ определения коэффициента теплоотдачи, в котором коэффициент теплоотдачи αт в уравнении теплового баланса определяется как αт=pV0,6, где p - постоянный коэффициент, V - скорость ветра (Петрова Т.Е., Карминский В.А. Расчет нагрева проводов при ветрах. Режимы работы, автоматическое управление и техническая диагностика систем электроснабжения железных дорог. Труды. Межвузовский тематический сборник. Выпуск 171. Ростов-на-Дону: РИИЖТ, 1983, с.80-85).

Этот способ реализован в устройстве «Тепловая защита контактной сети» (см. Герман Л.А. и др. Тепловая защита контактной сети. Применение ЭВМ и микропроцессорной техники в системе тягового электроснабжения. Межвузовский сборник научных трудов. Выпуск №121. М.: Всесоюзный заочный институт инженеров железнодорожного транспорта, 1984, с.75-78).

Основным недостатком известных устройств является низкая точность из-за слишком приблизительного определения коэффициента теплоотдачи, поскольку не учитываются указанные выше влияющие факторы (температура провода, температура окружающей среды, площадь поверхности и форма сечения провода).

Известен термоанемометр для измерения скорости воздушного потока, принятый за прототип, состоящий из проволочки, включенной в цепь моста Уитстона, работающего на принципе постоянной силы тока, и смонтированной на держателе, предохраняющем ее от вибраций, обусловленных механическими и аэродинамическими причинами, отличающийся тем, что, с целью устранения зависимости показаний термоанемометра от направления потока, в качестве держателя проволочки использован эбонитовый или тому подобный шарик (Авторское свидетельство СССР №67767, МПК G01P 5/12, 20.06.1944).

Для термоанемометра эффект сноса теплоты потоком превосходит остальные охлаждающие факторы и уравнение теплового баланса приобретает вид:

, где

Р - мощность нагрева термоанемометра;

S - коэффициент, зависящий от размеров и формы термоанемометра, который для идеального шара равен площади поверхности термоанемометра;

ТА - температура термоанемометра;

Т - температура потока;

ξ - коэффициент теплоотдачи термоанемометра, зависящий от свойств окружающей среды, в число которых входит и скорость потока воздуха.

Процесс измерения выглядит следующим образом.

Подаем постоянный ток на проволочку, таким образом формируем постоянную мощность нагрева Р шарика термоанемометра. Замеряем температуру термоанемометра ТА и температуру окружающей среды Т. Из формулы (1) определяем ξ - коэффициент теплоотдачи термоанемометра:

Из величины коэффициент теплоотдачи термоанемометра ξ вычисляют скорость потока воздуха.

Из формулы (1) можно определить температуру любого нагреваемого оборудования:

где

Sэфф - эффективная (поскольку форма оборудования отлична от шара) площадь охлаждения оборудования,

Р - мощность нагрева оборудования.

Трудность представляет определение коэффициент теплоотдачи ξ, который зависит от многих факторов: скорость ветра, влажность, наличие и сила дождя, снега.

В целом, для всех косвенных методов определения температуры необходим учет коэффициента теплоотдачи, который определяет, с какой эффективностью окружающая среда охлаждает оборудование. Для подсчета коэффициента теплоотдачи необходимо замерять много изменяющихся параметров окружающей среды, от которых он зависит: скорость ветра, влажность, наличие и сила дождя, снега. Кроме этого необходимо измерять мощность нагрева оборудования прямым солнечным излучением.

Задача изобретения - создание устройства контроля температуры оборудования энергетики, позволяющего уменьшить число контролируемых факторов без ущерба для точности определения температуры.

Техническим результатом является измерение коэффициента теплоотдачи ξ окружающей среды, мощности нагрева оборудования прямым солнечным излучением, и в результате, повышение точности определения температуры нагреваемого энергетического оборудования.

Технический результат достигается тем, что в метеодатчик системы контроля температуры, содержащий шарообразный датчик, внутри которого расположены датчик температуры и нагревательный элемент с постоянной мощностью нагрева, а также блок определения коэффициента теплоотдачи и датчик температуры окружающей среды, при этом датчик температуры и нагревательный элемент шарообразного датчика, а также датчик температуры окружающей среды подсоединены к блоку определения коэффициента теплоотдачи, согласно предлагаемому изобретению, дополнительно введены датчик мощности солнечного излучения, блок вычисления мощности теплового излучения шарообразного датчика и блок связи, которые подсоединены к блоку определения коэффициента теплоотдачи.

