×
27.11.2014
216.013.09b0

Результат интеллектуальной деятельности: РАСТВОР ДЛЯ ГИДРОХИМИЧЕСКОГО ОСАЖДЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПЛЕНОК СУЛЬФИДА ИНДИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения изделий оптоэлектроники и солнечной энергетики, а именно к раствору для гидрохимического осаждения полупроводниковых пленок сульфида индия(III). Раствор содержит соль индия(III), винную кислоту, тиоацетамид, гидроксиламин солянокислый при следующих концентрациях реагентов, моль/л: соль индия(III) - 0,01-0,2; тиоацетамид - 0,01-0,5; винная кислота - 0,005-0,2; гидроксиламин солянокислый - 0,005-0,15. Изобретение позволяет получить пленки сульфида индия(III), характеризующиеся более высокими величинами толщин при одновременном сохранении высокого качества поверхности пленок. 1 табл., 2 пр.
Основные результаты: Раствор для гидрохимического осаждения полупроводниковых пленок сульфида индия(III), содержащий соль индия(III), винную кислоту и тиоацетамид, отличающийся тем, что раствор дополнительно содержит гидроксиламин солянокислый при следующих концентрациях реагентов, моль/л:

Изобретение относится к области полупроводникового материаловедения, а именно к технологии получения изделий оптоэлектроники и солнечной энергетики, и может быть использовано при изготовлении фотоприемных устройств и преобразователей солнечного излучения. Техническим результатом изобретения является получение тонких полупроводниковых пленок сульфида индия(III) методом химического осаждения из водных растворов, характеризующимся более высокой производительностью и простотой аппаратурного оформления.

Сульфид индия(III) благодаря своим свойствам широко используется в оптоэлектронике, в частности, при создании преобразователей солнечного излучения в качестве верхнего буферного слоя, заменяя, таким образом, экологически небезопасный сульфид кадмия, а при получении такого перспективного материала, как дисульфид меди(I) - сульфид индия CuInS2 (CIS), он выступает в качестве основы этого соединения.

Особенно актуальной остается проблема повышения эффективности солнечных элементов. Одним из путей ее решения является обеспечение более полного поглощения излучения в первую очередь за счет увеличения толщины полупроводникового слоя. Показано [Косяченко Л.А., Грушко Е.В., Микитюк Т.И. Поглощательная способность полупроводников, используемых в производстве солнечных панелей. ФТП. 2012. Т. 46. №4. С. 482-486], что практически полное поглощение CIS фотонов в солнечном излучении достигается при толщине слоя от 1 до 2-3 мкм.

Толщина слоя функционального элемента на основе сульфида индия(III) оказывает непосредственное влияние на к.п.д. солнечного преобразователя и обеспечение эффективной теплопередачи. Для получения качественных CIS структур технологически проще и экономически выгоднее нанесение слоя сульфида индия(III) в одну технологическую стадию.

Известно несколько безрастворных малоэффективных технологических приемов получения тонких пленок сульфид индия(III). К ним относятся: распыление раствора тиомочевинного комплекса соли индия(III) с последующим его пиролизом на нагретой подложке [John T.T. et. al. Modification in cell structure for better performance of spray pyrolysed CuInS2/In2S3 thin film solar cell. Appl. Phys. A. 2006. V. 82. P. 703-707], получение сульфида индия(III) с сульфидизацией слоя металла в атмосфере сероводорода H2S [Yoosuf R., Jayaraj M.K. Optical and photoelectrical properties of β-In2S3 thin films prepared by two-stage process. Solar Energy Materials and Solar Cells. 2005. V. 89. P. 85-94], химическое осаждение из паровой фазы и послойная атомная эпитаксия [Sterner J., Malmstrom J., Stolt L. Study on ALD In2S3/Cu(In,Ga)Se2 interface formation. Prog. Photovolt: Res. Appl. 2005. V. 13. P. 179-193]. Но технологически простым, не требующим высоких температур и вакуума является гидрохимическое осаждение пленок [Марков В.Ф., Маскаева Л.Н., Иванов П.Н. Гидрохимическое осаждение пленок сульфидов металлов: моделирование и эксперимент. Ек.: УрО РАН. 2006. 218 с.].

