×
27.11.2014
216.013.0a4d

Результат интеллектуальной деятельности: СПОСОБ ПРОГНОЗИРОВАНИЯ РЕСУРСОСПОСОБНОСТИ СТАЛЕЙ КОРПУСОВ РЕАКТОРОВ ВВЭР-1000

Вид РИД

Изобретение

Аннотация: Изобретение относится к методам испытаний конструкционных материалов при прогнозировании и оценке работоспособности облучаемых корпусов реакторов ВВЭР-1000. В способе прогнозирования ресурсоспособности сталей корпусов реакторов образцы из стали корпуса облучают потоком быстрых нейтронов с высокой плотностью до дозы облучения, соответствующей дозе облучения реального корпуса реактора за отдаленное время, превышающее проектный срок службы. Определяют сдвиг критической температуры хрупкости, обусловленный облучением, к которому для материалов корпусов реакторов ВВЭР-1000 с содержанием никеля ≥1,5% добавляют составляющую, обусловленную различиями в кинетике накопления радиационно-индуцированных преципитатов при облучении в условиях различной плотности потока быстрых нейтронов. Определяют уровень зернограничных сегрегаций в необлученных образцах и экстраполяцией - на отдаленный срок эксплуатации реактора. Определяют общий сдвиг критической температуры хрупкости, и по его величине судят о ресурсе корпуса. Технический результат - повышение точности прогнозирования сдвига критической температуры хрупкости материалов. 2 ил.
Основные результаты: Способ прогнозирования ресурсоспособности сталей корпусов реакторов ВВЭР-1000, в соответствии с которым образцы из стали корпуса облучают потоком быстрых нейтронов до дозы облучения, соответствующей дозе облучения реального корпуса реактора за отдаленное время, превышающее проектный срок службы, определяют сдвиг критической температуры хрупкости, обусловленный облучением (ΔT), к которому для материалов корпусов реакторов ВВЭР-1000 с содержанием никеля ≥ 1,5% добавляют составляющую ΔТ, обусловленную различиями в кинетике накопления радиационно-индуцированных преципитатов при облучении в условиях различной плотности потока быстрых нейтронов и равную 0,25 ΔT, затем определяют уровень зернограничных сегрегаций в необлученных образцах и по кинетическому уравнению МакЛина накопления сегрегаций экстраполяцией определяют уровень зернограничных сегрегаций на отдаленный срок эксплуатации реактора, после чего на основании экспериментальной калибровочной зависимости между уровнем зернограничной сегрегации и сдвигом критической температуры хрупкости определяют составляющую ΔT, обусловленную протеканием сегрегационных процессов за длительный период при рабочей температуре, определяют общий сдвиг критической температуры хрупкости (ΔT), лимитирующий ресурс корпуса реактора в отдаленном периоде как сумму сдвигов ΔT=ΔT+ΔТ+ΔТ, и по его величине судят о ресурсе корпуса.

Изобретение относится к методам испытаний конструкционных материалов преимущественно при прогнозировании и оценке работоспособности облучаемых конструктивных элементов в атомной технике, облучаемых конструктивных элементов корпусов реакторов ВВЭР.

Радиационное охрупчивание является основным процессом, лимитирующим срок службы корпусов атомных энергетических реакторов, изготовляемых из малолегированных углеродистых сталей, для которых характерным является переход из вязкого в хрупкое состояние при определенной температуре. Под действием нейтронного облучения происходит сдвиг критической температуры хрупкости (ТK) в область более высокой температуры, что повышает вероятность хрупкого разрушения корпуса. Эффект радиационного охрупчивания исследуется уже в течение многих лет, получены эмпирические уравнения, описывающие кинетику охрупчивания в зависимости от параметров дозы облучения (флюенс) и содержания легирующих и примесных элементов. Установлено, что наиболее сильно влияющими на охрупчивание сталей корпусов реакторов ВВЭР-1000 химическими элементами являются никель и фосфор, а также марганец. Однако накопленная база данных по исследованию образцов-свидетелей, облучаемых в каналах для образцов-свидетелей в корпусах действующих реакторов с заданным коэффициентом опережения по набранному флюенсу, по сравнению со стенкой корпуса реактора не более 2.5, не позволяет осуществить долгосрочное прогнозирование поведения материалов корпусов реакторов на длительные сроки.

