×
20.11.2014
216.013.09a8

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ УПРАВЛЯЮЩИХ ВОЗДЕЙСТВИЙ НА КОСМИЧЕСКИЙ АППАРАТ

Вид РИД

Изобретение

№ охранного документа
0002533873
Дата охранного документа
20.11.2014
Аннотация: Изобретение относится к управлению движением космических аппаратов (КА) с использованием сил давления солнечного излучения, распределенных по рабочим зонам КА. Последние формируют в виде плоских параллельных оптически прозрачных капельных потоков. Расстояние между каплями радиусом R в каждом потоке вдоль него (S) и в его фронтально-поперечном направлении (S) кратно . Число потоков составляет . Смещением потоков относительно друг друга по направлению их движения на расстояние формируют потоки капельной пелены числом . Каждый из указанных потоков смещен относительно предыдущего во фронтально-поперечном направлении на расстояние . Этим создают непрозрачность во фронтально-поперечном направлении и прозрачность в направлении плоскости, перпендикулярной потоку. Единичную распределенную силу светового давления регулируют изменением радиуса и количества капель, приходящих в точку ее приложения в единицу времени. Величину суммарного воздействия регулируют изменением числа капельных струй. Технический результат изобретения направлен на повышение эффективности использования распределенных внешних сил светового давления путем уменьшения их возмущающего действия на относительное движение КА. 3 ил., 1 табл.
Основные результаты: Способ формирования управляющих воздействий на космический аппарат, основанный на воздействии распределенными внешними силами светового давления на космический аппарат, отличающийся тем, что распределенные внешние силы формируют путем создания в зоне приложения управляющих воздействий отдельных плоских параллельных оптически прозрачных капельных потоков, капельные струи которых подвергаются солнечному излучению, при этом расстояние между каплями радиусом R в каждом плоском потоке вдоль него (S) и в его фронтально-поперечном направлении (S) кратно , а n указанных плоских капельных потоков, где , смещением каждого последующего из плоских капельных потоков относительно предыдущего по направлению их движения на расстояние формируют m потоков капельной пелены, где , каждый из которых смещен относительно предыдущего во фронтально-поперечном направлении на расстояние , создавая фронтальную оптическую непрозрачность капельного потока во фронтально-поперечном направлении и оптическую прозрачность в направлении плоскости, перпендикулярной потоку, при этом величину единичной распределенной силы воздействия регулируют изменением радиуса R и количества капель, приходящих в точку ее приложения в единицу времени, а величину суммарного воздействия регулируют изменением числа струй капель.

Изобретение относится к области космической техники и может быть использовано в системах управления движением космических аппаратов (КА).

Известен способ формирования управляющих воздействий на КА с помощью силовых электродинамических явлений (В.П.Бурдаков, Ю.И.Данилов. Физические проблемы космической тяговой энергетики. М., Атомиздат, 1969, стр.240). Тяговая сила (F1) Лоренца возникает в результате взаимодействия КА с зарядом Q, движущегося со скоростью Va, с внешним электростатическим Е и магнитным В полями и определяется по формуле

Устройством, реализующим способ, может служить электрический парус для поступательного перемещения космического корабля (патент US 7641151 В2, 02.03.2006, B64G 1/22, 1/40). Устройство содержит множество электропроводных удлиненных распределенных элементов, радиально расходящихся от корпуса за счет его вращения. Генератор, установленный в корпусе, заряжает удлиненные элементы таким образом, что все они несут положительный заряд.

Характер формирования управляющих воздействий для изменения высоты орбиты КА, после «включения» заряда, зависит от углов ориентации в геомагнитной системе координат, отношения заряда к массе КА и продолжительности полета. Приложение управляющих воздействий производится включением и выключением заряда, при этом величину единичной распределенной силы воздействия формируют путем заряда отдельного элемента, а величину суммарного воздействия - путем формирования фронтального электрического поля, создаваемого радиально распределенными удлиненными заряженными элементами.

Недостатком способа является необходимость производить затраты электроэнергии, в том числе для постоянного дополнительного заряда элементов, особенно на низких орбитах полета КА, где ощущается воздействие атмосферы, приводящее как к изменению формы паруса (поддерживаемой центробежными силами), так и к разряду его элементов, взаимодействующих с остатками газов. Кроме того, от создаваемого заряда необходимо дополнительно защищать бортовую аппаратуру, так как его взаимодействие с бортовыми электрическими устройствами может приводить к коротким замыканиям.

