×
20.11.2014
216.013.0935

Результат интеллектуальной деятельности: УСТРОЙСТВО И СПОСОБ ДЛЯ ИЗМЕРЕНИЯ МНОГОФАЗНОГО ПОТОКА ФЛЮИДА

Вид РИД

Изобретение

№ охранного документа
0002533758
Дата охранного документа
20.11.2014
Аннотация: Изобретение относится к области измерительной техники и может найти применение в системах измерения скорости потока многофазной смеси флюида. Технический результат - повышение точности. Для этого устройство (1) содержит средство (2) излучения, средство (3) детектирования и средство (4) анализа. Средство (2) излучения генерирует луч (11, 12) фотонов, чтобы облучать упомянутую смесь пространственно вдоль участка (19) потока смеси. Средство (3) детектирования пространственно сконфигурировано, чтобы принимать фотоны, исходящие от упомянутого участка (19) потока смеси, в различных интервалах времени и формировать изображение пространственного распределения принятых фотонов для каждого упомянутого интервала времени. Средство (4) анализа определяет скорость потока одной или более фаз упомянутой смеси на основе временной последовательности изображений пространственных распределений принятых фотонов. 2 н. и 13 з.п. ф-лы, 3 ил.

Настоящее изобретение относится к расходомерам для измерения потока многофазных смесей. Варианты осуществления настоящего изобретения могут найти применение, например, в нефтегазовой промышленности, где смесь жидких углеводородов и газообразных углеводородов представляет интерес.

Проблема измерения скоростей потока многофазных флюидов в трубопроводе без необходимости прерывать поток флюида или отделять фазы во время процесса измерения имеет особое значение в химических и нефтяных отраслях промышленности. Поскольку почти все скважины производят смесь нефти, воды и газа, измерения отдельных компонентов смеси флюида важны в эффективной разработке месторождения. Традиционно, на поверхности эти измерения делались через сепараторы, которые являются дорогостоящими и громоздкими, особенно для морских применений.

Вышеупомянутая проблема решалась устройствами многофазных расходомеров, которые в настоящее время обычно используются в нефтегазовой промышленности и других отраслях химической промышленности. Такие устройства измеряют скорость потока различных компонентов многофазной смеси флюида путем измерения ослабления гамма-лучей или рентгеновских лучей при прохождении через смесь на двух различных энергетических уровнях, а именно "высоком" энергетическом уровне и "низком" энергетическом уровне. Измерения основаны на факте, что коэффициент поглощения гамма-лучей/рентгеновских лучей зависит от материала и энергии фотона. Соответственно, "высокий" энергетический уровень определен так, что коэффициент поглощения фотона на этом энергетическом уровне фотонов по существу тот же самый для нефти и воды. "Низкий" энергетический уровень определен так, что коэффициент поглощения фотона на этом энергетическом уровне фотонов значительно выше для воды, чем для нефти. Гамма-лучи/рентгеновские лучи проходят через смесь в тестовом участке трубы и облучают детекторы, которые чувствительны к фотонам на этих двух энергетических уровнях. Анализ сигналов, зарегистрированных детекторами, позволяет осуществить оценку скоростей потоков воды, нефти и газа, проходящих через тестовый участок.

Вычисления объемного расхода в таких устройствах предшествующего уровня техники основаны на дифференциальных измерениях давления, для которых тестовый участок подвергается сокращению, такому как ограничение Вентури. Ограничение Вентури создает помеху потоку флюида. Далее, такая конфигурация обеспечивает ограниченную точность в измерениях потока и особенно невыгодна в случае неоднородного состава потока, в частности, в пределах поперечного сечения потока смеси.

Цель настоящего изобретения состоит в том, чтобы обеспечить улучшенное устройство и способ для измерения многофазного потока флюида.

Вышеупомянутая цель достигается устройством согласно пункту 1 формулы изобретения и способом согласно пункту 10 формулы изобретения.

Основная идея настоящего изобретения состоит в том, чтобы непосредственно измерять скорость потока одной или более фаз смеси на основе временной последовательности пространственного распределения фотонов, исходящих от смеси, которые принимаются средством детектирования. Средство излучения соответственно приспособлено, чтобы обеспечивать пространственное облучение смеси вдоль направления потока смеси, в то время как средство детектирования сконфигурировано для пространственного приема фотонов, исходящих от смеси. Эта конфигурация, таким образом, измеряет скорость объемного потока непосредственно, без того, чтобы подвергать поток смеси воздействию падения давления путем ввода сокращения, такого как ограничение Вентури, в поток смеси.

