×
27.11.2014
216.013.0be2

Результат интеллектуальной деятельности: РАСХОДОМЕР

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и может быть использовано для измерения расхода веществ, перемещаемых по трубопроводам, и применимо в пищевой, химической, нефтяной и других отраслях промышленности, в энергетике и др. Предлагаемый расходомер содержит два расположенных вдоль трубопровода с внешней его стороны чувствительных элемента в виде полых волноводов, каждый из которых имеет общую с трубопроводом упругую торцевую стенку, каждый волновод соединен с соответствующим электронным блоком, блок сравнения информативных параметров чувствительных элементов, имеющий два входа, подключенные соответственно к выходам указанных двух электронных блоков, и выход, соединенный с индикатором. При этом в каждом волноводе элемент возбуждения и элемент съема электромагнитных колебаний расположены у одного и того же конца волновода, а частота возбуждаемых в каждом волноводе электромагнитных волн фиксирована и выбрана ниже частоты возбуждения в нем электромагнитных волн низшего типа. Технический результат - упрощение конструкции устройства. 1 ил.
Основные результаты: Расходомер, содержащий два расположенных вдоль трубопровода с внешней его стороны чувствительных элемента в виде полых волноводов, каждый из которых имеет общую с трубопроводом упругую торцевую стенку, каждый волновод соединен с соответствующим электронным блоком, блок сравнения информативных параметров чувствительных элементов, имеющий два входа, подключенные соответственно к выходам указанных двух электронных блоков, и выход, соединенный с индикатором, отличающийся тем, что в каждом волноводе элемент возбуждения и элемент съема электромагнитных колебаний расположены у одного и того же конца волновода, а частота возбуждаемых в каждом волноводе электромагнитных волн фиксирована и выбрана ниже частоты возбуждения в нем электромагнитных волн низшего типа.

Изобретение относится к области измерительной техники и может быть использовано для измерения расхода веществ, перемещаемых по трубопроводам, и применимо в пищевой, химической, нефтяной и других отраслях промышленности, в энергетике и др. Во всех этих отраслях преимущественная область применения - измерение расхода в трубах достаточно большого диаметра (более 200 мм).

Известны расходомеры, основанные на разных физических принципах (Кремлевский П.П. Расходомеры и счетчики количества. Л.: Машиностроение (Ленинградское отделение), 1975). В частности, известны описанные в этой книге (главы I-V) расходомеры, основанные на измерении перепада давления в магистралях и связанные с применением расположенных внутри трубопроводов сужающих устройств-сопел различных форм и конструкций. Применение таких расходомеров вызывает нарушение структуры потока, развитие турбулентности, нарушение цельнометаллической конструкции трубопровода при отборе давления. Во многих практических задачах это недопустимо. Например, при измерениях расхода в тяжелых эксплуатационных условиях (на объектах химии, энергетики и др.) необходимо применение приборов, не имеющих указанных недостатков. В то же время применяемые приборы должны быть простыми и надежными в эксплуатации, при проведении ремонтных и регламентных работ, быть взаимозаменяемыми.

Известен также расходомер (пат. РФ №2120111, МКИ G01F 1/56), содержащий два датчика давления, расположенных вдоль длины трубопровода с внешней его стороны в двух сечениях. Каждый из датчиков выполнен в виде волноводного резонатора П-образной формы, имеющего обе, общие с трубопроводом, упругие торцевые стенки. Наличие у каждого из резонаторов упругих торцевых стенок обеспечивает увеличение (вдвое) чувствительности к измеряемому расходу по сравнению с вышеописанным расходомером, у которого каждый резонатор имеет только одну упругую торцевую стенку, общую с трубопроводом.

