×
27.11.2014
216.013.0b60

СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ ИНДИВИДУАЛЬНЫХ ОКСИДОВ ЛАНТАНОИДОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к гидрометаллургии лантаноидов, а именно к получению кристаллических нанопорошков оксидов лантаноидов. Способ получения порошков индивидуальных оксидов лантаноидов включает осаждение соли лантаноидов из азотнокислых растворов твердой щавелевой кислотой при непрерывном введении полиакриламида, отделение ее, промывку, сушку, термообработку полученного осадка и последующую обработку в слабом переменном магнитном поле с частотой 20÷50 Гц и амплитудой 0,05÷0,1 Тл. Способ позволяет получать порошки оксидов лантаноидов с наноразмерными частицами, однородным гранулометрическим составом и повышенной устойчивостью к взаимодействию с влагой. 1 ил., 1 табл., 1 пр.
Основные результаты: Способ получения наноразмерных порошков индивидуальных оксидов лантаноидов, включающий осаждение соли лантаноидов из азотнокислых растворов твердой щавелевой кислотой при непрерывном введении полиакриламида, ее отделение, промывку, сушку и термообработку, отличающийся тем, что полученный после термообработки материал подвергают обработке переменным магнитным полем с частотой 20-50 Гц, с амплитудой 0,05-0,1 Тл.
Реферат Свернуть Развернуть

Изобретение относится к технологии лантаноидов, а именно к получению кристаллических нанопорошков оксидов лантаноидов, которые являются перспективным материалом, находящим применение в различных областях промышленности: для производства ВТСП-2 проводов; для химико-механической обработки поверхности кремниевых пластин в микроэлектронике; для полировки оптических покрытий; для производства оптической керамики.

Очень важным параметром при использовании оксидов порошков в некоторых областях техники является устойчивость их к взаимодействию с влагой.

Примером такого использования может быть получение буферных слоев ВТСП-2 проводов, где формирование эпитаксиальных буферных пленок, например CeO2 и La2Zr2O7, может осуществляться нанесением наночастиц с помощью водных растворов полимеров. По способу получения многослойного высокотемпературного сверхпроводящего материала, заявленному в патенте RU №2387050 (опубл. 20.04.2010), наночастицы заданного состава, например CeO2, вводятся в водный раствор водорастворимых термочувствительных полимеров. Основным требованием к получаемым покрытиям является их пространственная и структурная однородность. Структурная однородность покрытия задается структурной однородностью наночастиц, а пространственная однородность - однородностью пространственного распределения наночастиц в устойчивых золях водных растворов полимеров, которые, в свою очередь, помогают сохранить пространственную однородность в процессе формирования целевых покрытий.

Технической задачей, решаемой заявляемым изобретением, является создание технологии получения наноразмерных порошков оксидов лантаноидов однородного гранулометрического состава, сохраняющих однородность и стабильность фракционного и химического состава при взаимодействии с влагой.

Известно, что порошки оксидов металлов редкоземельных металлов различного гранулометрического состава получают осаждением из нитратных растворов редкоземельных металлов с последующей фильтрацией осадка, сушкой и термообработкой его до получения порошка оксида (А.И. Михайличенко, Е.Б. Михлин, Ю.Б. Патрикеев. Редкоземельные металлы. - М.: Металлургия, 1987 г., стр.135-138).

Известен способ получения порошков диоксида церия из растворов нитрата церия в присутствии азодикарбонамида (AZO) и тетраметиламмония гидроксида (TMAOH). Соотношение Ce(NO3)3·9H2O:AZO:TMAOH=1:1:1. Растворы, содержащие смесь компонентов, обрабатывали ультразвуком частотой 20 кГц в течение 3 часов при комнатной температуре. В течение облучения температура реакционной смеси достигала 80°C. Полученную суспензию центрифугировали, осадок промывали и сушили в вакууме [Journal of Colloid and Interface Science, 246, 78-84 (2002)].

