×
20.11.2014
216.013.084f

СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИЛИ ОБНАРУЖЕНИЯ ОБЪЕКТА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002533528
Дата охранного документа
20.11.2014
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к оптическому приборостроению. Способ определения местоположения или обнаружения объекта, с использованием активно-импульсного прибора, включающего в себя приемный электронно-оптический преобразователь (ЭОП) и лазерный излучатель, генерирующий короткие импульсы подсветки объекта, отражения которых от объекта затем суммируют в кадре ЭОП, в котором после каждой генерации короткого импульса подсветки объекта с заданной длительностью τ осуществляют периодическое включение ЭОП на время π через заданное время задержки t с частотой f=1/(π+τ) в течение заданного времени θ, причем число включений ЭОП на один импульс подсветки объекта выбирают не более величины K=(t-t)/(τ+π), где t=(1/f-π) - максимальное время задержки включения ЭОП для лазерного излучателя, генерирующего короткие импульсы подсветки объекта с частотой f, t - время задержки включения ЭОП до момента начала периода времени θ. Технический результат заключается в обеспечении возможности получения четкости и яркости изображения с увеличенной глубиной сцены. 3 ил.
Основные результаты: Способ определения местоположения или обнаружения объекта, с использованием активно-импульсного прибора, включающего в себя приемный электронно-оптический преобразователь (ЭОП) и лазерный излучатель, генерирующий короткие импульсы подсветки объекта, отражения которых от объекта затем суммируют в кадре ЭОП, отличающийся тем, что после каждой генерации короткого импульса подсветки объекта с заданной длительностью τ осуществляют периодическое включение ЭОП на время π через заданное время задержки t с частотой f=1/(π+τ) в течение заданного времени θ, причем число включений ЭОП на один импульс подсветки объекта выбирают не более величины K=(t-t)/(τ+π),где t=(1/f-π) - максимальное время задержки включения ЭОП для лазерного излучателя, генерирующего короткие импульсы подсветки объекта с частотой f,t - время задержки включения ЭОП до момента начала периода времени θ.
Реферат Свернуть Развернуть

Изобретение относится к оптическому приборостроению, в частности к наблюдению объектов при пониженной освещенности, а конкретнее к способам определения местоположения или обнаружения объекта, с использованием активно-импульсного прибора.

Известен способ наблюдения объектов при пониженной освещенности, по которому объект освещают импульсным источником света, принимают отраженный от объектов свет приемником оптического изображения, синхронизируя работу его управляемого затвора с излучением импульсного света. Устройство для осуществления данного способа содержит импульсный источник света с передающей оптикой, приемник оптического изображения с управляемым импульсным затвором (европейский патент N 03263735). Регулируя задержку между моментом излучения света и моментом открывания затвора прибора, получают изображение объектов, расположенных в наиболее интересующей зоне.

Недостатком известного способа и устройства является то, что при использовании одного источника и одной камеры возможно получение информации об объектах, расположенных только в достаточно узкой зоне видимости. Для расширения зоны видимости возможно использование нескольких одновременно работающих источников (или нескольких импульсов) с различной задержкой для формирования одного кадра или камер (каждая камера работает на свою дальность) с последующим суммированием видеосигналов, что ведет к существенному возрастанию аппаратных затрат (европейский патент N 0468175).

Использование трех камер, работающих на различные дальности, с соответственной цветовой кодировкой получаемых этими камерами изображений для определения дальности до объектов (европейский патент N 0531722) позволяет оценить дальность лишь приблизительно, особенно при работе в мутной среде (туман, дым, пыль и т.д.). Например, при наличии полосы тумана на переднем плане (красного цвета) и объекта на заднем плане (синего цвета) результирующее изображение будет пурпурного цвета, что затруднит оценку дальности до объекта. Для людей, неправильно воспринимающих цвета, определение дальности с использованием такого прибора будет невозможно.