В настоящее время стоит задача прогнозирования и оценки работоспособности находящихся в эксплуатации ядерных энергетических установок (ЯЭУ) для установления возможности продления срока службы, что требует своевременного получения информации о деградации свойств корпусных сталей в расчете на увеличенный срок их службы.

В патентной публикации JP 57197446 [1] описывается метод прогнозирования водородного охрупчивания металлов, который может быть применен и для возникновения охрупчивания, обусловленного воздействием других факторов. Его условно можно отнести к так называемым «пилотным» или методу «свидетелей». Суть заключается в том, что образец материала подвергают воздействию охрупчивающего фактора и периодически проводят соответствующие исследования его состояния.

В результате может быть построена кривая увеличения хрупкости от времени, которая позволит прогнозировать состояние реальных изделий из металла, работающих в условиях, эквивалентных условиям, в которых находился образец.

Недостатком известного способа является то, что прогноз основан на измерении состояния материала, без учета прогноза развития физического фактора, вызывающего охрупчивание материала.

Известен способ определения сдвига температуры хрупко-вязкого перехода, заключающийся в том, что испытанию подвергают образцы в исходном состоянии и после эксплуатации регистрируют параметры, характеризующие состояние материала образцов, и определяют сдвиги температуры хрупко-вязкого перехода. В качестве режима эксплуатации используют облучение быстрыми нейтронами, в качестве параметров регистрируют микротвердость материалов, оценивают изменение микротвердости и с его учетом определяют сдвиги температур хрупко-вязкого перехода (RU 1667493 [2]). Недостатком известного способа является то, что он обеспечивает только определение сдвига температуры хрупко-вязкого перехода и не предполагает прогнозирования состояния материала, с учетом изменения величины физического фактора, вызывающего охрупчивание материала.

Известен способ прогноза остаточного ресурса неразрушающим контролем при проведении экспертизы промышленной безопасности металла диагностируемого оборудования (RU [2267776 [3]). Сущность способа заключается в том, что экспертиза промышленной безопасности металла диагностируемого объекта проводится методом спектрального анализа в трех наиболее информативных частотных диапазонах: fмс=17,8255881÷50,20 Гц; fмр=81,67956689÷433,89 Гц; fсд-о=1899,668736÷2674,256228 Гц. При этом для определения прогноза остаточного ресурса и текущих физико-механических параметров используется коэффициент перехода

,

корректность которого обеспечивается взвешиванием спектральных полос оконной функцией Хэмминга, позволяющей одновременно устанавливать:

- эквивалентный эталонный угол трения структурных неоднородностей естественных шероховатостей с учетом деградации на момент диагностики по одной из максимальных амплитуд частотных резонансов явно выраженной на общем фоне зон эталонных значений;

- эквивалентный угол трения структурных неоднородностей естественных шероховатостей на момент диагностики с учетом деградации по максимальным амплитудам частотных резонансов;

- эквивалентный угол трения структурных неоднородностей естественных шероховатостей на момент полной деградации.

Известный способ при его реализации для прогноза остаточного ресурса корпусов ядерных реакторов вызывает определенные трудности, поскольку для его осуществления требуется знание эталонных значений исследуемого материала, должно быть учтено наличие сварных швов в конструкции изделия (анизотропия свойств), устанавливается угол трения адсорбировавшейся влаги на адсорбенте (в данном случае на корпусе реактора), величину которого получить затруднительно.

Наиболее близким к заявляемому является известный способ оценки склонности конструкционных материалов к низкотемпературному радиационному охрупчиванию, который предназначен для прогнозирования и оценки работоспособности конструктивных элементов (SU 1549303 [4]). Способ реализуется следующим образом. Испытуемый образец устанавливают в захватах испытательной машины, нагревают его до температуры облучения и, поддерживая ее постоянной, нагружают образец до достижения в нем максимальной равномерной деформации. После чего фиксируют нагрузку путем выключения привода испытательной машины и охлаждают образец до появления в нем хрупкой трещины, начало развития которой определяют по уменьшению фиксированной нагрузки. Измеряют температуру образца в этот момент и принимают ее значение за критическую температуру хрупкости (TK) облученного материала. Затем сравнивают значения этой температуры с известным значением TK необлученного материала и судят о склонности материала к низкотемпературному радиационному охрупчиванию. Недостатком известного способа является невысокая точность и невозможность прогнозирования степени охрупчивания на длительный промежуток времени.