Таким образом, по сравнению с прототипом, вместо измерения большого числа параметров (скорость ветра, влажность, наличие и сила дождя, снега) предлагается применить другой метод: использовать нагреваемый тестовый датчик, и замерить, с какой эффективностью окружающая среда охлаждает тестовый датчик, определить коэффициент теплоотдачи ξ.

Сущность изобретения поясняется чертежом, на котором изображен предлагаемый метеодатчик системы контроля температуры.

Метеодатчик системы контроля температуры состоит из шарообразного датчика 1, внутри которого расположены датчик температуры 2 и нагревательный элемент 3 с постоянной мощностью нагрева. Датчик 2 температуры и нагревательный элемент 3 подсоединены к блоку 4 определения коэффициента теплоотдачи, к которому дополнительно подсоединен датчик 5 температуры окружающей среды.

Отличие предлагаемого метеодатчика состоит в том, что к блоку определения коэффициента теплоотдачи 4 подсоединены дополнительно введенные датчик 6 мощности солнечного излучения, блок 7 вычисления мощности теплового излучения шарообразного датчика и блок 8 связи, который по линии 9 связи связан с центральным сервером (на чертеже условно не показан).

Рассмотрим работу предлагаемого метеодатчика.

Шарообразный датчик 1 располагают на открытом пространстве, и кроме нагрева нагревательным элементом 3 его нагревает солнечное излучение, охлаждает окружающая среда, кроме того, шарообразный датчик 1 охлаждается собственным тепловым излучением.

В отличие от формулы (1) уточненное уравнение теплового баланса шарообразного датчика 1 приобретает вид:

, где

P - мощность нагрева 3 нагревательного элемента с постоянной мощностью нагрева, которая нагревает шарообразный датчик 1,

Рс - мощность солнечного излучения, которая дополнительно нагревает шарообразный датчик 1,

Рт - мощность теплового излучения шарообразного датчика 1, которая охлаждает шарообразный датчик 1.

Среди этих величин Р постоянна и задается блоком 4 определения коэффициента теплоотдачи, а мощность Рс солнечного излучения измеряется датчиком 6.

Мощность Рт теплового излучения шарообразного датчика 1 вычисляется блоком 7, на основе:

известной площади S шарообразного датчика 1,

температуры ТА шарообразного датчика 1, которую измеряет датчик 2 температуры,

температуры Т окружающей среды, которую измеряет датчик 5 температуры окружающей среды.

Из формулы (4) определяем ξ - коэффициент теплоотдачи, который характеризует процесс охлаждения:

Блок 8 связи отправляет на центральный сервер коэффициент теплоотдачи ξ, температуру Т окружающей среды, мощность Рс солнечного излучения.

Рассмотрим использование данных (коэффициент теплоотдачи ξ, температуру Т окружающей среды, мощность Рс солнечного излучения), которые центральный сервер получает от предлагаемого метеодатчика.

По уточненной формуле (3) определяем температуру ТА любого оборудования:

В формуле (6) известны температура Т окружающей среды, мощность РА нагрева оборудования, которую вычисляют из измеренного тока I, протекающего по оборудованию, и известного сопротивления R оборудования по формуле: PA=I2*R.

Мощность РсА нагрева оборудования солнечным излучением вычисляют из полученной мощности Рс солнечного излучения по формуле: PcA=Pc*ScA*КсA/(Sc*Кc), где

ScA - площадь оборудования, освещаемая солнечным излучением,

Sc - площадь шарообразного датчика 1, освещаемая солнечным излучением,

КсА - коэффициент поглощения солнечного излучения оборудования,

Кс - коэффициент поглощения солнечного излучения шарообразного датчика 1.

Известны SэффА - эффективная (поскольку форма оборудования отлична от шара) площадь охлаждения оборудования, коэффициент теплоотдачи ξ, полученный от метеодатчика.

Остаются неизвестными температура ТА оборудования и мощность РтА теплового излучения оборудования, поскольку для вычисления РтА необходимо знать ТА. Обе эти величины определяем методом последовательных приближений:

1. Задаем начальное значение РтА=0.

2. По формуле (6) вычисляем ТА.

3. Мощность РтА вычисляем на основе известной площади SA оборудования, полученной температуры ТА, температуры Т окружающей среды.

4. Повторяем пункты 2 и 3 до тех пор, пока не получим заданную точность определения температуры оборудования ТА (полученное на следующем шаге значение ТА будет отличаться от предыдущего значения меньше, чем на величину заданной точности).