Недостатком способа является то, что полученные порошки CeO2 сильно агрегированы. Добавление TMAOH в реакционную смесь и обработка ее ультразвуком не снижает агрегирования частиц и не позволяет получать кристаллическую структуру порошка с наноразмерными частицами и использовать их, например, в производстве эпитаксиальных пленок жидкофазным способом.

Известен способ получения порошка индивидуальных оксидов лантаноидов, включающий разбавление нитрата лантаноида спиртом до молярного соотношения спирта и нитрата лантаноида 20:1-300:1 с последующим сжиганием полученного раствора в емкости или впрыскиванием его, получение порошка прекурсора, который затем собирают и подвергают термообработке при температуре 400-1200°C с получением оксида лантаноида, который затем размалывают и получают нанопорошок оксида лантаноидов [Патент CN №101113009 А, C01F 17/00, опубл. 30.01.2008].

Недостатком способа является невозможность получить порошки однородного гранулометрического состава, что не позволяет использовать их для получения однородных золей, необходимых в производстве эпитаксиальных пленок жидкофазным способом.

Известен способ получения мелкодисперсного порошка оксида иттрия, включающий осаждение карбонатов иттрия из раствора азотно-кислого иттрия раствором карбоната аммония, фильтрацию, сушку и прокалку осадка до оксида иттрия, при этом осаждение ведут из раствора азотно-кислого иттрия концентрацией 60-80 г/л по оксиду в присутствии высаливателя NH4NO3 в количестве 3-4 н. [Патент РФ №2194014, опубл. 10.12.2002].

Указанным способом получают порошки оксида иттрия с размером частиц 15-30 нм. Однако такие порошки в силу наноразмерности обладают повышенной гигроскопичностью, что затрудняет их использование в жидкофазных способах.

Известен способ получения порошка индивидуальных оксидов лантаноидов, включающий осаждение соли лантаноида из азотнокислых растворов с концентрацией 30-50 г/л по оксиду лантаноида твердой щавелевой кислотой при непрерывном введении полиакриламида в виде раствора с концентрацией 0,005-0,015% в количестве 5,0-10,0 мг на 1,0 кг оксида лантаноида, отделение ее, промывку, сушку при 60-65°C до остаточной влажности 5-6%, термообработку полученного осадка в течение 2,0-2,2 часов в интервале температур 380-825°C в зависимости от свойств индивидуальных лантаноидов [Патент РФ №2414330, опубл. 20.03.2011]. Полученные порошки оксидов лантаноидов характеризуются наноразмерными частицами и однородностью гранулометрического состава. Способ принят за прототип.

Общим недостатком всех указанных способов, в том числе и прототипа, является то, что с уменьшением размеров порошков оксидов редкоземельных металлов усиливается их взаимодействие с компонентами воздуха, поскольку все оксиды редкоземельных металлов гигроскопичны [В.В. Серебренников, Г.М. Якунина, В.В. Козик, А.Н. Сергеев. Редкоземельные элементы и их соединения в электронной технике. - Томск, ТГУ, 1979, 141; В.А. Кочедыков, И.Д. Закирьянова, Л.А. Акашев. Аналитика и контроль. 2006, Т.10, №2, с.172-174]. Повышенная гигроскопичность затрудняет использование таких порошков в водных золях, например, в производстве эпитаксиальных пленок для ВТСП-2 проводов жидкофазным способом.

Техническим результатом заявленного изобретения является получение кристаллических порошков оксидов лантаноидов с наноразмерной крупностью частиц с повышенной устойчивостью к взаимодействию с влагой с сохранением однородного фракционного и химического состава.

Технический результат достигается тем, что в способе получения наноразмерных порошков индивидуальных оксидов лантаноидов, включающем осаждение соли лантаноидов из азотнокислых растворов твердой щавелевой кислотой при непрерывном введении полиакриламида, отделение ее, промывку, сушку и термообработку, согласно изобретению полученный после термообработки материал подвергают обработке в слабом переменном магнитном поле с частотой 20÷50 Гц с амплитудой 0,05÷0,1 Тл.