Заявляемый способ прогнозирования ресурсоспособности сталей корпусов реакторов ВВЭР-1000 направлен на повышение точности прогнозирования сдвига критической температуры хрупкости материалов корпусов реакторов ВВЭР-1000, соответствующих временам эксплуатации, превышающим предусмотренные проектом.

Указанный результат достигается тем, что способ прогнозирования ресурсоспособности сталей корпусов реакторов ВВЭР-1000 предусматривает, что образцы из стали корпуса облучают потоком быстрых нейтронов с высокой плотностью до дозы облучения, соответствующей дозе облучения реального корпуса реактора за отдаленное время, превышающее проектный срок службы, определяют сдвиг критической температуры хрупкости, обусловленный облучением (ΔTF), к которому для материалов корпусов реакторов ВВЭР-1000 с содержанием никеля ≥1,5% добавляют составляющую ΔТФлакс, обусловленную различиями в кинетике накопления радиационно-индуцированных преципитатов при облучении в условиях различной плотности потока быстрых нейтронов и равную 0,25ΔТF, затем определяют уровень зернограничных сегрегации в необлученных образцах и по известным кинетическим уравнениям накопления сегрегации экстраполяцией определяют уровень зернограничных сегрегации на отдаленный срок эксплуатации реактора, после чего по известной корреляции между уровнем зернограничной сегрегаций и сдвигом критической температуры хрупкости определяют составляющую ΔТT, обусловленную протеканием сегрегационных процессов за длительный период при рабочей температуре, определяют общий сдвиг критической температуры хрупкости (ΔТK), лимитирующий ресурс корпуса реактора в отдаленном периоде как сумму сдвигов ΔТK=ΔТF+ΔТФлакс+ΔТT, и по его величине судят о ресурсе корпуса.

Единственной возможностью прогнозирования состояния наноструктуры, соответствующей увеличенному сроку службы ЯЭУ, является ускоренное облучение (облучение с высоким флаксом (высокой плотностью потока быстрых нейтронов)) материалов до высоких значений флюенсов быстрых нейтронов.

При этом необходимо определять количественные характеристики наноструктуры, которые гарантируют заданный уровень свойств на весь срок эксплуатации, поскольку именно состояние наноструктуры материалов ответственно за изменение их служебных характеристик.

Выявлено 2 механизма радиационного охрупчивания сталей корпусов реакторов типа ВВЭР: упрочняющий и неупрочняющий. Упрочняющий механизм обусловлен образованием в сталях радиационных дефектов - дислокационных петель и преципитатов. Все они являются препятствиями - барьерами для движения дислокации. К неупрочняющим механизмам охрупчивания относятся образование сегрегации примесей (в первую очередь, фосфора) на границах зерен и межфазных границах (выделение/матрица) - явление обратимой отпускной хрупкости.

Проведенные исследования структуры и механических свойств образцов-свидетелей сталей корпусов реакторов ВВЭР-1000, облученных до сопоставимых значений флюенсов быстрых нейтронов (Е≥0.5 МэВ) с различной плотностью потока: в составе образцов-свидетелей (облученных с малым флаксом), а также в исследовательском реакторе (облученных с высоким флаксом) показали наличие эффекта флакса (меньший темп радиационного охрупчивания сталей, облученных с большим флаксом) для сталей с содержанием никеля ≥1.5%. При этом было показано, что эффект флакса связан, главным образом, с различиями в кинетике накопления зернограничных сегрегаций при разных скоростях облучения (различных флаксах), а также с некоторым вкладом упрочняющего механизма, поскольку плотность радиационно-индуцированных преципитатов, ответственных за упрочнение материала, зависит не только от величины флюенса быстрых нейтронов, накопленного при эксплуатации реактора, но и от плотности потока быстрых нейтронов.

В связи с этим для прогнозирования ресурса корпусов ректоров на длительный срок, превосходящий проектный ресурс корпуса реактора в 2 и более раз (до 60 и более лет), по результатам ускоренных испытаний необходимо учесть вклад в эффект флакса составляющей, обусловленной образованием сегрегации примесей, которые будут накоплены за заданный отдаленный срок эксплуатации корпуса реактора под воздействием рабочей температуры и добавку, связанную с различиями в кинетике накопления радиационно-индуцированных преципитатов при облучении в условиях различной плотности потока нейтронов.