Известен выбранный в качестве прототипа способ формирования управляющих воздействий на космический аппарат, основанный на воздействии распределенных внешних сил светового давления на КА (В.А.Грилихес, П.П.Орлов, Л.Б.Попов. Солнечная энергия и космические полеты. М., «Наука», 1984, стр.155). Полное давление солнечного излучения (рс) на единицу поверхности КА определяется по формуле

где Lç, L - расстояния от Солнца до Земли и до КА; ρç - коэффициент зеркального отражения; υ - угол падения излучения на рабочую поверхность КА; Ec - солнечная постоянная; С - скорость света.

В качестве рабочих могут быть использованы поверхности солнечного паруса, состоящего из отдельных элементов, образованных гибкими параллельными пластинами или полосами, расположенными в одном направлении заданной плоскости и распределенными по отдельным группам. При этом ленты или полосы одной группы ориентируют на Солнце одновременно, но отдельно от лент и полос другой группы, вокруг взаимно параллельных осей и заданного направления на Солнце.

Тяга FP, создаваемая плоским солнечным парусом площадью S, определяется по формуле

Для оценки эффективности при использовании указанного способа формирования управляющих воздействий на КА производится сравнительная оценка массы движителя (собственно паруса) и массы остального КА. Чем ниже удельная масса движителя и больше давление солнечного излучения, тем более эффективное применение способа формирования. Кроме того, величину суммарного воздействия регулируют увеличением размера площади приложения внешних сил светового давления, что приводит к увеличению размеров движителя и инерционных характеристик КА в целом. Распределение внешнего силового воздействия производится в плоскости, перпендикулярной направлению светового потока, с равнодействующей, находящейся на удалении от главных центральных осей КА. Это приводит не только к перемещению центра масс КА, но и образованию дополнительных управляющих моментов, действие которых необходимо парировать для поддержания необходимой ориентации облучаемой рабочей поверхности на Солнце.

Предлагаемое изобретение направлено на равномерное распределение инерционно-массовых характеристик КА относительно осей связанного базиса КА при формировании единичных управляющих воздействий за счет эффективного использования распределенных внешних световых сил для управления движением КА, а также улучшение управления КА.

Для достижения указанного технического результата, в способе формирования управляющих воздействий па космический аппарат, основанном на воздействии распределенными внешними силами светового давления на космический аппарат, распределенные внешние силы формируют путем создания в зоне приложения управляющих воздействий отдельных плоских параллельных оптически прозрачных капельных потоков, капельные струи которых подвергаются солнечному излучению, при этом расстояния между каплями радиусом R в каждом плоском потоке вдоль него (Sx) и в его фронтально-поперечном направлении (Sy) кратно , а число указанных плоских капельных потоков n, где , смещением каждого последующего из плоских капельных потоков относительно предыдущего по направлению их движения на расстояние , формируют m потоков капельной пелены, где , каждая из которых смещена относительно предыдущей во фронтально-поперечном направлении на расстояние , создавая фронтальную оптическую непрозрачность капельного потока во фронтально-поперечном направлении и оптическую прозрачность в направлении плоскости, перпендикулярной потоку, при этом величину единичной распределенной силы воздействия регулируют изменением радиуса R и количества капель, приходящих в точку ее приложения в единицу времени, а величину суммарного воздействия регулируют изменением числа струй капель.

Технический результат во вновь разрабатываемом способе формирования управляющих воздействий на КА заключен в формировании управляющих воздействий от распределенных внешних сил светового давления за счет светового солнечного облучения перемещаемой массы в виде капель из одной части КА в другую.

В предлагаемом техническом решении КА и капля радиусом R, перемещенная с определенной скоростью (V) из одной его точки в другую, представляют собой замкнутую систему, и, соответственно, капля создать дополнительное управляющее воздействие не может. Если каплю при перелете подвергнуть воздействию солнечного излучения, то на нее будет действовать, см. (3), внешняя сила

где pc0=(Lç/L)2(1+ρç)Ec/C - значение выражения (2) при ϑ=0;

Sk=πR2 - площадь миделя капли.