Технологическая операция магнитной обработки твердых тел с целью изменения их свойств широко используется в различных областях техники. Результат этой обработки определяется процессами, происходящими в материале при обработке, и зависит от свойств обрабатываемого материала и режимов магнитной обработки. Так, например, магнитная обработка используется для упрочнения металлообрабатывающего инструмента [Патент РФ 2213152, МКИ B23P 15/00, B32P 15/28. Бойко В.М. Способ упрочнения металлообрабатывающего инструмента магнитной обработкой. Заявл. 22.10.01. Опубл. 27.09.2003. Бюл. №27], для изменения пластичности, прочности, текучести кристаллов [Урусовская А.А. Эффекты магнитного воздействия на механические свойства и реальную структуру немагнитных кристаллов. Кристаллография. 2003. №5. С.855-872.; Алъшиц В.И., Даринская Е.В., Петржик Е.А. Микропластичность диамагнитных кристаллов в постоянном магнитном поле. Изв. вузов. Черная металлургия. 1990. №10, с.85-87], для повышения структурного совершенства и улучшения электрофизических характеристик полупроводниковых кристаллов [М.Н. Левин, Г.В. Семенова, Т.П. Сушкова, Э.А. Долгополова, В.В. Постников. Воздействие импульсных магнитных полей на реальную структуру кристаллов арсенида индия. Письма в ЖТФ, 28 (19), сс. 50-55 (2002); М.Н. Левин, А.В. Татаринцев, О.А. Косцова, A.M. Косцов. Активация поверхности полупроводников воздействием импульсного магнитного поля. ЖТФ, 73 (10), 85-87, (2003)]. Изменения структурного совершенства в объеме кристалла тесно связано с изменениями на его поверхности. По мере уменьшения размера кристалла роль поверхности возрастает и в порошках кристаллов при определенных режимах магнитной обработки изменения свойств поверхности могут стать определяющими.

В заявляемом способе технический результат достигается при использовании этого явления за счет целенаправленного изменения дефектной структуры наноразмерных порошков оксидов лантаноидов обработкой в магнитном поле в режимах, обеспечивающих повышение их устойчивости к взаимодействию с влагой.

Сущность изобретения заключается в том, что полученные гидрохимическим способом порошки индивидуальных оксидов лантаноидов осаждением соли лантаноидов из азотнокислых растворов с последующим отделением ее, промывкой, сушкой и термообработкой подвергают воздействию переменного магнитного поля с частотой с частотой 20÷50 Гц с амплитудой 0,05÷0,1 Тл, что повышает устойчивость порошков оксидов лантаноидов к взаимодействию с влагой.

При воздействии на порошки переменного магнитного поля с частотой менее 20 Гц и с частотой более 50 Гц, а также с амплитудой менее 0,05 Тл и более 0,1 Тл приводит к резкому снижению эффективности воздействия переменного магнитного поля и как следствие к отсутствию снижения дисперсности частиц в водном золе. Длительность магнитной обработки может составлять несколько минут, зависит от вида исходного оксида и подбирается экспериментально. Завышенная длительность магнитной обработки может также привести к снижению эффективности воздействия магнитного поля.

Устойчивость наноразмерных порошков оксидов лантаноидов к взаимодействию с влагой определяется по дисперсности оксидных частиц лантаноидов в устойчивых водных золях, приготовленных из этих порошков.

Ниже приведены примеры реализации заявляемого изобретения. Примеры иллюстрируют осуществление способа для получения наноразмерных порошков одного из самых распространенных и востребованных оксидов лантаноидов - CeO2.

Пример осуществления способа.

В качестве исходного вещества использовали оксид церия высокой чистоты. Оксид церия растворяли в азотной кислоте. Получали раствор азотнокислого церия с концентрацией 50 г/л по CeO2 при pH=2. Осаждение оксалатов церия проводили раствором щавелевой кислоты с концентрацией 250 г/л при температуре 60°C±10°C и интенсивном перемешивании при непрерывном добавлении неионогенного полиакриламида. Полученный осадок фильтровали, промывали дистиллированной водой при температуре 30°C, сушили при комнатной температуре в течение 50 ч, после чего подвергали термообработке в течение 2,0-2,2 часов при температуре 380°C. Полученный нанодисперсный порошок оксида церия кристаллической структуры подвергали обработке в слабом переменном магнитном поле в режимах, указанных в таблице 1.