Составляющую, обусловленную упрочнением за счет образования упрочняющих элементов структуры - преципитатов и дислокации, можно определить непосредственно по результатам механических испытаний ускоренно облученных (с большим флаксом) образцов. Тогда суммарный сдвиг ТK, определяющий радиационное охрупчивание за заданный отдаленный срок эксплуатации корпуса реактора, будет определяться:

ΔTK=ΔTF+ΔТФлакс+ΔTT,, где

ΔTF - составляющая, обусловленная нейтронным облучением при рабочей температуре,

ΔТФлакс - добавка, обусловленная различиями в кинетике накопления радиационно-индуцированных преципитатов при облучении в условиях различной плотности потока нейтронов,

ΔTT - составляющая, обусловленная образованием сегрегации примесей при рабочей температуре за заданный отдаленный срок эксплуатации корпуса реактора.

При этом составляющая ΔTF, которая учитывает радиационное упрочнение, определяется непосредственно по механическим испытаниям ускоренно облученных образцов, составляющая ΔТФлакс, различиями в кинетике накопления радиационно-индуцированных преципитатов при облучении в условиях различной плотности потока нейтронов, принимается равной 0,25 ΔTF по результатам сравнения сдвигов критической температуры хрупкости материалов корпусов реакторов ВВЭР-1000 с содержанием никеля ≥1,5%, облученных ускоренно и неускоренно. Для определения вклада ΔTT в суммарный сдвиг критической температуры хрупкости необходимо провести процедуру, предлагаемую в рамках данной заявки.

Сущность заявляемого способа прогнозирования степени охрупчивания теплостойких сталей поясняется примерами реализации и графическими материалами.

На фиг.1 представлена экспериментальная зависимость уровня зернограничных сегрегаций фосфора в образцах-свидетелях, подвергавшихся воздействию рабочих температур в течение различного времени. На фиг.2 представлен график зависимости TK от уровня межзеренных сегрегаций на экспериментальных образцах, подвергшихся воздействию рабочих температур в течение различного времени.

Пример 1

В самом общем случае способ прогнозирования ресурсоспособности сталей корпусов реакторов ВВЭР-1000 реализуется следующим образом. Образцы-свидетели из материала данного корпуса реактора, ресурс которого необходимо прогнозировать на отдаленный срок, облучают ускоренно до флюенса, соответствующего заданному отдаленному сроку эксплуатации реактора. Определяют экспериментальным путем сдвиг критической температуры хрупкости, обусловленный облучением (ΔTF). Прибавляют к сдвигу критической температуры хрупкости, обусловленному облучением (ΔTF), добавку ΔТФлакс, связанную с различиями в кинетике накопления радиационно-индуцированных преципитатов при ускоренном и неускоренном облучениях. Затем экспериментальным путем определяют уровень зернограничных сегрегаций фосфора в необлученных образцах.

С использованием кинетических уравнений накопления сегрегаций примесей, полученных расчетным путем на основе имеющихся экспериментальных результатов для данной стали, экстраполяцией определяют уровень зернограничных сегрегаций на заданный отдаленный срок эксплуатации реактора.

Используя известную корреляцию между уровнем зернограничной сегрегации и сдвигом критической температуры, полученную экспериментально для данной стали, определяют составляющую ΔTT, обусловленную протеканием сегрегационных процессов за длительный период при рабочей температуре.

Общий сдвиг критической температуры хрупкости, который будет наблюдаться за заданный отдаленный срок эксплуатации корпуса реактора ΔTK, определяют как сумму сдвигов ΔTF, ΔТФлакс и ΔTT. Полученное значение сдвига TK сравнивают с предельно допустимым сдвигом TK, заданным генеральным конструктором изделия. После этого делается вывод о возможности эксплуатации изделия на продленный ресурс.

Пример 2

Способ прогнозирования ресурсоспособности облучаемых элементов корпусов реакторов ВВЭР-1000, изготовленных из стали с содержанием никеля ≥1,5%, осуществлялся следующим образом. Были взяты 24 необлученных образца-свидетеля, по составу и структуре аналогичных материалу облучаемых элементов корпуса реактора, ресурсоспособность которого прогнозируется. В исследовательском реакторе были ускоренно облучены 12 образцов до флюенса 75×1022 м-2, соответствующего 60 и более годам эксплуатации корпуса реактора, за время 9000 ч при плотности потока быстрых нейтронов (флаксе) 1×1016 м-2 с-1 МВт-1.