При попадании капли в точку па поверхность сбора на КА воздействует импульс внешней силы

где Δt - L/V - время полета капли; L, V - расстояние полета и скорость капли соответственно.

Струя, образованная из отдельных капель, будет действовать в точке приложения на поверхности сбора непрерывно в течение времени Δτ. Необходимо также отметить, что произведение интервала времени пролета капли на силу Fk, действующую перпендикулярно направлению потока капель, на восемь - десять порядков меньше произведения массы капли на ее скорость (будет показано далее). Поэтому при пролете капля и, следовательно, струя в целом не отклоняются от своего первоначально заданного направления движения. Таким образом, струя является элементом формирования управляющего воздействия на КА. Из струй формируются отдельные плоские оптически прозрачные капельные потоки, которые подвергаются солнечному излучению.

Для решения задачи по формированию управляющих воздействий на КА образуется фронтальная оптически непрозрачная поверхность капельного потока. Схема формирования представлена на фиг.1 и фиг.2. Кроме ранее введенных дополнительно обозначены: Sx, Sy, Sz - расстояния между каплями вдоль потока, во фронтально-поперечном направлении и в направлении плоскости перпендикулярной потоку, соответственно; OXYZ - обозначение строительных осей капельной пелены; П1,2 - потоки капельной пелены.

Капельная пелена потока формируется из условия существующих ограничений по площади при ее интегрировании в общую конструкцию КА и минимально необходимой массы определенного вещества капли. Т.е. при заданных размерах пелены необходимо обеспечить ее фронтальную непрозрачность минимальным числом капель. Как видно из фиг.1, 2, этому условию удовлетворяет случай, когда расстояние между центрами соседних проекций миделей капель на фронтальную плоскость XOY равно , и расстояния между каплями вдоль потока и в его фронтально-поперечном направлении (ось OY) кратно .

Для обеспечения фронтальной оптической непрозрачности потока в направлении его движения отдельные плоские оптически прозрачные капельные потоки смещаются относительно предыдущих плоскостей на расстояние по оси ОХ. При этом число плоскостей n, обеспечивающих непрозрачность, равно . Таким образом, формируется первый поток капельной пелены П1 (см. фиг.2).

Очередной поток капельной пелены П2 смещается по оси ОУ на расстояние (фиг.2). А m-е число потоков капельной пелены, где , обеспечивает оптическую непрозрачность во фронтально-поперечном направлении.

Общий вид капельной пелены представлен на фиг.3, где также представлен фрагмент плоскости, на которой сформированы распределенные управляющие воздействия, передаваемые на КА от капельных струй. Кроме ранее введенных на фиг.3 представлены обозначения i-x струй (i=1, 2, 3…) и сил от их воздействия Fksi. Величина единичной силы при фиксированных отражательных свойствах капли (ρç=const) прямо пропорциональна ее радиусу R, см (3), где S=πR2. Кроме того, величина воздействия струи зависит от количества капель (nk) в точке ее приложения, которое определяется из уравнения движения струи

где Vx - скорость движения струи, м/с.

Из фиг.3 следует, что величина суммарного воздействия на КА зависит от числа струй, которое, в свою очередь, зависит от размера пелены во фронтально-поперечном направлении.

Место размещения поверхности сбора капель на КА определяет место приложения управляющих воздействий. Указанные воздействия могут применяться как для управления движением центра масс КА, так и вокруг его центра масс путем перемещения поверхности сбора капель в заданную зону.

В качестве примера может быть рассмотрена капельная пелена из жидкого олова (ρ=6600 кг/м3) [5], движущаяся со скоростью Vx=5 м/с, при этом выбраны параметры: R=1 мм; Sx=Sy=11,3 мм; Sz=10 мм. Расстояния между каплями по осям ОХ и OY кратны , коэффициенты кратности nx=ny=8.

Количество движения капли Qk

Коэффициент зеркального отражения жидкого олова при температуре Т0=1000K. равен ρç≈0,7. Тогда давление солнечного излучения при Ec=1360 Вт/м2 yа геоцентрической орбите составит рс0≈7,7·10-6 Па, а сила воздействия на каплю, см. (4), Fk=2,418×10-11 H. При расстоянии от генератора капель до устройства сбора Lx=1,13 м (фиг.3), импульс силы светового воздействия на каплю

Таким образом, Qk>>Qc и отклонения капли от направления первоначально заданного движения под действием сил от светового давления не произойдет. Количество капель в створе (между генератором и устройством сбора, L=Lx) струи

Nkx=Lx/Sx=100.