В предпочтительном воплощении упомянутое средство детектирования включает в себя двумерную решетку детекторных элементов. Это воплощение выгодным образом позволяет выполнять измерение пространственного распределения плотности смеси, поперечно к направлению потока смеси.

В дальнейшем предпочтительном воплощении предложенное устройство дополнительно включает в себя измерительную трубу, формирующую трубопровод для упомянутого участка потока смеси, причем упомянутая измерительная труба имеет прямоугольное поперечное сечение. Наличие прямоугольного поперечного сечения измерительной трубы обеспечивает удобную обработку изображений, чтобы измерять пространственные распределения плотности различных фаз в пределах участка потока смеси.

В примерном воплощении, чтобы обеспечить подходящее пространственное облучение смеси, средство излучения расположено на расстоянии более 0,3 м от участка потока смеси.

В одном воплощении упомянутое средство анализа приспособлено, чтобы определять скорость потока одной или более фаз упомянутой смеси на основе взаимной корреляции упомянутой временной последовательности изображений пространственных распределений принятых фотонов.

В предпочтительном воплощении упомянутое средство излучения приспособлено для генерации фотонов на первом энергетическом уровне и втором энергетическом уровне, причем для первого энергетического уровня коэффициенты поглощения фотона для двух различных фаз, содержащихся в упомянутой смеси, по существу равны, и причем для второго энергетического уровня коэффициенты поглощения фотона для упомянутых двух фаз упомянутой смеси отличаются. Для трехфазной смеси, имеющей две жидкие фазы и одну газообразную фазу, фотоны, имеющие первый энергетический уровень, таким образом, способствуют индикации совместной плотности жидкостей в смеси, таким образом способствуя идентификации доли газа в потоке смеси. С другой стороны, фотоны, имеющие второй энергетический уровень, способствуют индикации различия в плотности между жидкими фазами, таким образом способствуя идентификации относительных долей двух жидких фаз.

В предпочтительном дальнейшем воплощении упомянутое средство генерации излучения приспособлено для попеременной генерации первого и второго импульсов фотонов, причем фотоны в упомянутом первом импульсе имеют упомянутый первый энергетический уровень, а фотоны в упомянутом втором импульсе имеют упомянутый второй энергетический уровень. Это воплощение использует импульсный источник питания, который выгодным образом обеспечивает низкое общее потребление энергии, обеспечивая большую мгновенную мощность во время импульса.

Чтобы обеспечить прямое измерение скорости всех фаз смеси, упомянутое средство детектирования приспособлено для попеременного формирования первого и второго изображений, причем упомянутое первое изображение соответствует пространственному распределению принятых фотонов, имеющих упомянутый первый энергетический уровень, в течение первого интервала времени, который соответствует длительности упомянутого первого импульса, упомянутое второе изображение соответствует пространственному распределению принятых фотонов, имеющих второй энергетический уровень, в течение второго интервала времени, которое соответствует длительности упомянутого первого импульса.

В примерном воплощении упомянутые фотоны являются фотонами рентгеновских лучей. Использование рентгеновских лучей для измерений является предпочтительным, так как это не требует радиоактивных материалов, которые требуют дополнительных мер по обеспечению безопасности и могут также вызвать существенные проблемы с операциями по импорту/экспорту.

Настоящее изобретение далее описано со ссылками на проиллюстрированные воплощения, показанные на чертежах, на которых представлено следующее:

Фиг.1 - схематичная диаграмма устройства для измерения многофазного потока флюида,

Фиг.2 - вид сверху устройства для измерения многофазного потока флюида, имеющего двумерно упорядоченные детекторы согласно одному воплощению настоящего изобретения, и

Фиг.3 - вид в перспективе устройства, показанного на фиг.2.

Воплощения настоящего изобретения, описанные ниже, обеспечивают непосредственное измерение скорости объемного потока отдельных фаз многофазной смеси, принимая во внимание пространственный поток флюида на участке, вместо одного точечного луча через поперечное сечение потока, как раскрывается в предшествующем уровне техники. Многофазная смесь может быть смесью газа (например, газообразные углеводороды), воды и/или нефти (например, жидкие углеводороды). Отдельная фаза может быть одним из этих компонентов. Путем облучения смеси по всему поперечному сечению потока смеси может быть определено пространственное распределение плотности фаз поперек к направлению потока, что улучшает качество и точность объемных измерений потока.