Раствор для гидрохимического синтеза слоев сульфида индия(III) включает в себя соль индия(III), играющую роль поставщика ионов In3+, халькогенизатор как источник ионов серы S2- и различные добавки, обеспечивающие регулирование скорости осаждения слоя. Наибольшую сложность представляет собой подбор рабочей рецептуры реакционной смеси и содержание в ней ее компонентов.

Известно несколько аналогов изобретения, в основе которых лежит метод гидрохимического осаждения тонких пленок сульфида индия(III). Так, например, в [Патент ЕПВ №ЕР 2216824 В1, кл. H01L 31/0749, H01L 31/18, опубл. 2012] раствор осаждения имеет в составе хлорид индия(III) и халькогенизатор - тиоацетамид CH3CSNH2 (TAA). Значение рН реакционной смеси контролируется добавками соляной кислоты и едкого натра в приделах от 1 до 12 при температуре осаждения 60°C. Авторы патента отмечают сильное влияние кислотности среды на процесс получения качественных слоев сульфида индия(III) и указывают на то, что оптимальной является область рН от 1 до 3,5 единиц.

В работе [Kale S.S. et. al. A comparative photo-electrochemical study of In2O3/In2S3 multilayer thun films. Materials Science and Engineering B. 2006. V. 133. P. 222-225] получение тонких пленок In2S3 проводится также в слабокислой среде по причине осаждения гидроксида индия при рН выше 3,6, которое затрудняет процесс образования пленки сульфида. В качестве халькогенизатора в работе также был использован ТАА. Для снижения рН реакционной смеси до 2,35-2,45 единиц в раствор вводилась добавка уксусной кислоты. В условиях кислой среды (при рН<3) кисло-каталитический процесс гидролиза тиоацетамида проходит до образования ацетамида, который затем также гидролизуется, и сероводорода. При этом скорость гидролиза сильно зависит от температуры, концентрации кислоты и тиоацетамида в растворе, на что указывают авторы работы. Гидролиз сероводорода проходит ступенчато с образованием сульфид-ионов, которые при взаимодействии с ионами индия(III) образуют сульфид индия(III).

Для осаждения полупроводникового слоя сульфида индия(III) в [Yahmadi В. et. al. Structural analysis of indium sulphide thin films elaborated by chemical bath deposition. Thin Solid Films. 2005. V. 473. P. 201-207] использовали раствор содержащий хлорид индия(III), уксусную кислоту и тиоацетамид. Осаждение проводили при 70°C в течение 90 мин. Обработанные стеклянные подложки вертикально устанавливались в герметичные реакторы, которые помещались в термостат. Полученные пленки сульфида индия(III) имели светло-желтый цвет. Следует отметить, что толщина осажденных слоев не превышала 680 нм при значительном времени синтеза и сравнительно больших концентрациях халькогенизатора в смеси.

Наиболее близким к предлагаемому изобретению является раствор осаждения полупроводникового слоя сульфида индия(III), взятый авторами в качестве прототипа [Патент US №20130017322, кл. С23С 18/1233, С23С 18/125, С23С 18/1241, С23С 18/1245, С23С 18/1204, опубл. 2013]. В прототипе использовался следующий состав раствора осаждения In2S3:

- соль индия(III) - 0.025-0.1 М;

- комплексообразующий агент (винная кислота) 0.01-0.5 М;

- тиоацетамид - 0.01-1.0 М.