Для дальнейшего примерного расчета пелены задан ее размер по фронту (по оси OY) Ly=1,13 м. Тогда количество струй в одной плоскости

Nsy=Ly/Sy=100.

Глубина пелены

Lz=Sz·nx·ny-1=0,63 (м).

Импульс силы i-й капельной струи, где i=1, 2, 3,…, в точке ее приложения

ΔWi=nkiΔpk.

При этом количество капель в струе определяется из уравнения движения (6)

Значение Δpk определяется из выражения (5). Тогда при V=Vx=const, L=Lx, используя (5) и (9)? получим

Из (10) следует, что импульс силы капельной струи регулируется радиусом капли, см. (4), и количеством капель, приходящих в точку приложения струи в единицу времени (Δτ=1с). Чем больше капельная струя закрывает по площади створ пелены, тем больше импульс силы капельной струи.

Результаты расчета капельного потока (см. фиг.3) представлены в таблице 1. При этом значения Fkj рассчитаны с учетом площадей Skj, j=1, 2, …, 6 для соответствующих освещенных форм миделей капель. Суммарный импульс силы от сформированного количества струй с разной формой миделя капель

Суммарный импульс силы от потока капель

В качестве примера устройства для формирования капельной пелены можно рассматривать жидкостный капельный радиатор (патент US 4572285, 10.12.1984; Жидкостно-капельный холодильник-излучатель - система теплосброса для эффективного преобразования энергии в космосе. Астронавтика и ракетодинамика, №2, 1983), содержащий генератор капель, направляющий капельный поток в коллектор, размещенный на определенном расстоянии от генератора и принимающий капельный поток. При этом фильеры одинарной капельной пелены в генераторе необходимо разместить специальным образом, по схеме, представленной на фиг.3 (вид по стрелке М), где указаны точечные проекции отверстий фильер на поверхности сбора. Далее, последовательным смещением m-го числа фильер одинарной капельной пелены по оси OY, при котором каждая пелена смещается относительно предыдущей на расстояние , образуется непрозрачность потока во фронтально-поперечном направлении.

Для проведения сравнительной проверки предлагаемого способа формирования управляющих воздействий на КА со способом формирования воздействия от солнечного давления на плоскую поверхность КА, фронтальная площадь пелены (SP) приравнивается к площади поверхности КА в виде солнечного паруса SPR, т.е. SP=SPR=Lx·Ly=1,28 (м2). Импульс силы светового давления на поверхность паруса указанной площади будет равен при рс0≈7,7·10-6 Па, Δτ=1с

Таким образом, с точностью до принятых расчетных приближений значения ΔPPR и ΔW совпадают (см. табл.1).

Произведем оценку массы рабочего тела (например, ксенона), которую можно сэкономить при использовании предлагаемого способа формирования управляющих воздействий. При этом будем рассматривать управление движением КА с использованием электроракетных стационарных плазменных двигателей (СПД), обладающих максимальным удельным импульсом тяги среди применяемых реактивных двигателей. Для этого определим величину характеристической скорости ΔVx, которую может обеспечить устройство формирования воздействий, установленное КА общей массой М=2×103 кг, например, в течение 300 суток работы (количество секунд Nc=25,92×106) при суммарном импульсе силы от пелены капель AW (см. табл.1):

.

Далее следует определить затраты топлива, например СПД-70, ΔQ с тягой Р=4×10-2 Н и секундным массовым расходом для получения ΔVx КА указанной массы

.

При этом необходимо отметить, что кроме затрат топлива не потребуются также затраты бортовой электроэнергии на получение указанной характеристической скорости. Если же проводить комплексное использование устройства формирования с капельным радиатором, то и дополнительной массы КА на формирование предлагаемых управляющих воздействий не потребуется.