Наиболее близким по технической сущности к предлагаемому устройству является расходомер, принятый авторами за прототип (Billeter T.R., Phillipp L.D., Schemmel R.R. Microwave fluid flow monitor. Пат. США N 3939406, НКИ: 324-58.5). Этот расходомер является бесконтактным, не нарушающим структуру и динамику потока. Он содержит два объемных СВЧ-резонатора, которые установлены снаружи трубопровода в разных сечениях вдоль его длины. Каждый из этих резонаторов имеет с трубопроводом общую упругую торцевую стенку (мембрану, диафрагму и т.п.), а также соединенные с каждым резонатором блоки для генерации резонансной (собственной) частоты электромагнитных колебаний резонатора и блок сравнения резонансных частот указанных резонаторов. Выходной сигнал блока сравнения соответствует измеряемому расходу. Такое устройство обеспечивает сохранение цельнометаллической конструкции трубопровода и не содержит внутри него каких-либо конструктивных элементов. Это не приводит к нарушению гидродинамических характеристик и структуры потока. Резонансная частота каждого объемного резонатора является функцией давления внутри трубопровода в том его сечении, в области которого установлен данный резонатор. Эта частота имеет обычно величину порядка нескольких гигагерц и зависит от размеров резонатора, выбранного "рабочего" типа электромагнитных колебаний. При этом изменение давления в трубопроводе приводит к смещению гибкой стенки, общей для резонатора (это его торцевая стенка) и трубопровода, изменяя продольный размер полости резонатора и, как следствие, его резонансную частоту. В трубопроводе давление имеет разную величину в разных его сечениях. Соответствующие этим величинам давления значения прогиба торцевых стенок резонаторов, расположенных вдоль трубопровода в двух его сечениях, также различны. Перепад давления зависит функционально от скорости потока вещества в трубопроводе. Определяя этот перепад давления по разности резонансных частот двух резонаторов, можно найти скорость потока и расход вещества. У такого расходомера чувствительность зависит, помимо других факторов, не связанных с устройством, также и от расстояния между резонаторами, установленными на трубопроводе вдоль его длины.

Увеличения чувствительности расходомера можно добиться путем увеличения этого расстояния между резонаторами, что часто не представляется возможным. Так, например, в устройстве-прототипе для определения скорости жидкого натрия в трубопроводе, равной ~1,8 м/с (минимальная величина) по падению давления, расстояние между резонаторами должно составлять ~3 м. При меньшем расстоянии чувствительность расходомера оказывается недопустимо низкой. При этом существует необходимость в измерении с высокой точностью значений резонансных частот обоих резонаторов, поскольку перемещения мембран, зависящие от давления в области их нахождения, малы по сравнению с размерами полостей резонаторов.

Недостатком устройства-прототипа является достаточно высокая сложность его реализации, обусловленная необходимостью наличия в его конструкции функциональных элементов для требуемого измерения с высокой точностью значений резонансных частот электромагнитных колебаний обоих резонаторов.

Техническим результатом настоящего изобретения является упрощение конструкции устройства.

Технический результат достигается тем, что в предлагаемом расходомере, содержащем два расположенных вдоль трубопровода с внешней его стороны чувствительных элемента в виде полых волноводов, каждый из которых имеет общую с трубопроводом упругую торцевую стенку, каждый волновод соединен с соответствующим электронным блоком, блок сравнения информативных параметров чувствительных элементов, имеющий два входа, подключенные соответственно к выходам указанных двух электронных блоков, и выход, соединенный с индикатором, при этом в каждом волноводе элемент возбуждения и элемент съема электромагнитных колебаний расположены у одного и того же конца волновода, а частота возбуждаемых в каждом волноводе электромагнитных волн фиксирована и выбрана ниже частоты возбуждения в нем электромагнитных волн низшего типа.

Предлагаемое устройство поясняется фиг.1, где приведена его структурная схема.

На фиг.1 показаны трубопровод 1, волноводные резонаторы 2 и 3, упругие торцевые стенки 4 и 5, элементы связи 6, 7, 8, 9, генераторы электромагнитных колебаний 10 и 11, детекторы 12 и 13, блок сравнения 14, индикатор 15.

Устройство работает следующим образом.

В данном устройстве обеспечивается восприятие значения давления P (за счет измерения величины прогиба упругой торцевой стенки, в частности мембраны) в каждом из двух сечений трубопровода 1. Информативным параметром в данном устройстве является амплитуда E(l) ослабеваемых электромагнитных волн в каждом из двух волноводов, где l - величина прогиба мембраны, точнее ее центральной части относительно ее исходного положения, соответствующего отсутствию движения потока вещества.

Как приведено в описании к устройству-прототипу, падение давления ΔP на участке длиной L между двумя областями расположения резонаторов выражается следующей формулой:

,

где ρ - плотность вещества, ν - вязкость, D - диаметр трубопровода, µ - коэффициент трения, g - ускорение свободного падения.