Таким образом, предлагаемый метеодатчик системы контроля температуры позволяет определять температуру любого нагреваемого оборудования, например проводов воздушных линий электропередачи, силовых трансформаторов. При этом метеодатчик позволяет автоматически учитывать многочисленные факторы внешней среды, такие как температура, ветер, осадки, солнечное излучение, которые влияют на температуру оборудования.

Метеодатчик системы контроля температуры, содержащий шарообразный датчик, внутри которого расположены датчик температуры и нагревательный элемент с постоянной мощностью нагрева, а также блок определения коэффициента теплоотдачи и датчик температуры окружающей среды, при этом датчик температуры и нагревательный элемент шарообразного датчика, а также датчик температуры окружающей среды подсоединены к блоку определения коэффициента теплоотдачи, отличающийся тем, что в него дополнительно введены датчик мощности солнечного излучения, блок вычисления мощности теплового излучения шарообразного датчика и блок связи, которые подсоединены к блоку определения коэффициента теплоотдачи.
МЕТЕОДАТЧИК СИСТЕМЫ КОНТРОЛЯ ТЕМПЕРАТУРЫ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 166.
10.06.2014
№216.012.d1df

Счетчик активной энергии переменного тока

Изобретение относится к устройствам для учета потребляемой из электросети активной электрической энергии. Cчетчик переменного тока содержит провода электросети и провода нагрузки, а также электрически связанные между собой трансформатор, датчик тока, датчик напряжения, преобразователь мощности...
Тип: Изобретение
Номер охранного документа: 0002519498
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d820

Аккумуляторная батарея

Изобретение относится к устройствам для накапливания электрической энергии и последующего использования ее и преобразования в автономном режиме для функционирования различных аппаратов и может быть использовано, например, в двигателях транспортных средств, эксплуатирующихся в северных районах с...
Тип: Изобретение
Номер охранного документа: 0002521106
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dc42

Трансформатор источника питания подвесных измерительных датчиков

Изобретение относится к устройству источников питания подвесных измерительных датчиков, устанавливаемых на высоковольтные линии электропередачи. Технический результат состоит в расширении диапазона нагрузок. Трансформатор источника питания переводит его в режим насыщения, при котором выходное...
Тип: Изобретение
Номер охранного документа: 0002522164
Дата охранного документа: 10.07.2014
27.07.2014
№216.012.e5b4

Система впрыска воды осевого многоступенчатого компрессора

Изобретение относится к стационарным газотурбинным установкам (СГТУ), имеющим в своем составе осевой многоступенчатый компрессор. Технический результат достигается тем, что система впрыска воды осевого многоступенчатого компрессора, имеющая трубки и выпускные каналы, дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002524594
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e770

Способ работы газораспределительной станции

Способ предназначен для комбинированной выработки электроэнергии, промышленного холода и конденсата. Способ заключается в следующем: природный газ забирают из магистрали высокого давления перед редуцирующим устройством и через байпасный газопровод направляют в магистраль низкого давления, при...
Тип: Изобретение
Номер охранного документа: 0002525041
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e85c

Способ лечения кожных заболеваний и лазерное терапевтическое устройство для его осуществления

Группа изобретений относится к медицине. При осуществлении способа воздействуют на поверхность кожи дискретным по времени когерентным лазерным излучением, формируемым лазерным терапевтическим устройством. При этом длину волны выбирают в пределах от 300 нм до 1020 нм и дискретное лазерное...
Тип: Изобретение
Номер охранного документа: 0002525277
Дата охранного документа: 10.08.2014
10.09.2014
№216.012.f3c7

Детандер-генераторный агрегат

Изобретение относится к детандер-генераторным агрегатам. Детандер-генераторный агрегат содержит первую ступень детандера для привода электрогенератора, вторую ступень детандера для привода компрессора, теплообменник, дроссель, испаритель, газопроводы высокого и низкого давления, первую, вторую...
Тип: Изобретение
Номер охранного документа: 0002528230
Дата охранного документа: 10.09.2014
20.09.2014
№216.012.f56a

Лазерное терапевтическое устройство

Изобретение относится к медицинской технике и может найти применение в терапевтических целях. Технический результат - обеспечение стабильности параметров воздействующих факторов и упрощение конструкции терапевтического устройства. Лазерное терапевтическое устройство включает в себя источник...
Тип: Изобретение
Номер охранного документа: 0002528659
Дата охранного документа: 20.09.2014
27.09.2014
№216.012.f7dc