С точки зрения динамики управления движением КА, предлагаемый способ формирования управляющих воздействий позволяет проводить более эффективное управление. Прежде всего, это связано с возможностью изменять при проектировании и управлении моменты инерции аппарата. Конструкция солнечного паруса позволяет распределить его массу относительно одной плоскости, перпендикулярной направлению движения аппарата. Равносильное капельное устройство формирования управляющих воздействий, реализующее предлагаемый способ, позволяет распределять его массу относительно нескольких десятков, а то и сотен плоскостей формирования плоских параллельных оптически прозрачных капельных потоков. При этом число плоскостей, также перпендикулярных направлению движения аппарата, будет определяться параметрами пелены Sx, Sy, Sz. Таким образом, можно уменьшить разницу между главными моментами инерции КА и тем самым уменьшить действие внешнего гравитационного момента, который является возмущающим при стабилизации углового движения аппарата.

Если через плоскость сбора капельной пелены проходит продольная строительная ось КА, совпадающая с направлением его движения, и при этом импульсы сил пропорционально распределены по обе стороны от оси, то управляющие моменты при формировании управляющих воздействий создаваться не будут. Это упрощает решение задачи по стабилизации углового движения КА при коррекции орбиты с использованием предлагаемого способа формирования управляющих воздействий.

ЛИТЕРАТУРА

1. В.П.Бурдаков, Ю.И.Данилов. Физические проблемы космической тяговой энергетики. М., Атомиздат? 1969.

2. Электрический парус для поступательного перемещения космического корабля. Патент US 7641151 В2, 02.03.2006, B64G 1/22, 1/40.

3. В.А.Грилихес, П.П.Орлов, Л.Б.Попов. Солнечная энергия и космические полеты. М., «Наука», 1984.

4. Космический аппарат с солнечным парусом. Патент FR 2711111 А1, 12.10.1993, B64G 1/36, 1/44.

5. Г.В.Конюхов, А.А.Коротеев. Исследование радиационного охлаждения теплоносителей космических энергетических установок в капельных холодильниках-излучателях // Изв. РАН. Энергетика. 2006. №4.

6. Жидкостной капельный радиатор. Патент US 4572285, 10.12.1984.

7. Жидкостно-капельный холодильник-излучатель - система теплосброса для эффективного преобразования энергии в космосе. Астронавтика и ракетодинамика, №2, 1983.

Способ формирования управляющих воздействий на космический аппарат, основанный на воздействии распределенными внешними силами светового давления на космический аппарат, отличающийся тем, что распределенные внешние силы формируют путем создания в зоне приложения управляющих воздействий отдельных плоских параллельных оптически прозрачных капельных потоков, капельные струи которых подвергаются солнечному излучению, при этом расстояние между каплями радиусом R в каждом плоском потоке вдоль него (S) и в его фронтально-поперечном направлении (S) кратно , а n указанных плоских капельных потоков, где , смещением каждого последующего из плоских капельных потоков относительно предыдущего по направлению их движения на расстояние формируют m потоков капельной пелены, где , каждый из которых смещен относительно предыдущего во фронтально-поперечном направлении на расстояние , создавая фронтальную оптическую непрозрачность капельного потока во фронтально-поперечном направлении и оптическую прозрачность в направлении плоскости, перпендикулярной потоку, при этом величину единичной распределенной силы воздействия регулируют изменением радиуса R и количества капель, приходящих в точку ее приложения в единицу времени, а величину суммарного воздействия регулируют изменением числа струй капель.
СПОСОБ ФОРМИРОВАНИЯ УПРАВЛЯЮЩИХ ВОЗДЕЙСТВИЙ НА КОСМИЧЕСКИЙ АППАРАТ
СПОСОБ ФОРМИРОВАНИЯ УПРАВЛЯЮЩИХ ВОЗДЕЙСТВИЙ НА КОСМИЧЕСКИЙ АППАРАТ
СПОСОБ ФОРМИРОВАНИЯ УПРАВЛЯЮЩИХ ВОЗДЕЙСТВИЙ НА КОСМИЧЕСКИЙ АППАРАТ
Источник поступления информации: Роспатент

Показаны записи 281-290 из 370.
13.02.2018
№218.016.1eb2

Способ определения временной привязки телеметрических измерений с космического аппарата