Таблица 1
№ образца CeO2 Параметры магнитной обработки образцов CeO2 Средневзвешенный размер частиц CeO2 в водном золе, нм
Амплитуда магнитного поля В, Тл Частота магнитного поля ω, Гц Время магнитной обработки, мин.
- - - 57,2
2 0,10 20 3 10,14
3 0,10 50 3 17,15
4 0,05 20 3 12,32
5 0,05 50 3 20,11

Устойчивость к взаимодействию с влагой наноразмерных порошков CeO2, обработанных и необработанных в магнитном поле, оценивалась по распределению частиц CeO2 по размерам и по средневзвешенному размеру частиц в приготовленных из этих порошков устойчивых водных золях. Водные золи были получены путем помещения наночастиц CeO2 в воду и длительной поэтапной ультразвуковой обработки с частотами 25-32 кГц. Концентрация полученных золей была 0,005 М. Средневзвешенный размер наночастиц CeO2 в полученных водных золях определяли методом динамического рассеяния света с помощью лазерного анализатора «Microtrac Nanotrac Ultra 253» на твердотельном лазере с длиной волны 780 нм. Результаты измерений представлены в таблице 1 и на фигуре 1.

На фигуре 1 показано распределение по размерам и средневзвешенный размер D(n) частиц CeO2 в водном золе, полученном из исходного нанопорошка оксида церия CeO2 (A) и обработанного в магнитном поле с напряженностью В=0,10 Тл и частотами 20 Гц (B) и 50 Гц (С).

Сравнение средневзвешенных размеров частиц CeO2 в водных золях, полученных из нанопорошков CeO2, обработанных 3 минуты в магнитном поле с напряженностью 0,10 Тл и 0,05 Тл частотами 20 Гц и 50 Гц, показывает, что:

- обработка нанопорошков CeO2 в магнитном поле с напряженностью 0,10 Тл и частотами 20 Гц и 50 Гц уменьшает средневзвешенный размер частиц CeO2 в золе на 82% и на 70% соответственно,

- обработка нанопорошков CeO2 в магнитном поле с напряженностью 0,05 Тл и частотами 20 Гц и 50 Гц уменьшает средневзвешенный размер частиц CeO2 в золе на 78% и на 64% соответственно.

Таким образом, заявленное изобретение позволяет получать порошки оксидов лантаноидов кристаллической структуры с наноразмерной крупностью частиц с повышенной устойчивостью к взаимодействию с влагой и как следствие с уменьшенным средневзвешенным размером частиц в водном золе.

Способ получения наноразмерных порошков индивидуальных оксидов лантаноидов, включающий осаждение соли лантаноидов из азотнокислых растворов твердой щавелевой кислотой при непрерывном введении полиакриламида, ее отделение, промывку, сушку и термообработку, отличающийся тем, что полученный после термообработки материал подвергают обработке переменным магнитным полем с частотой 20-50 Гц, с амплитудой 0,05-0,1 Тл.
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ ИНДИВИДУАЛЬНЫХ ОКСИДОВ ЛАНТАНОИДОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 19.
20.02.2013
№216.012.2655

Способ экструзии термоэлектрического материала на основе халькогенидов висмута и сурьмы

Изобретение относится к получению термоэлектрического материала на основе халькогенидов висмута и сурьмы методом горячей экструзии. Материал может использоваться для термоэлектрического преобразования энергии. Пресс-заготовку из термоэлектрического материала на основе халькогенидов висмута и...
Тип: Изобретение
Номер охранного документа: 0002475333
Дата охранного документа: 20.02.2013
10.02.2014
№216.012.9ec4

Кристаллы на основе бромида таллия для детекторов ионизирующего излучения

Изобретение относится к области получения материалов детекторов для регистрации ионизирующего излучения, которые могут быть использованы для инфракрасной оптики, лазерной техники, акустооптики. Кристалл на основе бромида таллия дополнительно содержит бромид кальция при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002506352
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a260