Изменение скорости потока и расхода вещества приводит к соответствующим изменениям величины коэффициента трения, который зависит также от степени шероховатости стенок трубопровода. Упругая стенка может быть изготовлена, например, из нержавеющей стали. Толщина диафрагмы может составлять 0,1÷0,2 мм, а диаметр ~10÷40 мм (в зависимости от диаметра трубопровода).

В предлагаемом устройстве осуществляют возбуждение электромагнитных волн в волноводе на частоте, которая ниже критической частоты для волны низшего типа, при этом вдоль волновода существует только реактивное поле, убывающее при удалении от возбуждающего элемента у одного из торцов каждого волновода.

Условием распространения электромагнитных волн по любому волноводу является выполнение неравенства: f>fкр, которому должны удовлетворять рабочая частота f и критическая частота fкр для волны низшего типа, в частности в круглом волноводе - для волны типа H11. Для волн типа H11 будем иметь fкр=2c/3,41D, где D - диаметр волновода (Лебедев И.В. Техника и приборы СВЧ. Т.1. М.: Высшая школа. 1970. С.78-94). При f<fкр имеет место запредельный режим, при котором распространения волн по волноводу не происходит, а существует только ослабевающее реактивное поле, убывающее при удалении от элемента возбуждения волн. В запредельном волноводе поле изменяется вдоль координаты z (оси волновода) по закону:

а постоянная ослабления α есть

В этих формулах Em и Hm - амплитуды напряженности соответственно электрического и магнитного полей при z=0; ω=2πf; ε и µ - соответственно диэлектрическая и магнитная проницаемость вещества в волноводе, c - скорость света.

Выбирая соотношение между f и fкр, можно управлять величиной ослабления α.

В предлагаемом устройстве к трубопроводу 1 в двух его сечениях вдоль него подсоединены снаружи к нему два волновода 2 и 3 одним из своих торцов 3 и 4 соответственно (фиг.1). В качестве такой торцевой стенки каждого из волноводов 2 и 3 применяют гибкую металлическую мембрану. Величина прогиба мембран 3 и 4 зависит от скорости потока (расхода) жидкости в трубопроводе 1.

В волноводах 2 и 3, располагаемых на поверхности трубопровода 1 и имеющих с ним общие стенки 3 и 4 соответственно, являющиеся гибкими металлическими мембранами, возбуждают через элементы связи 6 и 8 с помощью соответствующего генератора фиксированной частоты (10 и 11) электромагнитные волны на частоте f, меньшей критической частоты fкр для этого волновода (фиг.1). Напряженность электрического поля E и магнитного поля H при удалении от элемента связи спадает в соответствии с соотношением (1). При этом значение E (и H) зависит от величины прогиба l торцевой мембраны каждого из волноводов 2 и 3. У того же торца каждого из волноводов 2 и 3 (фиг.1) принимаемые сигналы поступают через соответствующие элементы связи 7 и 9 на детекторы 12 и 13 соответственно. Затем продетектированные сигналы поступают на входы блока сравнения 14 для определения амплитуды E(l) сигнала, служащего информативным параметром. Выход блока сравнения 14 подсоединен к регистратору 15.

Выражение для E(z) должно учитывать распространение электромагнитных волн вдоль волновода, а также и их отражение от его торца - гибкой торцевой мембраны (3 и 4 у волновода 2 и 3 соответственно).

Для схемы устройства на фиг.1 амплитуда напряженности результирующего электромагнитного поля E(z) в некотором сечении с координатой z в данном случае есть

где Em - амплитуда напряженности зондирующего электромагнитного поля при z=0, то есть у элемента связи 4, где z=0; l - расстояние, отсчитываемое от элемента связи 4.

Величина коэффициента α определяется соотношением (2).

Величина l определяется степенью прогиба гибкой мембраны (3 или 4) в месте ее расположения и, следовательно, зависит от давления P в каждом из двух сечений трубопровода 1: l=l0+l(P), где l0 - значение l при нулевом прогибе мембраны, т.е. при P=0; l(P) - величина прогиба мембраны в области ее расположения.

Следовательно, как следует из (3), амплитуда результирующего значения напряженности электромагнитного поля в сечении с координатой z=0 есть

Для волноводов 2 и 3 с гибкими мембранами соответственно 4 и 5 будем иметь

где индексы 1 и 2 при символах E, Em, α, P и l соответствуют мембранам 4 и 5 (т.е. волноводам 2 и 3).

