×
27.11.2014
216.013.09b0

Результат интеллектуальной деятельности: РАСТВОР ДЛЯ ГИДРОХИМИЧЕСКОГО ОСАЖДЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПЛЕНОК СУЛЬФИДА ИНДИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения изделий оптоэлектроники и солнечной энергетики, а именно к раствору для гидрохимического осаждения полупроводниковых пленок сульфида индия(III). Раствор содержит соль индия(III), винную кислоту, тиоацетамид, гидроксиламин солянокислый при следующих концентрациях реагентов, моль/л: соль индия(III) - 0,01-0,2; тиоацетамид - 0,01-0,5; винная кислота - 0,005-0,2; гидроксиламин солянокислый - 0,005-0,15. Изобретение позволяет получить пленки сульфида индия(III), характеризующиеся более высокими величинами толщин при одновременном сохранении высокого качества поверхности пленок. 1 табл., 2 пр.
Основные результаты: Раствор для гидрохимического осаждения полупроводниковых пленок сульфида индия(III), содержащий соль индия(III), винную кислоту и тиоацетамид, отличающийся тем, что раствор дополнительно содержит гидроксиламин солянокислый при следующих концентрациях реагентов, моль/л:

Изобретение относится к области полупроводникового материаловедения, а именно к технологии получения изделий оптоэлектроники и солнечной энергетики, и может быть использовано при изготовлении фотоприемных устройств и преобразователей солнечного излучения. Техническим результатом изобретения является получение тонких полупроводниковых пленок сульфида индия(III) методом химического осаждения из водных растворов, характеризующимся более высокой производительностью и простотой аппаратурного оформления.

Сульфид индия(III) благодаря своим свойствам широко используется в оптоэлектронике, в частности, при создании преобразователей солнечного излучения в качестве верхнего буферного слоя, заменяя, таким образом, экологически небезопасный сульфид кадмия, а при получении такого перспективного материала, как дисульфид меди(I) - сульфид индия CuInS2 (CIS), он выступает в качестве основы этого соединения.

Особенно актуальной остается проблема повышения эффективности солнечных элементов. Одним из путей ее решения является обеспечение более полного поглощения излучения в первую очередь за счет увеличения толщины полупроводникового слоя. Показано [Косяченко Л.А., Грушко Е.В., Микитюк Т.И. Поглощательная способность полупроводников, используемых в производстве солнечных панелей. ФТП. 2012. Т. 46. №4. С. 482-486], что практически полное поглощение CIS фотонов в солнечном излучении достигается при толщине слоя от 1 до 2-3 мкм.

Толщина слоя функционального элемента на основе сульфида индия(III) оказывает непосредственное влияние на к.п.д. солнечного преобразователя и обеспечение эффективной теплопередачи. Для получения качественных CIS структур технологически проще и экономически выгоднее нанесение слоя сульфида индия(III) в одну технологическую стадию.

Известно несколько безрастворных малоэффективных технологических приемов получения тонких пленок сульфид индия(III). К ним относятся: распыление раствора тиомочевинного комплекса соли индия(III) с последующим его пиролизом на нагретой подложке [John T.T. et. al. Modification in cell structure for better performance of spray pyrolysed CuInS2/In2S3 thin film solar cell. Appl. Phys. A. 2006. V. 82. P. 703-707], получение сульфида индия(III) с сульфидизацией слоя металла в атмосфере сероводорода H2S [Yoosuf R., Jayaraj M.K. Optical and photoelectrical properties of β-In2S3 thin films prepared by two-stage process. Solar Energy Materials and Solar Cells. 2005. V. 89. P. 85-94], химическое осаждение из паровой фазы и послойная атомная эпитаксия [Sterner J., Malmstrom J., Stolt L. Study on ALD In2S3/Cu(In,Ga)Se2 interface formation. Prog. Photovolt: Res. Appl. 2005. V. 13. P. 179-193]. Но технологически простым, не требующим высоких температур и вакуума является гидрохимическое осаждение пленок [Марков В.Ф., Маскаева Л.Н., Иванов П.Н. Гидрохимическое осаждение пленок сульфидов металлов: моделирование и эксперимент. Ек.: УрО РАН. 2006. 218 с.].