Затем были изготовлены 24 образца Шарли размером 10×10×55 мм (12 образцов в необлученном состоянии и 12 образцов, ускоренно облученных в реакторе ИР-8).

После этого все образцы были испытаны на ударный изгиб по известной методике с определением критической температуры хрупкости, которые составили минус 9°C и минус 56°C соответственно для облученного и необлученного состояний. ΔTF определяли как разницу между TK для облученного и необлученного состояний, и она составила 47°C.

С помощью метода ОЭС по известной методике для необлученных образцов определялся уровень зернограничной сегрегации фосфора, который составил 12 ат.%. Это значение использовалось в качестве исходных данных для построения кривой по кинетическому уравнению (например, МакЛина) (фиг.1). По этой кривой определялся уровень зернограничной сегрегации в материале за 60 и более лет эксплуатации реактора (525000 ч), который составит 21,5 ат.%.

На основании экспериментальной калибровочной зависимости сдвига ΔTT от зернограничной концентрации фосфора, представленной на фиг.2, был определен сдвиг ΔTT, обусловленный накоплением зернограничной сегрегации фосфора за время предполагаемой эксплуатации реактора 60 и более лет, который составил 31°C.

Результирующий сдвиг TK определяли как сумму сдвига, обусловленного облучением, определенного по результатам механических испытаний ускоренно облученных образцов (ΔTF), с учетом эффекта флакса ΔТФлакс, обусловленного различиями в кинетике накопления радиационно-индуцированных преципитатов при облучении в условиях различной плотности потока нейтронов и сдвига, обусловленного образованием зернограничной сегрегации фосфора за время предполагаемой эксплуатации корпуса при рабочей температуре (ΔTT).

На основании полученного значения сдвига TK с учетом исходной температуры хрупкости, разброса свойств по элементу корпуса реактора и существующей нормативной документации генеральный конструктор изделия может сделать вывод о конечной температуре хрупкости на окончание предполагаемого периода эксплуатации и о возможности эксплуатации облучаемых элементов корпуса реактора до этого срока.

Способ прогнозирования ресурсоспособности сталей корпусов реакторов ВВЭР-1000, в соответствии с которым образцы из стали корпуса облучают потоком быстрых нейтронов до дозы облучения, соответствующей дозе облучения реального корпуса реактора за отдаленное время, превышающее проектный срок службы, определяют сдвиг критической температуры хрупкости, обусловленный облучением (ΔT), к которому для материалов корпусов реакторов ВВЭР-1000 с содержанием никеля ≥ 1,5% добавляют составляющую ΔТ, обусловленную различиями в кинетике накопления радиационно-индуцированных преципитатов при облучении в условиях различной плотности потока быстрых нейтронов и равную 0,25 ΔT, затем определяют уровень зернограничных сегрегаций в необлученных образцах и по кинетическому уравнению МакЛина накопления сегрегаций экстраполяцией определяют уровень зернограничных сегрегаций на отдаленный срок эксплуатации реактора, после чего на основании экспериментальной калибровочной зависимости между уровнем зернограничной сегрегации и сдвигом критической температуры хрупкости определяют составляющую ΔT, обусловленную протеканием сегрегационных процессов за длительный период при рабочей температуре, определяют общий сдвиг критической температуры хрупкости (ΔT), лимитирующий ресурс корпуса реактора в отдаленном периоде как сумму сдвигов ΔT=ΔT+ΔТ+ΔТ, и по его величине судят о ресурсе корпуса.
СПОСОБ ПРОГНОЗИРОВАНИЯ РЕСУРСОСПОСОБНОСТИ СТАЛЕЙ КОРПУСОВ РЕАКТОРОВ ВВЭР-1000
СПОСОБ ПРОГНОЗИРОВАНИЯ РЕСУРСОСПОСОБНОСТИ СТАЛЕЙ КОРПУСОВ РЕАКТОРОВ ВВЭР-1000
Источник поступления информации: Роспатент