Разность E(Q) значений амплитуд E1(P1) и E2(P2) является здесь информативным параметром, позволяя определить искомый расход Q жидкости в трубопроводе 1:

Если волноводы 2 и 3 идентичны (для них Em1=Em2=Em; α12=α), то тогда

Величина E(Q) является монотонной функцией Q, позволяя однозначно определять искомый расход жидкости, перемещаемой по трубопроводу.

Данное устройство характеризуется достаточно простой его конструкцией и реализацией. Оно не требует наличия объемных резонаторов и специальных прецизионных схемных элементов для высокоточного измерения их резонансных частот. Здесь требуется наличие лишь двух генераторов электромагнитных колебаний фиксированной частоты, двух волноводов с соответствующей торцевой гибкой металлической мембраной, общей со стенкой трубопровода, двух детекторов, блока определения разности принимаемых амплитуд и регистратора. При этом точность измерения может быть достаточно высокой: амплитуда принимаемых колебаний соответствует ослабеваемому реактивному электромагнитному полю в волноводах и не связана с омическими потерями электромагнитной энергии в них.

Для трубопроводов конкретных размеров выбором частоты f каждого генератора, подсоединенного к соответствующему измерительному волноводу, можно оптимизировать чувствительность расходомера в рабочем диапазоне изменения расхода.

Таким образом, в предлагаемом расходомере за счет проведения в каждом из двух волноводных резонаторов измерений на фиксированной частоте, меньшей критической частоты возбуждения в нем распространяющихся электромагнитных волн, достигается поставленная цель - упрощение конструкции. Такой расходомер может иметь широкое практическое применение для измерения расхода различных веществ, перемещаемых по трубопроводам, без введения каких-либо элементов внутрь трубопровода.

Расходомер, содержащий два расположенных вдоль трубопровода с внешней его стороны чувствительных элемента в виде полых волноводов, каждый из которых имеет общую с трубопроводом упругую торцевую стенку, каждый волновод соединен с соответствующим электронным блоком, блок сравнения информативных параметров чувствительных элементов, имеющий два входа, подключенные соответственно к выходам указанных двух электронных блоков, и выход, соединенный с индикатором, отличающийся тем, что в каждом волноводе элемент возбуждения и элемент съема электромагнитных колебаний расположены у одного и того же конца волновода, а частота возбуждаемых в каждом волноводе электромагнитных волн фиксирована и выбрана ниже частоты возбуждения в нем электромагнитных волн низшего типа.
РАСХОДОМЕР
Источник поступления информации: Роспатент

Показаны записи 81-90 из 305.
20.05.2015
№216.013.4d92

Устройство для измерения физических параметров диэлектрического листового материала

Изобретение относится к измерительной технике и может быть использовано для высокоточных бесконтактных измерений физических параметров (влажности, плотности, массы, толщины и др.) различных листовых материалов, движущихся или находящихся в стационарных условиях. В частности, это устройство...
Тип: Изобретение
Номер охранного документа: 0002551372
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4dac

Способ определения толщины льда

Изобретение относится к способам определения толщины льда и может быть использовано в системах управления технологическими процессами и рыболовстве. Сущность: в основу способа положено использование взаимодействия льда и полой герметичной цилиндрической эластичной оболочки с рабочей средой (1)...
Тип: Изобретение
Номер охранного документа: 0002551398
Дата охранного документа: 20.05.2015
27.05.2015
№216.013.4eb9

Устройство для измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.). В...
Тип: Изобретение
Номер охранного документа: 0002551671
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.4fa9

Способ преобразования механической энергии движения текучей среды в электрическую энергию

Способ преобразования относится к области энергетики и может быть использован для преобразования механической энергии движения текучей среды в электрическую энергию. В способе поступательно движущуюся текучую среду подают в струйный генератор, преобразуют в нем поступательно движущуюся текучую...
Тип: Изобретение
Номер охранного документа: 0002551914
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.510f

Способ определения состояния поверхности дороги

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные...
Тип: Изобретение
Номер охранного документа: 0002552272
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.6084

Способ контроля процесса плавки в вакуумной дуговой печи

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является отслеживание длины дуги в процессе плавки в вакуумной дуговой печи. Технический результат достигается тем, что в способе контроля процесса плавки в вакуумной дуговой печи, включающем...
Тип: Изобретение
Номер охранного документа: 0002556249
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60af

Способ измерения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного измерения уровня диэлектрической жидкости, находящейся в емкости, например для измерения уровня нефтепродуктов. Техническим результатом является увеличение чувствительности и точности измерений. В предлагаемом способе измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002556292
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60d3