Раствор для гидрохимического синтеза слоев сульфида индия(III) включает в себя соль индия(III), играющую роль поставщика ионов In3+, халькогенизатор как источник ионов серы S2- и различные добавки, обеспечивающие регулирование скорости осаждения слоя. Наибольшую сложность представляет собой подбор рабочей рецептуры реакционной смеси и содержание в ней ее компонентов.

Известно несколько аналогов изобретения, в основе которых лежит метод гидрохимического осаждения тонких пленок сульфида индия(III). Так, например, в [Патент ЕПВ №ЕР 2216824 В1, кл. H01L 31/0749, H01L 31/18, опубл. 2012] раствор осаждения имеет в составе хлорид индия(III) и халькогенизатор - тиоацетамид CH3CSNH2 (TAA). Значение рН реакционной смеси контролируется добавками соляной кислоты и едкого натра в приделах от 1 до 12 при температуре осаждения 60°C. Авторы патента отмечают сильное влияние кислотности среды на процесс получения качественных слоев сульфида индия(III) и указывают на то, что оптимальной является область рН от 1 до 3,5 единиц.

В работе [Kale S.S. et. al. A comparative photo-electrochemical study of In2O3/In2S3 multilayer thun films. Materials Science and Engineering B. 2006. V. 133. P. 222-225] получение тонких пленок In2S3 проводится также в слабокислой среде по причине осаждения гидроксида индия при рН выше 3,6, которое затрудняет процесс образования пленки сульфида. В качестве халькогенизатора в работе также был использован ТАА. Для снижения рН реакционной смеси до 2,35-2,45 единиц в раствор вводилась добавка уксусной кислоты. В условиях кислой среды (при рН<3) кисло-каталитический процесс гидролиза тиоацетамида проходит до образования ацетамида, который затем также гидролизуется, и сероводорода. При этом скорость гидролиза сильно зависит от температуры, концентрации кислоты и тиоацетамида в растворе, на что указывают авторы работы. Гидролиз сероводорода проходит ступенчато с образованием сульфид-ионов, которые при взаимодействии с ионами индия(III) образуют сульфид индия(III).

Для осаждения полупроводникового слоя сульфида индия(III) в [Yahmadi В. et. al. Structural analysis of indium sulphide thin films elaborated by chemical bath deposition. Thin Solid Films. 2005. V. 473. P. 201-207] использовали раствор содержащий хлорид индия(III), уксусную кислоту и тиоацетамид. Осаждение проводили при 70°C в течение 90 мин. Обработанные стеклянные подложки вертикально устанавливались в герметичные реакторы, которые помещались в термостат. Полученные пленки сульфида индия(III) имели светло-желтый цвет. Следует отметить, что толщина осажденных слоев не превышала 680 нм при значительном времени синтеза и сравнительно больших концентрациях халькогенизатора в смеси.

Наиболее близким к предлагаемому изобретению является раствор осаждения полупроводникового слоя сульфида индия(III), взятый авторами в качестве прототипа [Патент US №20130017322, кл. С23С 18/1233, С23С 18/125, С23С 18/1241, С23С 18/1245, С23С 18/1204, опубл. 2013]. В прототипе использовался следующий состав раствора осаждения In2S3:

- соль индия(III) - 0.025-0.1 М;

- комплексообразующий агент (винная кислота) 0.01-0.5 М;

- тиоацетамид - 0.01-1.0 М.