Осаждение проводили на стеклянные, металлические и полимерные подложки в температурном интервале от 25 до 65°C в течение 30-105 мин. Растворы готовили на основе деионизированной воды последовательным растворением комплексообразующего агента и соли индия. После чего приливали раствор тиоацетамида. Значение рН раствора задавалось от 1 до 3 во избежание образования гидроокиси индия(III). Важную роль авторы патента отводят комплексообразующему агенту, в роли которого могут выступать винная, янтарная, лимонная и малоновая кислоты, которые образуют хилатные комплексы с индием различной прочности в зависимости от расстояния между карбоксильными группами. Соответственно, чем оно меньше, тем прочнее комплекс с ионами металла, и, следовательно, рост пленки замедляется.

Стеклянные подложки для осаждения сульфида индия(III) предварительно обрабатывались, после чего лицевой стороной вниз устанавливались в герметичные реакторы, которые помещались в водяной термостат.

Полученные на подложках пленки сульфида индия(III) светло-желтого цвета имели толщину от 30 до 130 нм. Как таковой механизм образования In2S3 в патенте не описан, но предположительно оно проходило следующим образом с учетом протекания реакций (где InLx - хилатный комплекс с индием):

3CH3CSNH2+2InLx+6H2O→In2S3+2xL+3CH3COO-+3NH4++6H+

CH3CSNH2+2H3O+↔CH3CONH2+H2S+2H2O

CH3CONH2+H2O↔СН3СОО-+NH4+

H2S+H2O↔HS-+H2O+

InLx↔In3++xL

2In3++3HS-+3H2O→In2S3+3H3O+

Следует отметить, что полученные слои In2S3 имели хорошую однородность и качество поверхности при значительном времени синтеза до 105 мин. Толщина осажденных слоев при этом не превышала 130 нм.

Задачей изобретения является получение пленок сульфида индия(III), характеризующихся более высокими величинами толщин при одновременном сохранении высокого качества поверхности пленок.

Поставленная задача достигается тем, что для изготовления пленок сульфида индия(III) предложен раствор реакционной смеси, в составе которого помимо соли индия(III), винной кислоты и тиоацетамида дополнительно содержится гидроксиламин солянокислый. Осаждение пленок сульфида индия(III) осуществляется на подложки из диэлектрических материалов (ситалла, стекла) из раствора, концентрации компонентов которого находятся в следующих концентрационных пределах, моль/л:

соль индия(III) 0,01-0,2;

тиоацетамид 0,01-0,5;

винная кислота 0,005-0,2;

гидроксиламин солянокислый 0,005-0,15.

Процесс ведут в слабокислом растворе при температуре 60-95°C в течение 30-180 мин. Получаемые слои сульфида индия(III) имеют хорошую адгезию к подложкам и зеркальную поверхность. Их толщина значительно превышает значения, характерные для используемого раствора прототипа, и составляет от 0,4 до 2,2 мкм.

Сущность настоящего изобретения состоит в том, что вводимые добавки гидроксиламина солянокислого и винной кислоты в сравнении с прототипом изменяют кинетику процесса осаждения в направлении, обеспечивающем рост толщины осаждаемых слоев. Гидроксиламин, являясь сильным восстановителем, ускоряет процесс осаждения, оказывая влияние на скорость гидролиза тиоацетамида. Винная кислота выполняет двойную роль: во-первых, это комплексообразующий агент для ионов In3+ со следующими значениями констант нестойкости комплексов InTart+ (pkн=4,5), InTart- (pkн=7,58), а во-вторых, являясь относительно слабой кислотой, за счет процесса гидролиза она повышает буферную емкость реакционной смеси, поддерживая рН раствора на определенном уровне на протяжении практически всего процесса осаждения.

Были проведены исследования, доказывающие получение указанного технического результата заявленным способом.

Пример 1.