На фиг.1 иллюстрируется устройство 1 для измерения многофазного потока флюида в соответствии с одним воплощением настоящего изобретения. Устройство 1 может также упоминаться как многофазный расходомер. Устройство 1 в общем включает в себя средство 2 излучения, средство 3 детектирования и средство 4 анализа. Проиллюстрированное устройство 1 также включает в себя измерительную трубу 13, которая может, например, быть вставлена между расположенной вверх по течению и расположенной вниз по течению трубами 20 и 21, соответственно, через которые протекает многофазная смесь флюида, расход которой должен быть измерен. Многофазная смесь флюида может, в частности, быть смесью, которая имеет место в восходящем потоке в нефтяном и газовом деле. Измерительная труба 13 формирует трубопровод для участка 19 потока смеси. В контексте настоящего обсуждения участок 19 может относиться к объему смеси внутри измерительной трубы 13 или его части. Участок 19 также упоминается здесь как "тестовый участок".

Средство 2 излучения генерирует луч фотонов для облучения упомянутой смеси пространственно вдоль тестового участка 19. Луч фотонов ослабляется после прохождения через смесь. Средство 3 детектирования сконфигурировано, чтобы пространственно принимать фотоны, исходящие от тестового участка 19 потока смеси, в различных интервалах времени. Средство 3 детектирования, таким образом, формирует изображение пространственного распределения принятых фотонов для каждого упомянутого интервала времени. Средство 4 анализа определяет скорость потока одной или более фаз смеси на основе временной последовательности изображений пространственных распределений фотонов, принятых средством 3 детектирования.

Отдельные компоненты устройства 1 обсуждены подробно ниже со ссылками на фиг.1-3, причем фиг.2 является изображением вида сверху средства 2 излучения, средства 3 детектирования и измерительной трубы 13, и фиг.3 является изображением того же самого в перспективе. Фиг.1-3 проиллюстрированы относительно взаимно перпендикулярных осей X-X, Y-Y и Z-Z. Ось Z-Z продолжается вдоль направления потока смеси, ось X-X продолжается вдоль поперечного направления, в основном вдоль направления распространения луча фотонов, и ось Y-Y продолжается вдоль поперечного направления через участок 19 потока смеси.

В проиллюстрированном воплощении измерения выполняются с использованием фотонов рентгеновских лучей, что является выгодным, так как генерация рентгеновских лучей не требует радиоактивных материалов, которые требуют дополнительных мер по обеспечению безопасности и могут также вызвать существенные проблемы с операциями по импорту/экспорту. Соответственно, средство 2 излучения включает в себя одну или более рентгеновских трубок. В показанном воплощении обеспечены две рентгеновские трубки 5 и 6. Рентгеновские трубки 5 и 6, используемые в связи с настоящим изобретением, должны предпочтительно обеспечивать состоятельный спектр тормозного излучения, особенно с устойчивым напряжением конечной точки. Рентгеновская трубка 5 генерирует луч фотонов 11 рентгеновских лучей на первом энергетическом уровне, в то время как рентгеновская трубка 6 генерирует луч фотонов 12 рентгеновских лучей на втором энергетическом уровне. Энергетические уровни выбраны таким образом, что первый энергетический уровень обеспечивает чувствительность к общей плотности смеси, тогда как второй энергетический уровень обеспечивает чувствительность к составу смеси. Например, для измерения потока в сточном режиме потока, включающем в себя три фазы, включая воду, нефть и газ, первый энергетический уровень выбран таким образом, что коэффициенты поглощения фотонов для жидких фаз, то есть воды и нефти, являются существенно постоянными для фотонов на этом энергетическом уровне, в то время как вторая энергия выбрана таким образом, что для фотонов на этом энергетическом уровне коэффициенты поглощения фотонов для воды и нефти существенно отличаются. Коэффициент поглощения фотонов газообразной фазы при данных обстоятельствах намного ниже по сравнению с таковым для воды и нефти. В вышеупомянутом примере первый энергетический уровень может находиться, например, в диапазоне 65-90 кэВ, в то время как второй энергетический уровень может находиться, например, в диапазоне 15-35 кэВ. Таким образом, в этом контексте первый энергетический уровень упоминается как "высокий" энергетический уровень, в то время как второй энергетический уровень упоминается как "низкий" энергетический уровень. Соответственно, в этом воплощении рентгеновская трубка 5 обеспечивает характерную эмиссию в диапазоне 65-90 кэВ, в то время как рентгеновская трубка 6 обеспечивает характерную эмиссию в диапазоне 15-35 кэВ. В предпочтительном воплощении фотонные лучи 11 и 12 от рентгеновских трубок 5 и 6 соответственно проходят через фильтры 7 и 8, чтобы исключить возможное спектральное перекрытие между двумя фотонными лучами. Фильтры 7 и 8 соответственно должны обеспечить максимальную передачу в пределах 65-90 кэВ и 15-35 кэВ, соответственно.