Осаждение проводили на стеклянные, металлические и полимерные подложки в температурном интервале от 25 до 65°C в течение 30-105 мин. Растворы готовили на основе деионизированной воды последовательным растворением комплексообразующего агента и соли индия. После чего приливали раствор тиоацетамида. Значение рН раствора задавалось от 1 до 3 во избежание образования гидроокиси индия(III). Важную роль авторы патента отводят комплексообразующему агенту, в роли которого могут выступать винная, янтарная, лимонная и малоновая кислоты, которые образуют хилатные комплексы с индием различной прочности в зависимости от расстояния между карбоксильными группами. Соответственно, чем оно меньше, тем прочнее комплекс с ионами металла, и, следовательно, рост пленки замедляется.

Стеклянные подложки для осаждения сульфида индия(III) предварительно обрабатывались, после чего лицевой стороной вниз устанавливались в герметичные реакторы, которые помещались в водяной термостат.

Полученные на подложках пленки сульфида индия(III) светло-желтого цвета имели толщину от 30 до 130 нм. Как таковой механизм образования In2S3 в патенте не описан, но предположительно оно проходило следующим образом с учетом протекания реакций (где InLx - хилатный комплекс с индием):

3CH3CSNH2+2InLx+6H2O→In2S3+2xL+3CH3COO-+3NH4++6H+

CH3CSNH2+2H3O+↔CH3CONH2+H2S+2H2O

CH3CONH2+H2O↔СН3СОО-+NH4+

H2S+H2O↔HS-+H2O+

InLx↔In3++xL

2In3++3HS-+3H2O→In2S3+3H3O+

Следует отметить, что полученные слои In2S3 имели хорошую однородность и качество поверхности при значительном времени синтеза до 105 мин. Толщина осажденных слоев при этом не превышала 130 нм.

Задачей изобретения является получение пленок сульфида индия(III), характеризующихся более высокими величинами толщин при одновременном сохранении высокого качества поверхности пленок.

Поставленная задача достигается тем, что для изготовления пленок сульфида индия(III) предложен раствор реакционной смеси, в составе которого помимо соли индия(III), винной кислоты и тиоацетамида дополнительно содержится гидроксиламин солянокислый. Осаждение пленок сульфида индия(III) осуществляется на подложки из диэлектрических материалов (ситалла, стекла) из раствора, концентрации компонентов которого находятся в следующих концентрационных пределах, моль/л:

соль индия(III) 0,01-0,2;

тиоацетамид 0,01-0,5;

винная кислота 0,005-0,2;

гидроксиламин солянокислый 0,005-0,15.

Процесс ведут в слабокислом растворе при температуре 60-95°C в течение 30-180 мин. Получаемые слои сульфида индия(III) имеют хорошую адгезию к подложкам и зеркальную поверхность. Их толщина значительно превышает значения, характерные для используемого раствора прототипа, и составляет от 0,4 до 2,2 мкм.

Сущность настоящего изобретения состоит в том, что вводимые добавки гидроксиламина солянокислого и винной кислоты в сравнении с прототипом изменяют кинетику процесса осаждения в направлении, обеспечивающем рост толщины осаждаемых слоев. Гидроксиламин, являясь сильным восстановителем, ускоряет процесс осаждения, оказывая влияние на скорость гидролиза тиоацетамида. Винная кислота выполняет двойную роль: во-первых, это комплексообразующий агент для ионов In3+ со следующими значениями констант нестойкости комплексов InTart+ (pkн=4,5), InTart- (pkн=7,58), а во-вторых, являясь относительно слабой кислотой, за счет процесса гидролиза она повышает буферную емкость реакционной смеси, поддерживая рН раствора на определенном уровне на протяжении практически всего процесса осаждения.

Были проведены исследования, доказывающие получение указанного технического результата заявленным способом.

Пример 1.

Подложку (из диэлектрического или проводящего материала) предварительно тщательно протирали ватным тампоном, смоченным в растворе кальцинированной соды, промывают водой, травят в 2-8%-ном растворе плавиковой кислоты в течение 7-10 сек, промывают дистиллированной водой. Затем подложку обрабатывают в хромовой смеси в течение 20 мин при 70°C, тщательно промывают дистиллированной водой. Подготовленную подложку помещают в ванну (реактор) с раствором для химического осаждения пленки сульфида индия(III), приготовленного следующим образом.