Показаны записи 151-160 из 259.
29.05.2018
№218.016.5623

Система управления электронной плотностью плазмы на установках типа токамак

Изобретение относится к средствам проведения исследований в области управляемого термоядерного синтеза на установках типа токамак. Система управления электронной плотностью плазмы состоит из СВЧ интерферометра, с опорным каналом и основным каналом, проходящим через камеру токамака, на одном...
Тип: Изобретение
Номер охранного документа: 0002654518
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.58ad

Способ создания лазерного излучения и лазер, реализующий этот способ

Изобретение относится к лазерной технике. Для создания лазерного излучения используют газоразрядную камеру, установленную на ее выходе ионно-оптическую систему для формирования ускоренного пучка ионов, лазерный резонатор, в котором устанавливают узел перезарядки, представляющий проводящее...
Тип: Изобретение
Номер охранного документа: 0002653567
Дата охранного документа: 11.05.2018
29.05.2018
№218.016.58dd

Устройство и способ для формирования мощных коротких импульсов co

Изобретение относится к лазерной технике. Устройство для формирования мощных коротких импульсов СO лазером состоит из последовательно расположенных задающего генератора на линии Р(20) 10-мкм полосы, трехсекционной резонансно-поглощающей ячейки со смесью SF и N, оптической схемы геометрического...
Тип: Изобретение
Номер охранного документа: 0002653568
Дата охранного документа: 11.05.2018
11.06.2018
№218.016.6116

Устройство для передачи вращательного движения в герметичный объём (варианты)

Изобретение относится к электротехнике и может быть использовано для поворота деталей через герметичную оболочку, например заслонки светового или молекулярного пучка в устройствах для напыления тонких пленок, для смены подложек при напылении путем поворота кассеты и пр., также может...
Тип: Изобретение
Номер охранного документа: 0002657013
Дата охранного документа: 08.06.2018
16.06.2018
№218.016.6238

Бисфенольные производные флуорена, обладающие антимикоплазменной активностью, и способ их получения

Изобретение относится к бисфенольным производным флуорена указанной ниже общей формулы 1, обладающим антимикоплазменной активностью, в которой L=OC(O), R1-R4 могут быть одинаковыми или различными и каждый независимо представляет Н, СООН, C(O)NHR5, R5 - фенил, замещенный метилом (за исключением...
Тип: Изобретение
Номер охранного документа: 0002657731
Дата охранного документа: 15.06.2018
05.07.2018
№218.016.6be2

Лекарственное средство пролонгированного действия на основе анастрозола

Изобретение относится к фармацевтике и медицине и представляет собой лекарственное средство пролонгированного действия на основе анастрозола в виде лиофилизата для приготовления суспензии для внутримышечного введения, содержащее анастрозол (10,0÷15,0 мас%), сополимер молочной и гликолевой...
Тип: Изобретение
Номер охранного документа: 0002659689
Дата охранного документа: 03.07.2018
12.07.2018
№218.016.6fff

Электролизная установка высокого давления

Изобретение относится к устройствам для получения водорода и кислорода электролизом воды и может быть использовано для получения водорода и кислорода высокого давления. Техническим результатом заявленного изобретения является улучшение эксплуатационных характеристик электролизной установки...
Тип: Изобретение
Номер охранного документа: 0002660902
Дата охранного документа: 11.07.2018
09.08.2018
№218.016.7901

Способ идентификации пользователя компьютера "человек или интернет-робот"

Изобретение относится к безопасности компьютерных сетей, а именно к формированию изображений при прохождении пользователем полностью автоматизированного теста Тьюринга. Технический результат - повышение вероятности отличить человека от интернет-робота при доступе к интернет-ресурсам. Способ...
Тип: Изобретение
Номер охранного документа: 0002663475
Дата охранного документа: 06.08.2018
09.08.2018
№218.016.79e3

Способ получения эпитаксиальной пленки многослойного силицена, интеркалированного европием

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, а именно EuSi кристаллической модификации hP3 (пространственная группа N164, ) со структурой интеркалированных европием слоев силицена, которые могут быть использованы для проведения экспериментов по...
Тип: Изобретение
Номер охранного документа: 0002663041
Дата охранного документа: 01.08.2018
10.08.2018
№218.016.7b05