Подложку (из диэлектрического или проводящего материала) предварительно тщательно протирали ватным тампоном, смоченным в растворе кальцинированной соды, промывают водой, травят в 2-8%-ном растворе плавиковой кислоты в течение 7-10 сек, промывают дистиллированной водой. Затем подложку обрабатывают в хромовой смеси в течение 20 мин при 70°C, тщательно промывают дистиллированной водой. Подготовленную подложку помещают в ванну (реактор) с раствором для химического осаждения пленки сульфида индия(III), приготовленного следующим образом.

К 1,5 мл 1,25 М раствора нитрата индия(III) приливают 1 мл 1 М раствора винной кислоты, добавляют необходимое количество воды, приливают 0,5 мл 4,66 М раствора гидроксиламина солянокислого и в конце приливают 2 мл 1 М раствора тиоацетамида. Процесс осаждения ведут при 80°C в течение 60 мин. В результате получают желто-оранжевую пленку толщиной 1,1 мкм. Данные рентгеновских исследований и элементный анализ пленок показали, что состав и структура полученных слоев соответствует фазе сульфида индия(III).

Пример 2.

Подготовку подложки проводили в соответствии с примером 1. Далее к 2 мл 1,5 М раствора хлорида индия(III) приливают 2 мл 1 М раствора винной кислоты, добавляют необходимое количество воды, приливают 1 мл 4,66 М раствора гидроксиламина солянокислого и в конце приливают 4 мл 1 М раствора тиоацетамида. Процесс осаждения ведут при 80°C в течение 120 мин. В результате получают желто-оранжевую пленку толщиной 1,5 мкм. Данные рентгеновских исследований и элементный анализ пленок показали, что состав и структура полученных слоев соответствует фазе сульфида индия(III).

Полученные значения толщин пленок In2S3, синтезированных из заявляемой реакционной смеси при варьировании ее компонентного состава и условий осаждения, приведены в таблице:

Из приведенной таблицы видно, что наибольшая толщина пленок получена при условиях осаждения, соответствующих примеру а. В этом случае толщина осажденного слоя в 15-70 раз превышает толщину пленок по прототипу (прототип). Максимальные значения толщин слоев могут быть достигнуты при увеличении времени осаждения. Увеличение концентрации тиоацетамида до 0,6 моль/л или уменьшение концентраций соли индия и винной кислоты до 0,001 моль/л в реакционной смеси отрицательно сказывается на толщине слоев (примеры б, д, ж). Увеличение концентраций последних двух реагентов может привести либо к обильному выпадению осадка сульфида индия без образования пленки, либо к отсутствию образования твердой фазы. Снижение температуры синтеза значительно замедляет процесс (пример в), тогда как ее повышение процесс ускоряет (пример г). Это сказывается как на толщине слоев, так и на качестве их поверхности. Повышение концентрации гидроксиламин солянокислого (пример е) затрудняет формирование пленки на подложке.

Таким образом, заявляемый раствор для гидрохимического осаждения позволяет в одну технологическую стадию получать пленки сульфида индия(III), толщина которых значительно превышает слои, осаждаемые по прототипу.

Раствор для гидрохимического осаждения полупроводниковых пленок сульфида индия(III), содержащий соль индия(III), винную кислоту и тиоацетамид, отличающийся тем, что раствор дополнительно содержит гидроксиламин солянокислый при следующих концентрациях реагентов, моль/л:
Источник поступления информации: Роспатент

Показаны записи 51-60 из 110.
10.06.2015
№216.013.524b

Способ получения пленок твердых растворов замещения pbsnse методом ионного обмена

Пленки твердых растворов замещения PbSnSe - востребованный материал полупроводниковой оптоэлектроники и лазерной техники среднего и дальнего инфракрасного диапазона. Однако достигнутое на сегодня содержание олова в составе гидрохимически синтезируемых пленок PbSnSe не обеспечивает в полной мере...
Тип: Изобретение
Номер охранного документа: 0002552588
Дата охранного документа: 10.06.2015
27.08.2015
№216.013.742a

Способ и устройство определения поверхностного натяжения и/или плотности металлических расплавов