Источники питания, используемые в связи с настоящим изобретением, могут быть AC или DC. Рентгеновские трубки 5 и 6 могут эксплуатироваться в непрерывном режиме, но предпочтительно в импульсном режиме. Использование импульсного источника питания выгодным образом приводит к меньшему полному потреблению энергии и обеспечивает более высокую мгновенную мощность во время импульса. В проиллюстрированном воплощении к рентгеновским трубкам 5 и 6 прикладываются импульсы попеременно с настраиваемой временной задержкой. Длительность импульсов может основываться, например, на ожидаемом диапазоне скоростей потока смеси, чтобы гарантировать, что флюид (смесь) не покрывает существенного расстояния за время облучения. Например, в применении, где скорость потока, как ожидается, составит 10 м/с или более с верхним пределом 40 м/с, длительность импульса для каждой из рентгеновских трубок 5 и 6 предпочтительно меньше чем 10 мкс. Временной режим работы рентгеновских трубок 5 и 6 может, в этом случае, настраиваться в пределах 0,3-1 мс, с точностью лучшей чем 10 мкс. В проиллюстрированном воплощении объемная скорость потока измеряется взаимно корреляционным анализом (обсуждается ниже). Следовательно, вышеупомянутая временная задержка должна настраиваться, чтобы оптимизировать качество измерений скорости. Напряжение, прикладываемое к рентгеновским трубкам, должно быть предпочтительно настраиваемым в пределах 40-70 кВ для рентгеновских лучей "низкой" энергии и в пределах 130-170 кВ для рентгеновских лучей "высокой" энергии.

При работе рентгеновских трубок 5 и 6 в импульсном режиме необходимо гарантировать, чтобы сигнал (ослабленный фотонный луч), достигающий средство 3 детектирования, был достаточно сильным. Следовательно, предпочтительным образом материал анода рентгеновской трубки 5 "высокой" энергии может включать в себя золото (Au), в то время как материал анода рентгеновской трубки 6 "низкой" энергии может включать в себя молибден (Мо).

В альтернативном воплощении, вместо наличия двух отдельных рентгеновских трубок, средство 2 излучения может включать в себя одну рентгеновскую трубку с двумя анодами, которыми можно управлять в непрерывном или импульсном режиме. В другом альтернативном воплощении измерения могут выполняться с использованием других типов фотонов, таких как гамма-лучи. Соответственно, средство 2 излучения в этом случае включало бы в себя один или более источников излучения гамма-лучей, например радиоизотопы цезий 137 или гадолиний 153, в числе других.

В проиллюстрированном воплощении фотонные лучи 11 и 12 далее проходят через апертуры 9 и 10 формирования луча, соответственно, которые обеспечивают желаемую форму или поперечное сечение лучей. Фотонные лучи 11 и 12, проходящие через апертуры 9 и 10, облучают тестовый участок 19 потока смеси пространственно. В проиллюстрированном воплощении пространственное облучение тестового участка 19 осуществляется вдоль плоскости Z-Y (то есть пространственно вдоль направления потока и поперечно к направлению потока), как проиллюстрировано на фиг.2 и 3. Это в соединении с двумерным средством детектирования (обсуждено ниже) позволяет измерить пространственное распределение плотности фаз смеси поперечно к направлению, что особенно полезно для точного измерения скорости потока в случае неоднородного потока, то есть потока флюида, имеющего неоднородный состав фаз в пределах поперечного сечения потока. Фотонные лучи 11 и 12, в этом случае, имели бы двумерное поперечное сечение луча. Однако поперечное сечение фотонных лучей 11 и 12 может альтернативно быть одномерным (то есть линейные рентгеновские лучи), чтобы пространственно облучать смесь вдоль оси Z-Z, то есть направления потока. Это воплощение может использоваться в случае однородного потока смеси (то есть для однородного состава фаз в пределах поперечного сечения потока) путем измерения скорости потока отдельных фаз, например, вдоль осевой линии тестового участка 19. В таком случае средство 3 детектирования может быть приспособлено к одномерному пространственному детектированию фотонов.