Изобретение относится к методам слежения за полётом космического аппарата (КА), на борту которого возникают магнитные помехи. Способ включает генерацию на борту КА временных меток и передачу их вместе с телеметрическими данными на наземный приемный пункт. При этом измеряют параметры орбиты КА и...
Тип: Изобретение
Номер охранного документа: 0002641024
Дата охранного документа: 15.01.2018
13.02.2018
№218.016.231a

Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, и способ испытания на стенде электроракетного двигателя, работающего на рабочем теле иоде

Изобретение относится к области электроракетных двигателей (ЭРД), в частности к стендам для их испытаний на рабочем теле иоде. Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, состоящий из вакуумной камеры, системы вакуумирования, электроракетного двигателя,...
Тип: Изобретение
Номер охранного документа: 0002641983
Дата охранного документа: 23.01.2018
04.04.2018
№218.016.31f7

Способ контроля телеметрической информации

Изобретение относится к технологиям многопараметрического контроля телеметрической информации. Техническим результатом является расширение арсенала технических средств контроля телеметрической информации. Предложен способ контроля телеметрической информации. Способ основан на сравнении реальных...
Тип: Изобретение
Номер охранного документа: 0002645267
Дата охранного документа: 19.02.2018
20.02.2019
№219.016.bd12

Коммутатор напряжения с защитой блока нагрузки от перегрузки по току

Изобретение относится к области электронной техники и может быть использовано в коммутируемых источниках питания с защитой блока нагрузки от перегрузки по току. Коммутатор напряжения с защитой блока нагрузки от перегрузки по току содержит электронный ключ, который через датчик тока нагрузки...
Тип: Изобретение
Номер охранного документа: 02242831
Дата охранного документа: 20.12.2004
20.02.2019
№219.016.be4a

Устройство деления потока жидкости

Изобретение относится к машиностроению и предназначено для использования в системах терморегулирования изделий авиационной и космической техники, а также и в других областях техники. Устройство деления потока жидкости содержит корпус с расточкой, одним входным патрубком и двумя выходными...
Тип: Изобретение
Номер охранного документа: 0002342582
Дата охранного документа: 27.12.2008
20.02.2019
№219.016.be53

Устройство для выбора объектов наблюдения с орбитального космического аппарата

Устройство для выбора объектов наблюдения с орбитального космического аппарата (КА). Устройство для выбора объектов наблюдения с орбитального КА включает глобус с нанесенной на него картой, два охватывающих глобус кольца, первое из которых закреплено над точками полюсов глобуса с возможностью...
Тип: Изобретение
Номер охранного документа: 0002346241
Дата охранного документа: 10.02.2009
20.02.2019
№219.016.bf8e

Способ определения альбедо земли

Изобретение относится к космической технике. Способ включает последовательное размещение над отражающей поверхностью не менее чем в двух пространственных положениях чувствительной к регистрируемой радиации аппаратуры и определение моментов нахождения Солнца в зенитной области над снабженным...
Тип: Изобретение
Номер охранного документа: 0002351919
Дата охранного документа: 10.04.2009
20.02.2019
№219.016.bf99

Способ определения максимальной выходной мощности солнечных батарей космического аппарата и система для его осуществления

Изобретение относится к области космической техники, к системам электроснабжения космических аппаратов, и может быть использовано при эксплуатации солнечных батарей. Способ определения максимальной выходной мощности солнечных батарей космического аппарата включает измерение угла между...
Тип: Изобретение
Номер охранного документа: 0002353555
Дата охранного документа: 27.04.2009
20.02.2019
№219.016.bf9d

Аварийно-спасательный скафандр космонавта для транспортного средства

Изобретение относится к аварийно-спасательному космическому скафандру мягкого типа. Согласно изобретению скафандр содержит внешнюю силовую и внутреннюю герметичную оболочки, герметизируемый вход в эти оболочки, шлем с остеклением, регулятор давления, объединенный разъем коммуникаций...
Тип: Изобретение
Номер охранного документа: 0002353561
Дата охранного документа: 27.04.2009
20.02.2019
№219.016.c038

Система наддува топливных баков

Изобретение относится к космической технике, а точнее к области проектирования и эксплуатации реактивных двигательных установок (РДУ) космических летательных аппаратов (КЛА). В системе наддува топливных баков в каждую пневмомагистраль после газовых редукторов введены два параллельно включенных...
Тип: Изобретение
Номер охранного документа: 0002339835
Дата охранного документа: 27.11.2008
Показаны записи 281-290 из 295.
19.01.2018
№218.016.00c0