К 1,5 мл 1,25 М раствора нитрата индия(III) приливают 1 мл 1 М раствора винной кислоты, добавляют необходимое количество воды, приливают 0,5 мл 4,66 М раствора гидроксиламина солянокислого и в конце приливают 2 мл 1 М раствора тиоацетамида. Процесс осаждения ведут при 80°C в течение 60 мин. В результате получают желто-оранжевую пленку толщиной 1,1 мкм. Данные рентгеновских исследований и элементный анализ пленок показали, что состав и структура полученных слоев соответствует фазе сульфида индия(III).

Пример 2.

Подготовку подложки проводили в соответствии с примером 1. Далее к 2 мл 1,5 М раствора хлорида индия(III) приливают 2 мл 1 М раствора винной кислоты, добавляют необходимое количество воды, приливают 1 мл 4,66 М раствора гидроксиламина солянокислого и в конце приливают 4 мл 1 М раствора тиоацетамида. Процесс осаждения ведут при 80°C в течение 120 мин. В результате получают желто-оранжевую пленку толщиной 1,5 мкм. Данные рентгеновских исследований и элементный анализ пленок показали, что состав и структура полученных слоев соответствует фазе сульфида индия(III).

Полученные значения толщин пленок In2S3, синтезированных из заявляемой реакционной смеси при варьировании ее компонентного состава и условий осаждения, приведены в таблице:

Из приведенной таблицы видно, что наибольшая толщина пленок получена при условиях осаждения, соответствующих примеру а. В этом случае толщина осажденного слоя в 15-70 раз превышает толщину пленок по прототипу (прототип). Максимальные значения толщин слоев могут быть достигнуты при увеличении времени осаждения. Увеличение концентрации тиоацетамида до 0,6 моль/л или уменьшение концентраций соли индия и винной кислоты до 0,001 моль/л в реакционной смеси отрицательно сказывается на толщине слоев (примеры б, д, ж). Увеличение концентраций последних двух реагентов может привести либо к обильному выпадению осадка сульфида индия без образования пленки, либо к отсутствию образования твердой фазы. Снижение температуры синтеза значительно замедляет процесс (пример в), тогда как ее повышение процесс ускоряет (пример г). Это сказывается как на толщине слоев, так и на качестве их поверхности. Повышение концентрации гидроксиламин солянокислого (пример е) затрудняет формирование пленки на подложке.

Таким образом, заявляемый раствор для гидрохимического осаждения позволяет в одну технологическую стадию получать пленки сульфида индия(III), толщина которых значительно превышает слои, осаждаемые по прототипу.

Раствор для гидрохимического осаждения полупроводниковых пленок сульфида индия(III), содержащий соль индия(III), винную кислоту и тиоацетамид, отличающийся тем, что раствор дополнительно содержит гидроксиламин солянокислый при следующих концентрациях реагентов, моль/л:
Источник поступления информации: Роспатент

Показаны записи 101-110 из 110.
20.01.2018
№218.016.1b54

Способ наноструктурирующего упрочнения поверхностного слоя прецизионных деталей выглаживанием и система для его осуществления

Изобретение относится к наноструктурирующему упрочнению поверхностного слоя прецизионных деталей выглаживанием. Используют выглаживающий инструмент, содержащий индентор, изготовленный из сверхтвердого инструментального материала, и модуль охлаждения индентора жидким теплоносителем....
Тип: Изобретение
Номер охранного документа: 0002635987
Дата охранного документа: 17.11.2017
04.04.2018
№218.016.36be