В одном воплощении средство 2 излучения расположено на расстоянии 'L' от тестового участка 19 и не присоединено к измерительной трубе 13, как это делается традиционно. Это позволяет расходящимся фотонным лучам в достаточной степени облучать тестовый участок 19 потока флюида. Это расстояние 'L' обычно больше чем 0,3 м и предпочтительно приблизительно равно 0,5 м. Так как скорость потока определена посредством взаимной корреляции изображений обоих фотонных лучей 11 и 12, расстояние 'D' между рентгеновскими трубками 5 и 6 должно быть предпочтительно намного меньшим, чем расстояние 'L' между средством 2 излучения и тестовым участком 19. Например, расстояние 'D' может составлять приблизительно 30-70 мм.

Измерительная труба 13 включает в себя окна, выполненные из материала, который в основном прозрачен к облучению фотонными лучами 11 и 12. Предпочтительным материалом, используемым для такого окна, является бериллий. Хотя измерительная труба 13 может иметь любое поперечное сечение, прямоугольное (включая квадратное) поперечное сечение измерительной трубы 13 особенно выгодно в случае неоднородного потока смеси, чтобы обеспечить простоту обработки пространственных изображений, полученных средством 3 детектирования для распределений пространственной плотности измерений различных фаз на участке 19 потока смеси.

Фотонные лучи 11 и 12 ослабляются после прохождения через смесь. Средство 3 детектирования соответственно пространственно сконфигурировано, чтобы принимать фотоны, исходящие от смеси. В случае измерения потока относительно смесей, имеющих однородный состав фаз в пределах участка потока, может быть достаточным пространственно сконфигурировать средство 3 детектирования, чтобы принимать фотоны вдоль одного измерения. В таком случае средство 12 детектирования может включать в себя линейную матрицу детекторных элементов, упорядоченных вдоль линии Z-Z, то есть параллельно к направлению потока смеси. Однако для измерения потока относительно смесей, имеющих неоднородный состав фаз в пределах участка потока, предпочтительно пространственно сконфигурировать средство 3 детектирования двумерным образом, как проиллюстрировано на фиг.2 и 3. Здесь средство 3 детектирования включает в себя двумерную матрицу детекторных элементов или набор детекторных элементов, упорядоченных по двумерной области. Матрица детекторных элементов упорядочена параллельно плоскости Z-Y. Размер 'b' детекторной матрицы предпочтительно равен или больше размера 'а' измерительной трубы 13. Детекторные элементы могут содержать, например, сцинтилляторы, которые могут включать в себя неорганические или органические кристаллы сцинтиллятора, органические жидкие сцинтилляторы или даже пластиковые сцинтилляторы. Детекторные элементы должны быть чувствительными к фотонам на вышеупомянутых "высоких" и "низких" энергетических уровнях. Примерный неорганический сцинтиллятор, который может использоваться здесь в качестве детекторного элемента, является кристаллом NaI. Детекторная матрица может включать в себя ассоциированные фотоумножители для генерации сигналов, соответствующих облучению детекторных элементов.

Средство 3 детектирования принимает фотоны для различных интервалов времени и для каждого интервала времени формирует изображение пространственного распределения фотонов, принятых в течение этого интервала времени. В воплощении, проиллюстрированном здесь, средство 3 детектирования попеременно формирует первое и второе изображения таких пространственных распределений принятых фотонов в течение соответствующих первых и вторых интервалов времени, соответственно длительности импульса фотонов "высокой" энергии и "низкой" энергии. Таким образом, для использования в вышеупомянутом примерном воплощении детекторные элементы должны быть способны к захвату двух изображений с выдержкой менее 10 мкс с временной задержкой менее 0,3 мс. Для большей точности измерения детекторы должны предпочтительно обеспечить разрешение изображения 1000×2000 пикселов или выше.

Конфигурация средства 3 детектирования, описанная выше, является примерной. Может рассматриваться множество других воплощений. Например, средство 2 детектирования может включать в себя два слоя детекторных матриц, упорядоченных сдвоенным образом, причем детекторные элементы в одном слое чувствительны к фотонам "высокой" энергии, в то время как детекторные элементы в другом слое чувствительны к фотонам "низкой" энергии.