Способ повышения эффективности работы осевого многоступенчатого компрессора

Изобретение относится к компрессоростроению и может быть использовано в теплоэнергетике, газоперекачивающих станциях, наземных и судовых транспортных средствах в стационарных газотурбинных установках, имеющих в своем составе осевой многоступенчатый компрессор. Способ повышения эффективности...
Тип: Изобретение
Номер охранного документа: 0002529289
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.ffa3

Способ подготовки топочного мазута к сжиганию

Изобретение относится к теплоэнергетике и может быть использовано для улучшения физико-химических и эксплуатационных характеристик топочных мазутов на тепловых электрических станциях, в котельных промышленных предприятий, котельных агропромышленного комплекса и ЖКХ. В способе подготовки...
Тип: Изобретение
Номер охранного документа: 0002531299
Дата охранного документа: 20.10.2014
Показаны записи 31-40 из 184.
10.04.2014
№216.012.b3f2

Горелка для сжигания газа

Изобретение относится к технологии сжигания газообразного топлива в топках котлов и печах. Задачей изобретения является повышение качества сжигания топлива на всех режимах работы горелки. Технический результат достигается тем, что в горелку для сжигания газа, содержащую цилиндрический корпус,...
Тип: Изобретение
Номер охранного документа: 0002511783
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b43c

Теплообменная труба

Предлагаемое изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники. В теплообменной трубе канал образован гладкими участками трубы и выступами, при этом выступы выполнены с дополнительным интенсификатором...
Тип: Изобретение
Номер охранного документа: 0002511859
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b497

Газотурбинный двигатель со свободнопоршневым генератором газа

Газотурбинный двигатель со свободнопоршневым генератором газа (СПГГ) состоит из связанных между собой СПГГ, газосборника и газовой турбины. СПГГ содержит рабочий цилиндр двигателя, рабочие поршни двигателя, поршни компрессора, синхронизирующий механизм движения рабочих поршней двигателя и...
Тип: Изобретение
Номер охранного документа: 0002511952
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c0d9

Способ измерения пористости хлебобулочного изделия и устройство для осуществления

Изобретение относится к области технологического контроля пористости хлебобулочных изделий в процессе их производства и может быть использовано при отработке оптимального режима технологии получения заданной пористости в цеховых лабораторных условиях. В способе измерения пористости...
Тип: Изобретение
Номер охранного документа: 0002515118
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c0dc

Способ определения допустимых величины и длительности перегрузки силового маслонаполненного трансформаторного оборудования

Изобретение относится к области электроэнергетики, в частности к автоматизированным системам управления и диагностики трансформаторного оборудования электрических подстанций. Технический результат: повышение эксплуатационной надежности трансформаторного оборудования за счет более достоверного...
Тип: Изобретение
Номер охранного документа: 0002515121
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c13a

Цифровое прогнозирующее и дифференцирующее устройство

Изобретение относится к цифровому прогнозирующему и дифференцирующему устройству. Технический результат заключается в упрощении аппаратной реализации и расширении функциональных возможностей устройства. Прогнозирующее и дифференцирующее устройство содержит блок сглаживания, блок прогноза,...
Тип: Изобретение
Номер охранного документа: 0002515215
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c6bf

Кавитатор

Изобретение относится к устройствам для генерации кавитационных явлений и может быть использовано в теплоэнергетике, нефтехимической промышленности, а именно в гидродинамических теплогенераторах, системах подготовки углеводородных топлив к сжиганию, установках для очистки воды, в кавитационных...
Тип: Изобретение
Номер охранного документа: 0002516638
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c6fd

Провод для высоковольтных линий электропередачи

Изобретение относится к электротехнике, а именно к конструкциям грозозащитных и фазовых проводов высоковольтных воздушных линий электропередачи с использованием их в качестве телекоммуникационной сети на основе оптоволоконной технологии. В проводе для высоковольтных линий электропередачи,...
Тип: Изобретение
Номер охранного документа: 0002516700
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c95e

Адаптивное цифровое прогнозирующее устройство

Изобретение относится к автоматике и вычислительной технике и может быть использовано для прогнозирования стационарных и нестационарных случайных процессов, повышения качества и точности управления в цифровых динамических системах контроля. Технический результат заключается в снижении...
Тип: Изобретение
Номер охранного документа: 0002517316
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c95f

Адаптивное цифровое прогнозирующее и дифференцирующее устройство

Изобретение относится к автоматике и вычислительной технике и может быть использовано для прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в возможности получения оценки второй производной по формуле численного дифференцирования для...
Тип: Изобретение
Номер охранного документа: 0002517317
Дата охранного документа: 27.05.2014
+ добавить свой РИД