Сцинтилляционный гамма-спектрометр

Изобретение относится к области сцинтилляционных γ-спектрометров, точнее к спектрометрам энергий на основе сцинтилляторов NaI:Tl, CsI:Tl, CsI:Na, LaCl:Ce и других, характеризующихся многокомпонентными световыми вспышками с сильной зависимостью постоянных времени высвечивания от температуры...
Тип: Изобретение
Номер охранного документа: 0002646542
Дата охранного документа: 05.03.2018
16.06.2018
№218.016.63b4

Сырьевая смесь для зольного аглопоритового гравия

Изобретение относится к технологиям производства пористых заполнителей для промышленного, гражданского и дорожного строительства. Технической задачей изобретения является разработка состава сырьевой смеси, обеспечивающего повышение теплоизоляционных свойств зольного гравия посредством...
Тип: Изобретение
Номер охранного документа: 0002657567
Дата охранного документа: 14.06.2018
25.06.2018
№218.016.6676

Способ изготовления и состав пасты для толстопленочного резистора

Изобретение относится к способу изготовления пасты для толстопленочного резистора. Порошки молибдена, тантала, магния и кремния смешивают, прессуют в штабик и помещают в герметичный реактор. Реактор заполняют инертным газом и приводят штабик в контакт с раскаленной проволокой. В результате в...
Тип: Изобретение
Номер охранного документа: 0002658644
Дата охранного документа: 22.06.2018
02.03.2019
№219.016.d1e7

Способ гамма-радиографической интроскопии

Изобретение относится к области радиографической интроскопии, точнее к гамма-радиографической интроскопии массивных деталей и заготовок из тяжелых металлов. Способ гамма-радиографической интроскопии дополнительно содержит этапы, на которых располагают детекторы на минимальном расстоянии между...
Тип: Изобретение
Номер охранного документа: 0002680849
Дата охранного документа: 28.02.2019
10.04.2019
№219.017.0779

6-(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-c]1,2,4-триазин-7(4н)-он

Описывается новое соединение - 6-(2'-Амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-с]1,2,4-триазин-7(4Н)-он формулы (2) обладающее противовирусным действием и низкой токсичностью. Данное соединение может найти применение в медицине. 1 пр., 3 ил.
Тип: Изобретение
Номер охранного документа: 0002455304
Дата охранного документа: 10.07.2012
09.06.2019
№219.017.7fb4

Роторный ветрогидродвигатель

Изобретение относится к роторным энергоустановкам, использующим кинетическую энергию ветра или потока воды для преобразования ее в механическую энергию. Роторный ветрогидродвигатель содержит вал, соединенный с дисками, между которыми установлены на периферии на своих осях лопасти с возможностью...
Тип: Изобретение
Номер охранного документа: 0002464443
Дата охранного документа: 20.10.2012
19.06.2019
№219.017.8bda

Способ получения парацетамола

Предложен новый способ получения парацетамола, заключающийся в восстановлении п-нитрозофенола, проводимом в этилацетате в присутствии Pd/C-содержащего катализатора при давлении водорода 2,0-4,0 атм и температуре 20-50°С, последующем ацилировании образующегося п-аминофенола и выделении целевого...
Тип: Изобретение
Номер охранного документа: 0002461543
Дата охранного документа: 20.09.2012
10.07.2019
№219.017.b13b

Способ определения производительности плавильного агрегата

Изобретение относится к измерительной технике для контроля технологического процесса производства теплоизоляционных изделий из минеральной ваты в промышленности строительных материалов, в частности к способу для определения производительности плавильного агрегата. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002469962
Дата охранного документа: 20.12.2012
31.07.2019
№219.017.ba79

Способ определения параметров движения объектов локации в радиолокационных датчиках с частотной манипуляцией непрерывного излучения радиоволн и устройство для его реализации

Изобретение относится к области радиолокации с частотной манипуляцией непрерывного излучения (ЧМНИ) радиоволн и может быть использовано для обнаружения движущихся целей, измерения расстояния до объекта локации, скорости и направления движения. Достигаемый технический результат - расширение...
Тип: Изобретение
Номер охранного документа: 0002695799
Дата охранного документа: 29.07.2019
Показаны записи 111-120 из 162.
27.08.2015
№216.013.742a