Способ управления космическим кораблём при сближении с кооперируемым космическим аппаратом

Изобретение относится к операциям сближения и стыковки космических аппаратов (КА) на околокруговой орбите, например, грузового космического корабля в качестве КА и международной космической станции в качестве кооперируемого КА (ККА). После выведения КА на опорную орбиту определяют параметры...
Тип: Изобретение
Номер охранного документа: 0002629644
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00e4

Способ регулирования температуры в термокамере

Изобретение относится к проведению тепловакуумных испытаний космических объектов. Способ регулирования температуры в термокамере включает нагрев объекта испытаний в вакууме, измерение текущего значения температуры T на объекте испытаний, измерение текущего значения температуры Т на объекте...
Тип: Изобретение
Номер охранного документа: 0002629645
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.0266

Всенаправленный приёмник-преобразователь лазерного излучения (2 варианта)

Изобретение относится к области оптико-электронного приборостроения и касается всенаправленного приемника-преобразователя лазерного излучения. Приемник-преобразователь включает в себя приемную плоскость, выполненную в виде трех круговых панелей, взаимно пересекающихся между собой...
Тип: Изобретение
Номер охранного документа: 0002630190
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.09ff

Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, и система для его реализации

Изобретения относятся к авиационной технике. Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, включает тепловой контакт между тепловыделяющими поверхностями аппаратуры и воздушными термоплатами (2), движение атмосферного воздуха через...
Тип: Изобретение
Номер охранного документа: 0002632057
Дата охранного документа: 02.10.2017
20.01.2018
№218.016.1de6

Способ определения с космического аппарата координат источника кольцевых волн на водной поверхности

Изобретение относится к методам наблюдения планеты из космоса и обработки результатов этого наблюдения. Способ включает регистрацию на снимке кольцевых волн, одновременно с которыми регистрируют часть суши, выбирая и идентифицируя на ней не менее четырех характерных объектов, не лежащих на...
Тип: Изобретение
Номер охранного документа: 0002640944
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e4e

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает ориентацию рабочей поверхности СБ на Солнце, измерение значений тока от СБ, контроль текущего состояния СБ по результатам сравнения текущих...
Тип: Изобретение
Номер охранного документа: 0002640937
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.1eb2

Способ определения временной привязки телеметрических измерений с космического аппарата

Изобретение относится к методам слежения за полётом космического аппарата (КА), на борту которого возникают магнитные помехи. Способ включает генерацию на борту КА временных меток и передачу их вместе с телеметрическими данными на наземный приемный пункт. При этом измеряют параметры орбиты КА и...
Тип: Изобретение
Номер охранного документа: 0002641024
Дата охранного документа: 15.01.2018
13.02.2018
№218.016.231a

Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, и способ испытания на стенде электроракетного двигателя, работающего на рабочем теле иоде

Изобретение относится к области электроракетных двигателей (ЭРД), в частности к стендам для их испытаний на рабочем теле иоде. Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, состоящий из вакуумной камеры, системы вакуумирования, электроракетного двигателя,...
Тип: Изобретение
Номер охранного документа: 0002641983
Дата охранного документа: 23.01.2018
04.04.2018
№218.016.31f7

Способ контроля телеметрической информации

Изобретение относится к технологиям многопараметрического контроля телеметрической информации. Техническим результатом является расширение арсенала технических средств контроля телеметрической информации. Предложен способ контроля телеметрической информации. Способ основан на сравнении реальных...
Тип: Изобретение
Номер охранного документа: 0002645267
Дата охранного документа: 19.02.2018
10.05.2018
№218.016.3c0c

Способ управления стационарным плазменным двигателем

Изобретение относится к исследованию и эксплуатации электроракетных стационарных плазменных двигателей. В способе, включающем запуск двигателя, сравнение измеренных значений разрядного тока с верхним допустимым его значением, и в случае превышения предельного значения выключение двигателя с...
Тип: Изобретение
Номер охранного документа: 0002647749
Дата охранного документа: 19.03.2018
+ добавить свой РИД