Средство 3 детектирования, таким образом, приспособлено, чтобы вводить временную последовательность изображений в средство 4 анализа (фиг.1) для определения скорости потока одной или более фаз смеси, причем каждое изображение представляет пространственное распределение фотонов, принятых в данном интервале времени. В зависимости от пространственного расположения детекторов, эти изображения могут быть одномерными или двумерными. Средство 4 анализа может включать в себя, например, коммерческий персональный компьютер, такой как настольный компьютер или портативный компьютер, исполняющий программу для вычисления объемного и/или массового расхода смеси, используя последовательность изображений, принятую от средства 3 детектирования, и для предоставления искомых результатов. Пример такого вычисления представлен ниже. В зависимости от необходимого объема обработки, средство 4 анализа может альтернативно включать в себя микропроцессор общего назначения, программируемую вентильную матрицу (FPGA), микроконтроллер или любые другие аппаратные средства, которые включают в себя схемы обработки и схемы ввода/вывода, подходящие для вычисления скорости потока на основе изображений, принятых от средства 3 детектирования.

Пример вычисления скорости потока в вышеупомянутом сточном режиме потока, содержащем три фазы, а именно воду, нефть и газ, описан ниже. Такой режим потока включает переменные части, состоящие по существу из газа, и части, состоящие по существу из жидкости (вода и нефть). Так как коэффициенты поглощения фотонов "высокой" энергии водой и нефтью по существу равны, и коэффициент поглощения фотонов "высокой" энергии газом является пренебрежимо малым, временная последовательность изображений, соответствующих импульсам фотонов "высокой" энергии, используется, чтобы определить, на какое расстояние переместились жидкие фазы в целом (то есть нефть и вода) в заданном интервале времени вдоль направления потока (Z-Z). Предпочтительным образом, с использованием двумерной детекторной матрицы, как в проиллюстрированном воплощении, далее возможно определить смещения жидких фаз в целом (вода и нефть) поперечно к направлению потока (то есть вдоль направлений Z-Z и Y-Y).

С другой стороны, так как коэффициенты поглощения фотонов "низкой" энергии водой и нефтью существенно отличаются, изображение, соответствующее импульсу фотона "низкой" энергии, может использоваться, чтобы определить относительные доли воды и нефти в смеси, например, вычисляя отношение воды к жидкости (WLR). Таким образом, временная последовательность изображений, соответствующих импульсу "низкой" энергии, указала бы на скорость изменения состава (например, WLR) жидких фаз вдоль направления потока (Z-Z). Вновь, с использованием двумерной детекторной матрицы в соответствии с проиллюстрированным примером, далее возможно определить эту скорость изменения состава жидких фаз поперечно к направлению потока (то есть вдоль направлений Z-Z и Y-Y). Объемная скорость отдельных фаз воды и/или нефти вычисляется посредством определения взаимной корреляции наборов изображений, соответствующих импульсу "высокой" энергии и импульсу "низкой" энергии. Временная задержка между импульсом "высокой" энергии и импульсом "низкой" энергии должна быть соответственно сохранена настолько низкой, как это разрешается системой. Как упомянуто выше, временная задержка в примерном воплощении составляет 0,3-1 мс.

В типовом случае, такой многофазный поток связан с потоком дисперсного режима, причем средние скорости нефти, воды и газа по существу одинаковы при данных условиях. Следовательно, объемный расход всех фаз может быть получен измерением объемной скорости потока одной из фаз, как описано выше. Массовый расход этих фаз может быть затем получен из вычисленных объемных скоростей потока путем умножения этих величин на плотности соответствующих фаз.

Хотя изобретение было описано в отношении конкретных воплощений, это описание не предназначено для рассмотрения в ограничивающем смысле. Например, предложенный метод может использоваться для того, чтобы непосредственно измерять объемные скорости потока многофазных смесей, содержащих больше или меньше чем три фазы, путем включения соответствующих одного или более энергетических уровней излучения фотонов, которые обеспечивают подобные или различные свойства поглощения для двух или более фаз смеси. Излучение фотонов может тогда соответственно формироваться импульсами и/или фильтроваться. Поэтому считается, что все такие модификации, которые по существу определяют объемную скорость потока многофазной смеси, основанной на временной последовательности пространственного распределения фотонов, исходящих от облучаемой смеси, входят в объем настоящего изобретения, определяемого приведенной ниже формулой изобретения.