Способ регистрации нейтронов и устройство для его осуществления

Группа изобретений относится к области регистрации нейтронов сцинтилляционным методом с использованием неорганического сцинтилляционного материала. Сущность изобретений заключается в том, что способ регистрации нейтронов содержит этапы, на которых регистрируют фотоны сцинтилляций, образующиеся...
Тип: Изобретение
Номер охранного документа: 0002663683
Дата охранного документа: 08.08.2018
Показаны записи 141-150 из 150.
19.01.2018
№218.015.ff8f

Электролизер и каскад электролизеров

Изобретение относится к электролизеру, содержащему корпус с электролитом с размещенными в нем электролизной ячейкой с анодом, катодом и мембраной, разделяющей объем электролизной ячейки на анодное и катодное пространства, анодный контур циркуляции электролита, включающий емкость с электролитом...
Тип: Изобретение
Номер охранного документа: 0002629561
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.028f

Способ переработки углеродсодержащего сырья в реакторе с расплавом металла

Изобретение относится к технологии комплексной переработки различных видов углеводородсодержащего сырья в расплаве металлов с получением в качестве промежуточного продукта смеси водорода и монооксида углерода (синтез-газа). Способ заключается в процессе газификации, где получают поток...
Тип: Изобретение
Номер охранного документа: 0002630118
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.0e65

Бланкет термоядерного реактора

Изобретение конструкции бланкета термоядерного реактора. Заявленный бланкет состоит из по крайней мере из одного вертикального металлического модуля, нижняя часть которого заполнена кипящим раствором сырьевого материала и соединена патрубком с устройством для извлечения из раствора целевых...
Тип: Изобретение
Номер охранного документа: 0002633373
Дата охранного документа: 12.10.2017
19.01.2018
№218.016.0ebe

Устройство крепления

Изобретение относится к области механики и может быть использовано для крепления объектов. Техническим результатом заявленного изобретения является повышение надежности удержания объектов на штатных местах при приложении к ним сил без использования крепежных устройств в виде резьбовых...
Тип: Изобретение
Номер охранного документа: 0002633229
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.0ee2

Структура полупроводник-на-изоляторе и способ ее изготовления

Изобретение относится к твердотельной электронике. Структура полупроводник-на-изоляторе содержит изолятор, расположенный на нем поверхностный слой полупроводника и сформированный в изоляторе имплантацией ионов легкого газа и последующего высокотемпературного отжига дефектный термостабильный...
Тип: Изобретение
Номер охранного документа: 0002633437
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0f90

Устройство для измерения характеристик спектральных линий плазмы в реакторе-токамаке

Изобретение относится к устройству для измерения спектральных характеристик плазмы реактора-токамака. Устройство содержит измерительный объем с расположенными в нем катодами и анодом тлеющего разряда, размещенный в стенке вакуумной камеры реактора-токамака, соединенный диагностическим каналом с...
Тип: Изобретение
Номер охранного документа: 0002633517
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.0ffd

Бланкет термоядерного реактора с естественной циркуляцией

Изобретение относится к конструкции бланкета термоядерного реактора. В заявленном устройстве предусмотрено наличие по крайней мере одного вертикального металлического модуля с раствором сырьевого материала, соединенного патрубками, расположенными в верхней и нижней части, с контуром...
Тип: Изобретение
Номер охранного документа: 0002633419
Дата охранного документа: 16.10.2017
13.02.2018
№218.016.264e

Тепловой узел установки для выращивания галоидных кристаллов методом горизонтальной направленной кристаллизации

Изобретение относится к области техники, связанной с выращиванием кристаллов из расплавов методом горизонтально направленной кристаллизации (ГНК), которые широко используются в качестве сцинтилляторов для детекторов ионизирующего излучения, лазерных кристаллов и элементов оптических приборов,...
Тип: Изобретение
Номер охранного документа: 0002643980
Дата охранного документа: 06.02.2018
17.02.2018
№218.016.2aa3

Устройство для стационарной генерации ионного пучка

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642852
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3482

Способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей для проведения реакции переэтерификации

Изобретение относится к области биохимии. Предложен способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей. Способ включает наращивание биомассы дрожжей Yarrowia lipolytica ВКПМ Y-3600, отделение биомассы, лиофильную сушку биомассы, приготовление суспензии...
Тип: Изобретение
Номер охранного документа: 0002646104
Дата охранного документа: 01.03.2018
+ добавить свой РИД