Устройство для определения внешнего объема цилиндрического полого изделия

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является упрощение процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия. Устройство для определения внешнего объема цилиндрического полого изделия...
Тип: Изобретение
Номер охранного документа: 0002556329
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6154

Сеть с топологией расширенного обобщенного гиперкуба

Изобретение относится к области высокопроизводительных многопроцессорных вычислительных систем. Техническим результатом является обеспечение надежных высокоэффективных сетей с большим числом процессорных узлов. Системная сеть с топологией расширенного n-мерного R-ичного обобщенного гиперкуба,...
Тип: Изобретение
Номер охранного документа: 0002556458
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.69c4

Способ измерения параметров сжиженного газа в трехфазном состоянии

Изобретение относится к электрическим методам контроля и может быть использовано для измерения параметров сжиженных газов, включая криогенные жидкости, в трехфазном состоянии (газовом, жидком и твердом). Оно может быть использовано также для измерения положения границ раздела и диэлектрической...
Тип: Изобретение
Номер охранного документа: 0002558629
Дата охранного документа: 10.08.2015
Показаны записи 81-90 из 230.
20.05.2015
№216.013.4d92

Устройство для измерения физических параметров диэлектрического листового материала

Изобретение относится к измерительной технике и может быть использовано для высокоточных бесконтактных измерений физических параметров (влажности, плотности, массы, толщины и др.) различных листовых материалов, движущихся или находящихся в стационарных условиях. В частности, это устройство...
Тип: Изобретение
Номер охранного документа: 0002551372
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4dac

Способ определения толщины льда

Изобретение относится к способам определения толщины льда и может быть использовано в системах управления технологическими процессами и рыболовстве. Сущность: в основу способа положено использование взаимодействия льда и полой герметичной цилиндрической эластичной оболочки с рабочей средой (1)...
Тип: Изобретение
Номер охранного документа: 0002551398
Дата охранного документа: 20.05.2015
27.05.2015
№216.013.4eb9

Устройство для измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.). В...
Тип: Изобретение
Номер охранного документа: 0002551671
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.4fa9

Способ преобразования механической энергии движения текучей среды в электрическую энергию

Способ преобразования относится к области энергетики и может быть использован для преобразования механической энергии движения текучей среды в электрическую энергию. В способе поступательно движущуюся текучую среду подают в струйный генератор, преобразуют в нем поступательно движущуюся текучую...
Тип: Изобретение
Номер охранного документа: 0002551914
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.510f

Способ определения состояния поверхности дороги

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные...
Тип: Изобретение
Номер охранного документа: 0002552272
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.6084

Способ контроля процесса плавки в вакуумной дуговой печи

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является отслеживание длины дуги в процессе плавки в вакуумной дуговой печи. Технический результат достигается тем, что в способе контроля процесса плавки в вакуумной дуговой печи, включающем...
Тип: Изобретение
Номер охранного документа: 0002556249
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60af

Способ измерения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного измерения уровня диэлектрической жидкости, находящейся в емкости, например для измерения уровня нефтепродуктов. Техническим результатом является увеличение чувствительности и точности измерений. В предлагаемом способе измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002556292
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60d3

Устройство для определения внешнего объема цилиндрического полого изделия

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является упрощение процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия. Устройство для определения внешнего объема цилиндрического полого изделия...
Тип: Изобретение
Номер охранного документа: 0002556329
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6154

Сеть с топологией расширенного обобщенного гиперкуба

Изобретение относится к области высокопроизводительных многопроцессорных вычислительных систем. Техническим результатом является обеспечение надежных высокоэффективных сетей с большим числом процессорных узлов. Системная сеть с топологией расширенного n-мерного R-ичного обобщенного гиперкуба,...
Тип: Изобретение
Номер охранного документа: 0002556458
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.69c4

Способ измерения параметров сжиженного газа в трехфазном состоянии

Изобретение относится к электрическим методам контроля и может быть использовано для измерения параметров сжиженных газов, включая криогенные жидкости, в трехфазном состоянии (газовом, жидком и твердом). Оно может быть использовано также для измерения положения границ раздела и диэлектрической...
Тип: Изобретение
Номер охранного документа: 0002558629
Дата охранного документа: 10.08.2015
+ добавить свой РИД