Способ получения индия высокой чистоты

Изобретение относится к технологии редких и рассеянных элементов. Способ получения индия высокой чистоты включает вакуум-термическую обработку индия. При этом вакуум-термическую обработку проводят в две стадии. На первой стадии ее проводят при температуре 1000-1350°С, получают три...
Тип: Изобретение
Номер охранного документа: 0002507283
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.aa9f

Способ получения термоэлектрического материала n-типа на основе твердых растворов bite-bise

Изобретение относится к производству термоэлектрических материалов. Сущность: для получения стержней термоэлектрического материала на основе твердых растворов BiTe-BiSe n-типа проводимости с эффективностью ZT>1,2 и механической прочностью не менее 150 МПа осуществляют механоактивационный синтез...
Тип: Изобретение
Номер охранного документа: 0002509394
Дата охранного документа: 10.03.2014
20.07.2014
№216.012.de03

Способ получения кристаллов галогенидов таллия

Изобретение относится к области получения материалов, прозрачных в инфракрасной области спектра, которые могут быть использованы для изготовления оптических элементов, прозрачных в области длин волн от 0,4 до 25 мкм, неохлаждаемых детекторов χ- и γ - излучений для ядерно-физических методов...
Тип: Изобретение
Номер охранного документа: 0002522621
Дата охранного документа: 20.07.2014
10.09.2014
№216.012.f3f9

Способ получения термоэлектрического материала

Изобретение относится к области получения термоэлектрических материалов, применяемых для изготовления термостатирующих и охлаждающих устройств, систем кондиционирования и в других областях техники. Сущность: способ включает механоактивационную обработку в планетарной шаровой мельнице твердых...
Тип: Изобретение
Номер охранного документа: 0002528280
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f433

Наноструктурный термоэлектрический материал

Изобретение относится к наноструктурному термоэлектрическому материалу. Материал содержит теллурид сурьмы в виде тройного твердого раствора состава ВiSbТе, где х имеет значения от 0,4 до 0,5, и дисперсный наполнитель, выполненый из ультрадисперсного алмаза со средним размером частиц от 3 до 5...
Тип: Изобретение
Номер охранного документа: 0002528338
Дата охранного документа: 10.09.2014
20.09.2014
№216.012.f61e

Способ получения наноразмерных порошков титаната лития

Изобретение может быть использовано при получении материалов для электронной промышленности, в частности для литий-ионных аккумуляторов. Способ получения титаната лития включает получение смеси, содержащей соединения титана и лития, и термообработку полученной смеси с последующим обжигом...
Тип: Изобретение
Номер охранного документа: 0002528839
Дата охранного документа: 20.09.2014
20.11.2014
№216.013.08af

Способ получения термоэлектрического материала n-типа на основе тройных твердых растворов mgsisn

Изобретение относится к порошковой металлургии, в частности к производству термоэлектрических материалов (ТЭМ) n-типа проводимости на основе тройного твердого раствора MgSiSn. Может использоваться при изготовлении среднетемпературных термоэлектрических генераторов возобновляемой энергии,...
Тип: Изобретение
Номер охранного документа: 0002533624
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0a8a

Способ получения крупногабаритных малодислокационных монокристаллов антимонида галлия

Изобретение относится к области получения полупроводниковых материалов, которые используются в качестве подложечного материала в изопериодных гетероструктурах на основе тройных и четверных твердых растворов в системах Al-Ga-As-Sb и In-Ga-As-Sb, позволяющих создавать широкую гамму...
Тип: Изобретение
Номер охранного документа: 0002534106
Дата охранного документа: 27.11.2014
Показаны записи 1-10 из 25.
20.02.2013
№216.012.2655

Способ экструзии термоэлектрического материала на основе халькогенидов висмута и сурьмы

Изобретение относится к получению термоэлектрического материала на основе халькогенидов висмута и сурьмы методом горячей экструзии. Материал может использоваться для термоэлектрического преобразования энергии. Пресс-заготовку из термоэлектрического материала на основе халькогенидов висмута и...
Тип: Изобретение
Номер охранного документа: 0002475333
Дата охранного документа: 20.02.2013
10.02.2014
№216.012.9ec4