Известно устройство по патенту Великобритании N 1052178. Устройство включает в себя освещение объектов импульсным источником света, прием отраженного от объектов света приемником оптического изображения, причем конструкция приемника позволяет изменять по вертикали взаимное положение изображений объектов в зависимости от дальности до них.

Яркость объектов, расположенных на различном расстоянии от устройства, будет различна и при наличии большого числа объектов на близком расстоянии изображения последних будут маскировать изображения удаленных объектов. Аналогичный эффект маскирования удаленных изображений будет проявляться при работе в мутной среде (туман, снег, дым и т.д.).

Общим для упомянутых выше источников информации является использование активно-импульсного прибора, состоящего из электронно-оптического преобразователя (ЭОП), телевизионной камеры (ТК), оптически сочлененной с ЭОП, входного объектива, проецирующего изображение сцены на фотокатод ЭОП, электронных блоков управления ЭОП и лазерным излучателем, генерирующим короткие импульсы света.

Активно-импульсные приборы, построенные на основе электронно-оптического преобразователя и лазерной подсветки, обеспечивают наблюдение объектов с высоким качеством на местности практически независимо от уровня естественной освещенности, а также могут работать в условиях световых, метеорологических и искусственных помех. Примером может являться прибор, заявленный в патенте патент США: Ofer David, Yehuda Borenstein US 7,733464B2, МКИ G01C 3/08, 8.06.2010, который является аналогом предлагаемого технического решения. Принцип действия прибора отражен на фиг.2. Обозначения:

1 - импульс лазера длительностью τ;

2 - открытое состояние ЭОП длительностью θ;

3, 4 - зависимость от времени расстояния L=0,5c до объекта, от которого отразился передний и задний фронты лазерного импульса соответственно ∆L=0,5c(τ+θ) - глубина просматриваемой сцены;

n=f·Tk - количество лазерных импульсов частоты f за время кадра Tk;

t3 - время задержки включения ЭОП;

с - скорость света.

Работа прибора происходит следующим образом: лазер генерирует импульс света, длительностью τ, который распространяется в глубину сцены. Часть энергии импульса отражается от объектов, расположенных на различных расстояниях от излучателя, возвращается и попадает на фотокатод ЭОП. Если при этом ЭОП включить на время θ с заданной задержкой по времени t3, то будет зарегистрировано изображение участка сцены глубиной ∆L=0,5c(τ+θ), находящегося на расстоянии ∆L 0,5с t3. Если повторять этот процесс с частотой f, то получается n=f Tk (Tk - длительность кадра) изображений участка сцены глубиной ∆L и находящемся на расстоянии L, которые суммируются в одном кадре.

Такой способ наблюдения практически не зависит от освещенности на местности, т.к. его воздействие на приемник ослаблено в число раз, равное 1/f·θ. Для примера, при f=103 Гц и θ=10-7 сек ослабление равно 104 раз. При таких условиях прибор может работать в дневных условиях, а также при наличии мощных точечных засветок: встречные фары, костры, осветительные фонари и т.п.

Включение ЭОП на короткое время обеспечивает регистрацию только отраженного от объекта потока лазерного излучения. Рассеянный в атмосфере поток излучения не регистрируется приемным каналом прибора. В результате прибор позволяет вести наблюдение в условиях метеопомех: снег, туман, дым, дождь и т.п.

Недостатком этого технического решения является то, что описанные выше преимущества прибора реализуются только при очень малых значениях величин τ и θ порядка 10-8÷10-6 сек, что соответствует ∆L от 1,5 м до 150 м. Это ограничение затрудняет обнаружение объектов наблюдения, требуется предварительное целеуказание и знание расстояния до объекта.

Значение ∆L можно увеличить за счет увеличения θ, но при этом устройство будет терять устойчивость к помехам.

Этот недостаток можно устранять, если применить, как это делается в прототипе предлагаемого технического решения (патент США: Jeffrey Thomas femillaed, willes H. Weber US 6,730,913 B2, МКИ G01J 5/00, 4.05. 2004), режим сканирования по глубине сцены.