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических расплавов методом геометрии контура «большой лежащей капли», т.е. путем измерения плотности и поверхностного натяжения неподвижно лежащей на подложке эллипсовидной капли образца...
Тип: Изобретение
Номер охранного документа: 0002561313
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7528

Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава

Настоящее изобретение относится к областям металлургии, а именно к способам термической обработки высоколегированных псевдо-β титановых сплавов. Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава, содержащего, мас.%: 4,0…6,3 алюминия, 4,5…5,9 ванадия,...
Тип: Изобретение
Номер охранного документа: 0002561567
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.75fa

Контактный теплоутилизатор с каплеуловителем

Изобретение относится к теплоэнергетике и может быть использовано в установках для нагрева воды уходящими дымовыми газами котельных или тепловых агрегатов. Контактный теплоутилизатор с каплеуловителем содержит контактную насадку с оросителем, по высоте которой монтирован каплеуловитель,...
Тип: Изобретение
Номер охранного документа: 0002561791
Дата охранного документа: 10.09.2015
10.11.2015
№216.013.8b3f

Способ получения невзрывного разрушающего средства агломерационным обжигом

Изобретение относится к технологиям получения невзрывных разрушающих средств (НРС) на основе известняка, которые применяются для разработки природного камня и щадящего разрушения строительных конструкций и объектов, выводимых из эксплуатации. Невзрывное разрушающее средство получают...
Тип: Изобретение
Номер охранного документа: 0002567254
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fe8

Способ получения имплантированного ионами цинка кварцевого стекла

Изобретение относится к способу получения имплантированного ионами цинка кварцевого стекла из диоксида кремния с поверхностным слоем, содержащим нанокластеры цинка. Способ может быть использован при создании компонентов микро-(нано-) и оптоэлектронных устройств. Проводят имплантацию ионов цинка...
Тип: Изобретение
Номер охранного документа: 0002568456
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.93ea

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса содержит устройство суммирования напряжений, генератор модуляции,...
Тип: Изобретение
Номер охранного документа: 0002569485
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.95a9

Способ измерения относительной теплопроводности при внешнем воздействии

Изобретение относится к области теплофизических измерений и может быть использовано для определения относительной теплопроводности материалов. Плоский исследуемый образец известной толщины помещают между двумя алмазными наковальнями с теплопроводностью, существенно превышающей теплопроводность...
Тип: Изобретение
Номер охранного документа: 0002569933
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9657

Способ измерения высоких и сверхвысоких доз, накопленных в термолюминесцентных детекторах ионизирующих излучений на основе оскида алюминия, в том числе при облучении в условиях повышенных температур окружающей среды

Изобретение относится к способу измерения накопленных высоких и сверхвысоких доз и мощностей доз ионизирующих излучений термолюминесцентными (ТЛ) детекторами на основе оксида алюминия. Способ измерения высоких и сверхвысоких доз, накопленных в термолюминесцентных детекторах ионизирующих...
Тип: Изобретение
Номер охранного документа: 0002570107
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9661

Установка для испытаний на высокотемпературную эрозию

Изобретение относится к испытательной технике и может быть использовано для испытания сплавов, покрытий и других материалов, работающих в условиях высокотемпературной эрозии, характерных для труб топочных экранов бойлеров тепловых электростанций. Установка содержит стойку, закрепленную в...
Тип: Изобретение
Номер охранного документа: 0002570117
Дата охранного документа: 10.12.2015
Показаны записи 51-60 из 162.
10.02.2014
№216.012.9fcb

Инфракрасный световод с большим диаметром поля моды

Изобретение относится к инфракрасным световодам с большим диаметром поля моды. Световод включает сердцевину и оболочку, состоящую из стержней, расположенных в гексагональном порядке. Сердцевина диаметром 98-112 мкм выполнена из кристаллов на основе бромида серебра, содержащего твердый раствор...
Тип: Изобретение
Номер охранного документа: 0002506615
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a345