УСТРОЙСТВО И СПОСОБ ДЛЯ ИЗМЕРЕНИЯ МНОГОФАЗНОГО ПОТОКА ФЛЮИДА
УСТРОЙСТВО И СПОСОБ ДЛЯ ИЗМЕРЕНИЯ МНОГОФАЗНОГО ПОТОКА ФЛЮИДА
УСТРОЙСТВО И СПОСОБ ДЛЯ ИЗМЕРЕНИЯ МНОГОФАЗНОГО ПОТОКА ФЛЮИДА
Источник поступления информации: Роспатент

Показаны записи 651-660 из 1 427.
13.01.2017
№217.015.7e64

Вч генератор

Изобретение относится к высокочастотному (ВЧ) генератору. Технический результат изобретения заключается в создании устройства, генерирующего и направляющего ВЧ мощность. ВЧ генератор содержит полый проводник с проводящей стенкой. При этом стенка имеет первую щель, над которой размещен первый...
Тип: Изобретение
Номер охранного документа: 0002601181
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7e93

Способ обработки относящихся к пациенту комплектов данных

Изобретение относится к способу обработки относящихся к пациенту комплектов данных. Техническим результатом является обеспечение безопасности и защиты данных. В заявленном способе доверительные данные пациента каждого относящегося к пациенту комплекта данных подвергают обезличиванию, за счет...
Тип: Изобретение
Номер охранного документа: 0002601199
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7f17

Вч генератор

Изобретение относится к ВЧ генератору и содержит твердотельный переключатель, проходящий в z-направлении рупорный волновод с первым продольным концом и вторым продольным концом и проходящий в z-направлении цилиндрический полый проводник с третьим продольным концом. При этом размещенная в...
Тип: Изобретение
Номер охранного документа: 0002601260
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7f7a

Охлаждаемый изнутри конструктивный элемент для газовой турбины, снабженный по меньшей мере одним каналом охлаждения

Охлаждаемый изнутри конструктивный элемент для газовой турбины снабжен по меньшей мере одним каналом охлаждения. На внутренней поверхности канала охлаждения расположены завихрительные элементы в виде распространяющихся поперек направления основного течения охлаждающего средства турбуляторов....
Тип: Изобретение
Номер охранного документа: 0002599886
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7f98

Устройство аккумулирования энергии и потребители переменной нагрузки

Использование: в области электротехники. Технический результат - повышение эффективности обмена мощностью между сетью энергоснабжения и нагрузкой. Устройство (8) аккумулирования энергии для электрической нагрузки (4), обменивающейся электрической мощностью с сетью (2) энергоснабжения, с двумя...
Тип: Изобретение
Номер охранного документа: 0002599784
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.803c

Электрическое контактное устройство

Электрическое контактное устройство имеет первый контактный элемент (1) с контактным гнездом (3) и, кроме того, имеет второй контактный элемент (13), который является подвижным относительно первого контактного элемента (1). Второй контактный элемент (13) выполнен комплементарно первому...
Тип: Изобретение
Номер охранного документа: 0002599777
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.80d1

Способ эксплуатации стационарной газовой турбины, устройство для регулирования работы газовой турбины и электростанция

Изобретение относится к области эксплуатации газовых турбин. В устройстве (60) для регулирования подачи топлива в процессе работы стационарной газовой турбины (40), а также электростанции (42), предусмотрено, чтобы в резервуаре (30) приготавливался объем (BV) топлива с давлением, существенно...
Тип: Изобретение
Номер охранного документа: 0002602214
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8192

Способ генерации рекомендаций для действий водителя рельсового транспортного средства или управляющих сигналов для рельсового транспортного средства с помощью системы помощи водителю и система помощи водителю

Техническое решение относится к области железнодорожной автоматики и телемеханики. В способе с учетом по меньшей мере одного задания для рейса вычисляют данные движения (FD) и на основе данных движения (FD) генерируют рекомендацию для действий и отображают на устройстве отображения...
Тип: Изобретение
Номер охранного документа: 0002601970
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8457

Индуктор для нагрева месторождений сверхтяжелой нефти и нефтеносного песка

Изобретение относится к штекерному элементу, в частности для получения конденсаторов, который в направлении своей продольной протяженности имеет три участка (1, 2, 3), причем первый участок (1) на одном конце этого штекерного элемента (10) имеет суженную форму, ответную для формы третьего...
Тип: Изобретение
Номер охранного документа: 0002602821
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8500