Способ и устройство определения поверхностного натяжения и/или плотности металлических расплавов

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических расплавов методом геометрии контура «большой лежащей капли», т.е. путем измерения плотности и поверхностного натяжения неподвижно лежащей на подложке эллипсовидной капли образца...
Тип: Изобретение
Номер охранного документа: 0002561313
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7528

Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава

Настоящее изобретение относится к областям металлургии, а именно к способам термической обработки высоколегированных псевдо-β титановых сплавов. Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава, содержащего, мас.%: 4,0…6,3 алюминия, 4,5…5,9 ванадия,...
Тип: Изобретение
Номер охранного документа: 0002561567
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.75fa

Контактный теплоутилизатор с каплеуловителем

Изобретение относится к теплоэнергетике и может быть использовано в установках для нагрева воды уходящими дымовыми газами котельных или тепловых агрегатов. Контактный теплоутилизатор с каплеуловителем содержит контактную насадку с оросителем, по высоте которой монтирован каплеуловитель,...
Тип: Изобретение
Номер охранного документа: 0002561791
Дата охранного документа: 10.09.2015
10.11.2015
№216.013.8b3f

Способ получения невзрывного разрушающего средства агломерационным обжигом

Изобретение относится к технологиям получения невзрывных разрушающих средств (НРС) на основе известняка, которые применяются для разработки природного камня и щадящего разрушения строительных конструкций и объектов, выводимых из эксплуатации. Невзрывное разрушающее средство получают...
Тип: Изобретение
Номер охранного документа: 0002567254
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fe8

Способ получения имплантированного ионами цинка кварцевого стекла

Изобретение относится к способу получения имплантированного ионами цинка кварцевого стекла из диоксида кремния с поверхностным слоем, содержащим нанокластеры цинка. Способ может быть использован при создании компонентов микро-(нано-) и оптоэлектронных устройств. Проводят имплантацию ионов цинка...
Тип: Изобретение
Номер охранного документа: 0002568456
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.93ea

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса содержит устройство суммирования напряжений, генератор модуляции,...
Тип: Изобретение
Номер охранного документа: 0002569485
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.95a9

Способ измерения относительной теплопроводности при внешнем воздействии

Изобретение относится к области теплофизических измерений и может быть использовано для определения относительной теплопроводности материалов. Плоский исследуемый образец известной толщины помещают между двумя алмазными наковальнями с теплопроводностью, существенно превышающей теплопроводность...
Тип: Изобретение
Номер охранного документа: 0002569933
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9657

Способ измерения высоких и сверхвысоких доз, накопленных в термолюминесцентных детекторах ионизирующих излучений на основе оскида алюминия, в том числе при облучении в условиях повышенных температур окружающей среды

Изобретение относится к способу измерения накопленных высоких и сверхвысоких доз и мощностей доз ионизирующих излучений термолюминесцентными (ТЛ) детекторами на основе оксида алюминия. Способ измерения высоких и сверхвысоких доз, накопленных в термолюминесцентных детекторах ионизирующих...
Тип: Изобретение
Номер охранного документа: 0002570107
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9661

Установка для испытаний на высокотемпературную эрозию

Изобретение относится к испытательной технике и может быть использовано для испытания сплавов, покрытий и других материалов, работающих в условиях высокотемпературной эрозии, характерных для труб топочных экранов бойлеров тепловых электростанций. Установка содержит стойку, закрепленную в...
Тип: Изобретение
Номер охранного документа: 0002570117
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.96d9

Способ определения вязкости металлических материалов

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов. Сущность: осуществляют испытания на...
Тип: Изобретение
Номер охранного документа: 0002570237
Дата охранного документа: 10.12.2015
+ добавить свой РИД