Способ изготовления модифицированного электрода для электрохимического анализа (варианты)

Использование: для контроля состава природных, сточных вод, биологических объектов, пищевых продуктов, диагностики заболеваний в химической, металлургической, пищевой промышленности, медицине, экологии. Сущность: способ изготовления модифицированного электрода включает синтез на поверхности...
Тип: Изобретение
Номер охранного документа: 0002507512
Дата охранного документа: 20.02.2014
20.04.2014
№216.012.bb33

Способ измерения поглощенной дозы ионизирующего излучения в термолюминесцентном детекторе на основе анионо-дефектного монокристалла оксида алюминия (варианты)

Изобретение относится к радиационной физике, а именно к способам измерения поглощенной дозы ионизирующего γ-излучения, или β-излучения, или импульсного потока электронов в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия. Способ измерения поглощенной дозы...
Тип: Изобретение
Номер охранного документа: 0002513651
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c1b0

Термогравиметрическая установка

Термогравиметрическая установка предназначена для определения кислородной нестехиометрии в твердых оксидных материалах по изменению их массы в зависимости от температуры и парциального давления кислорода газовой атмосферы. Термогравиметрическая установка содержит измерительную систему,...
Тип: Изобретение
Номер охранного документа: 0002515333
Дата охранного документа: 10.05.2014
27.05.2014
№216.012.cb24

Способ определения плотности металлических расплавов

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических расплавов путем измерения плотности и поверхностного натяжения неподвижно лежащей на подложке эллипсовидной капли образца расплава посредством фотоэлектронной объемометрии. Образец...
Тип: Изобретение
Номер охранного документа: 0002517770
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.cb27

Способ определения поглощенной дозы ионизирующего ультрафиолетового или бета-излучения в детекторе на основе монокристалла нитрида алюминия

Изобретение относится к радиационной физике, а именно к способам определения поглощенной дозы ионизирующего ультрафиолетового или бета-излучения в детекторе на основе монокристаллического нитрида алюминия с использованием метода оптически стимулированной люминесценции (ОСЛ) в непрерывном режиме...
Тип: Изобретение
Номер охранного документа: 0002517773
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.ccd4

Способ термической обработки рельсов

Изобретение относится к области черной металлургии, в частности к производству железнодорожных рельсов, преимущественно длинномерных рельсов. Перед охлаждением прокатанного рельса при температуре конца прокатки 850-870°С концы рельса зажимают в клещевых зажимах и растягивают в продольном...
Тип: Изобретение
Номер охранного документа: 0002518207
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cdaf

Способ бестокового получения урана (v) в расплавленных хлоридах щелочных металлов

Изобретение относится к области создания пирохимических технологий переработки облученного ядерного топлива, в частности оксидного. Способ бестокового получения урана (V) в расплавленных хлоридах щелочных металлов (NaCl-2CsCl, NaCl-KCl, LiCl-KCl), содержащих ионы урана (VI), сущность которого...
Тип: Изобретение
Номер охранного документа: 0002518426
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d5eb

Аппликатор магнитный

Изобретение относится к медицине, а именно к магнитотерапии, и может быть использовано для лечения различных заболеваний воздействием магнитных полей, создаваемых постоянным магнитом, размещаемым снаружи тела. Аппликатор магнитный содержит гибкую пластину из магнитомягкого эластомера на основе...
Тип: Изобретение
Номер охранного документа: 0002520541
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.df1f

Способ извлечения редкоземельных элементов из жидких сплавов с цинком

Изобретение относится к области создания пирохимических технологий переработки облученного ядерного топлива, а именно к способу извлечения редкоземельных элементов из жидкого сплава с цинком. Предлагаемый способ включает погружение сплава в солевой расплав с последующим переводом редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002522905
Дата охранного документа: 20.07.2014
+ добавить свой РИД