Принцип действия прибора отражен на фиг.3.

Обозначения:

π - длительность включения ЭОП (π<θ);

t3i - программно-изменяемое время задержки для i-того импульса лазера из n импульсов за один кадр, остальное то же, что на фиг.2.

В этом режиме прибор работает следующим образом (фиг.3). В течение времени кадра (стандарт 25 Гц) для каждого импульса лазера задается свое время задержки t3i, а ЭОП включается на время π<θ: так, что за время кадра на каждый лазерный импульс просматриваются разные участки сцены, изображение этих участков суммируются в кадре. Такой режим управления обеспечивает достаточно большую глубину просматриваемой сцены: ∆Lmax=0,5c(τ+π)·f·Tk, где Tk - длительность кадров с одновременным сохранением избирательности.

Однако, если сравнить схемы работы прототипа и аналога, то при одной и той же глубине сцены и одинаковых параметрах лазерных импульсов облученность объектов в случае аналога в f·Tk раз выше, чем для прототипа. Это получается, из-за того, что за время кадра (Tk) сигнал от объекта в случае прототипа регистрируется один раз, а в случае аналога f·Tk раз.

Недостатком этого технического решения является то, что для компенсации этих потерь в прототипе предлагается изменять (увеличивать) амплитуду лазерных импульсов либо увеличивать усиление ЭОП. Такие способы компенсации не эффективны: так, для f=103 Гц и Tk=25·10-3 сек амплитуду лазерного импульса надо увеличить в 25 раз, что не приемлемо на практике. То же самое касается усиления ЭОП, величина которого должна быть оптимальна для получения качественного изображения с минимальными флуктуациями. Кроме этого, в прототипе максимальная глубина сцены ограничена величиной ∆Lmax.

Техническим результатом предлагаемого технического решения является обеспечение получения четкости и яркости изображения с увеличенной глубиной сцены за счет увеличения облученности объектов с одновременным упрощением используемого оборудования.

Указанный технический результат достигается в способе определения местоположения или обнаружения объекта, с использованием активно-импульсного прибора, включающего в себя приемный электронно-оптический преобразователь (ЭОП) и лазерный излучатель, генерирующий короткие импульсы подсветки объекта, отражения которых от объекта затем суммируют в кадре ЭОП, тем, что после каждой генерации короткого импульса подсветки объекта с заданной длительностью τ осуществляют периодическое включение ЭОП на время π через заданное время задержки t3 с частотой fг=1/(π+τ)в течение заданного времени θ, причем число включений ЭОП на один импульс подсветки объекта выбирают не более величины Kmax=(t3Kmax-t3)/(τ+π),

где t3Kmax=(1/f-π) - максимальное время задержки включения ЭОП для лазерного излучателя, генерирующего короткие импульсы подсветки объекта с частотой f,

t3 - время задержки включения ЭОП до момента начала периода времени θ.

Предлагаемое техническое решение поясняется чертежами.

На фиг.1 показана схема принципа действия активно-импульсного прибора в соответствии с предлагаемым техническим решением.

На фиг.2 показан принцип действия активно-импульсного прибора в способе-аналоге.

На фиг.3 показан принцип действия активно-импульсного прибора с управляемым временем задержки в способе-прототипе.

Реализуют на практике способ определения местоположения или обнаружения объекта достаточно просто. Так же как в аналоге, прототипе и большинстве примеров из уровня техники, используют активно-импульсный прибор, включающий в себя приемный электронно-оптический преобразователь (ЭОП) и лазерный излучатель, генерирующий короткие импульсы подсветки объекта, отражения которых от объекта затем суммируют в кадре ЭОП. После каждой генерации короткого импульса подсветки объекта с заданной длительностью τ осуществляют периодическое включение ЭОП на время π через заданное время задержки t3 с частотой fг=1/(π+τ)в течение заданного времени θ, причем число включений ЭОП на один импульс подсветки объекта выбирают не более величины Kmax=(t3Kmax-t3)/(τ+π),

где t3Kmax=(1/f-π) - максимальное время задержки включения ЭОП для лазерного излучателя, генерирующего короткие импульсы подсветки объекта с частотой f,

t3 - время задержки включения ЭОП до момента начала периода времени θ.