Устройство защиты силовых отсеков и способ защиты силовых отсеков

Использование: в области электротехники. Технический результат - обеспечение управления силовым отсеком в случае отсутствия состояния отказа. Предложено устройство (1) защиты силовых отсеков, которое принимает входной сигнал (3) плавкого предохранителя на основании состояния плавкого...
Тип: Изобретение
Номер охранного документа: 0002603012
Дата охранного документа: 20.11.2016
Показаны записи 651-660 из 943.
13.01.2017
№217.015.6a00

Система и способ для конфигурирования интеллектуального электронного устройства

Изобретение относится к области интеллектуальных электронных устройств. Техническим результатом является эффективное конфигурирование интеллектуальных электронных устройств. В соответствии с принципами настоящего изобретения раскрыты система (10) и способ для конфигурирования интеллектуального...
Тип: Изобретение
Номер охранного документа: 0002591653
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6aa3

Способ снятия корпуса подшипника с ротора газовой турбины, а также трубчатый вал для продолжения ротора

Изобретение относится к снятию корпуса подшипника с ротора. Осуществляют крепление вала для продолжения ротора на конце ротора и обеспечивают опирание ротора и/или удерживание ротора для освобождения корпуса подшипника от веса ротора. Осуществляют размещение элементов скольжения между корпусом...
Тип: Изобретение
Номер охранного документа: 0002593053
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6adf

Элемент жесткости для облицовочной панели

Изобретение относится к конструкции облицовочной панели преимущественно рельсового транспорта. Элемент (1) жесткости для облицовочной панели (2) выполнен в виде вытянутой листовой гнутой детали с по существу U-образным поперечным сечением и имеет вдоль своего среднего продольного участка (7)...
Тип: Изобретение
Номер охранного документа: 0002593183
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6af2

Способ предоставления предварительно определенной приводной характеристики в самолете и соответствующее приводное устройство

Группа изобретений относится к способу предоставления предварительно заданной номинальной приводной характеристики в самолете, приводному устройству и самолету с приводным устройством. Для предоставления предварительно заданной номинальной приводной характеристики предварительно сохраняют...
Тип: Изобретение
Номер охранного документа: 0002593175
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6c67

Линейный защитный автомат постоянного напряжения

Использование: в области электротехники. Технический результат - повышение отказоустойчивости электросети. Линейный защитный автомат постоянного напряжения содержит с первого по четвертый узлы, причем между первым узлом и четвертым узлом расположен первый прерыватель, между четвертым узлом и...
Тип: Изобретение
Номер охранного документа: 0002592640
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6c92

Электрическая машина, имеющая ротор для охлаждения электрической машины

Изобретение касается электрической машины (1, 51), в частности асинхронной машины, и её системы охлаждения. Технический результат - повышение эффективности охлаждения машины. Электрическая машина (1, 51) включает в себя статор (2), ротор (4), находящийся в магнитном взаимодействии со статором...
Тип: Изобретение
Номер охранного документа: 0002597234
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6d03

Вч генератор

Изобретение относится к области ВЧ техники. ВЧ генератор содержит множество твердотельных переключателей, множество рупорных волноводов и цилиндрический полый проводник. Продольные оси рупорных волноводов и полого проводника ориентированы соответственно в z-направлении. Каждый из рупорных...
Тип: Изобретение
Номер охранного документа: 0002597004
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6d7e

Способ и устройство управления грузоподъемной машиной, запоминающая среда и система грузоподъемной машины

Изобретение относится к грузоподъемным устройствам. Во время высвобождения клети (1) управление грузоподъемной машиной осуществляют в соответствии с состоянием отведения фиксаторов (12), расположенных выше или ниже ограничителей (10) хода для стопорения, для автоматического завершения...
Тип: Изобретение
Номер охранного документа: 0002597052
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6f74

Способ и устройство для файловой системы на программируемом логическом контроллере

Изобретение относится к способам, устройству и системе для файловой системы данных, доступной для web-браузера, на программируемом логическом контроллере (PLC). Технический результат заключается в снижении временных и операционных затрат и достигается за счет использования PLC, содержащего...
Тип: Изобретение
Номер охранного документа: 0002597514
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6f88

Система слоев с двойным металлическим mcraly-покрытием

Изобретение относится к защитному покрытию для защиты детали от коррозии и/или окисления, в частности, при высоких температурах. Коррозионно-стойкое покрытие, нанесенное на подложку (4), выполненную из жаропрочного сплава на основе никеля или на основе кобальта, в форме системы слоев,...
Тип: Изобретение
Номер охранного документа: 0002597459
Дата охранного документа: 10.09.2016
+ добавить свой РИД