Кристаллы на основе бромида таллия для детекторов ионизирующего излучения

Изобретение относится к области получения материалов детекторов для регистрации ионизирующего излучения, которые могут быть использованы для инфракрасной оптики, лазерной техники, акустооптики. Кристалл на основе бромида таллия дополнительно содержит бромид кальция при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002506352
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a260

Способ получения индия высокой чистоты

Изобретение относится к технологии редких и рассеянных элементов. Способ получения индия высокой чистоты включает вакуум-термическую обработку индия. При этом вакуум-термическую обработку проводят в две стадии. На первой стадии ее проводят при температуре 1000-1350°С, получают три...
Тип: Изобретение
Номер охранного документа: 0002507283
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.aa9f

Способ получения термоэлектрического материала n-типа на основе твердых растворов bite-bise

Изобретение относится к производству термоэлектрических материалов. Сущность: для получения стержней термоэлектрического материала на основе твердых растворов BiTe-BiSe n-типа проводимости с эффективностью ZT>1,2 и механической прочностью не менее 150 МПа осуществляют механоактивационный синтез...
Тип: Изобретение
Номер охранного документа: 0002509394
Дата охранного документа: 10.03.2014
20.07.2014
№216.012.de03

Способ получения кристаллов галогенидов таллия

Изобретение относится к области получения материалов, прозрачных в инфракрасной области спектра, которые могут быть использованы для изготовления оптических элементов, прозрачных в области длин волн от 0,4 до 25 мкм, неохлаждаемых детекторов χ- и γ - излучений для ядерно-физических методов...
Тип: Изобретение
Номер охранного документа: 0002522621
Дата охранного документа: 20.07.2014
10.09.2014
№216.012.f3f9

Способ получения термоэлектрического материала

Изобретение относится к области получения термоэлектрических материалов, применяемых для изготовления термостатирующих и охлаждающих устройств, систем кондиционирования и в других областях техники. Сущность: способ включает механоактивационную обработку в планетарной шаровой мельнице твердых...
Тип: Изобретение
Номер охранного документа: 0002528280
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f433

Наноструктурный термоэлектрический материал

Изобретение относится к наноструктурному термоэлектрическому материалу. Материал содержит теллурид сурьмы в виде тройного твердого раствора состава ВiSbТе, где х имеет значения от 0,4 до 0,5, и дисперсный наполнитель, выполненый из ультрадисперсного алмаза со средним размером частиц от 3 до 5...
Тип: Изобретение
Номер охранного документа: 0002528338
Дата охранного документа: 10.09.2014
20.09.2014
№216.012.f61e

Способ получения наноразмерных порошков титаната лития

Изобретение может быть использовано при получении материалов для электронной промышленности, в частности для литий-ионных аккумуляторов. Способ получения титаната лития включает получение смеси, содержащей соединения титана и лития, и термообработку полученной смеси с последующим обжигом...
Тип: Изобретение
Номер охранного документа: 0002528839
Дата охранного документа: 20.09.2014
20.11.2014
№216.013.08af

Способ получения термоэлектрического материала n-типа на основе тройных твердых растворов mgsisn

Изобретение относится к порошковой металлургии, в частности к производству термоэлектрических материалов (ТЭМ) n-типа проводимости на основе тройного твердого раствора MgSiSn. Может использоваться при изготовлении среднетемпературных термоэлектрических генераторов возобновляемой энергии,...
Тип: Изобретение
Номер охранного документа: 0002533624
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0a8a

Способ получения крупногабаритных малодислокационных монокристаллов антимонида галлия

Изобретение относится к области получения полупроводниковых материалов, которые используются в качестве подложечного материала в изопериодных гетероструктурах на основе тройных и четверных твердых растворов в системах Al-Ga-As-Sb и In-Ga-As-Sb, позволяющих создавать широкую гамму...
Тип: Изобретение
Номер охранного документа: 0002534106
Дата охранного документа: 27.11.2014
+ добавить свой РИД