Таким образом, предлагается более рациональное решение, суть которого иллюстрируется схемой на фиг.1, на которой обозначены:

T=(τ+π) - период включения ЭОП,

t3Kmax=(1/f-π) - максимальное время задержки для одного импульсного лазера,

Kmax=(t3Kmax-t3i)/(τ+π) - максимальное число раз включения ЭОП на один импульс лазера,

Краб - рабочее число включения ЭОП, определяемое его чувствительностью и мощностью лазерного излучения.

Остальные обозначения в соответствии с фиг.2 и 3.

Для каждого импульса лазерного излучения, через заданное время задержки t3 осуществляется запуск генератора, включающего ЭОП на время π с частотой

fг=1/π+θ, что обеспечивает просмотр участка сцены ∆Lmax=0,5c(π+θ)·fг(1/f-t3).

Для примера π=100 нс, θ=100 нс, t3=100 нс, fг=1/200 нс=5 мГц, f=5 кГц:

∆Lmax=30·(5·103-0,5)≈15·104 м.

Такая большая глубина сцены не достижима на практике. Реальное значение ∆Lраб определяется чувствительностью ЭОП и мощностью лазерного излучения. Эта величина при прочих равных условиях всегда будет больше, чем ∆Lmax в прототипе.

В случае настоящего изобретения можно уровнять временем задержки - t3 и добиваться повышенной облученности для дальних участков.

Таким образом, при использовании предлагаемого технического решения обеспечивается достижение технического результата в виде обеспечения получения четкости и яркости изображения с увеличенной глубиной сцены за счет увеличения облученности объектов с одновременным упрощением используемого оборудования.

Способ определения местоположения или обнаружения объекта, с использованием активно-импульсного прибора, включающего в себя приемный электронно-оптический преобразователь (ЭОП) и лазерный излучатель, генерирующий короткие импульсы подсветки объекта, отражения которых от объекта затем суммируют в кадре ЭОП, отличающийся тем, что после каждой генерации короткого импульса подсветки объекта с заданной длительностью τ осуществляют периодическое включение ЭОП на время π через заданное время задержки t с частотой f=1/(π+τ) в течение заданного времени θ, причем число включений ЭОП на один импульс подсветки объекта выбирают не более величины K=(t-t)/(τ+π),где t=(1/f-π) - максимальное время задержки включения ЭОП для лазерного излучателя, генерирующего короткие импульсы подсветки объекта с частотой f,t - время задержки включения ЭОП до момента начала периода времени θ.
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИЛИ ОБНАРУЖЕНИЯ ОБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИЛИ ОБНАРУЖЕНИЯ ОБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИЛИ ОБНАРУЖЕНИЯ ОБЪЕКТА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 11.
27.04.2013
№216.012.3ba9

Бортовое устройство и способ контроля параметров движения транспортного средства при дорожно-транспортном происшествии

Группа изобретений относится к области контроля движения транспортного средства (ТС) с целью построения пространственной траектории его движения по зафиксированным данным для анализа причин дорожно-транспортного происшествия (ДТП). Устройство контроля параметров движения содержит средство...
Тип: Изобретение
Номер охранного документа: 0002480834
Дата охранного документа: 27.04.2013
10.06.2013
№216.012.49d7

Способ изготовления наноэлектромеханического преобразователя и наноэлектромеханический преобразователь с автоэлектронной эмиссией

Изобретение относится к области измерительной техники, в частности к средствам измерения линейных ускорений, угловых скоростей и тепловых полей малой интенсивности в инфракрасной и терагерцовой области. Сущность способа изготовления наноэлектромеханического преобразователя на основе...
Тип: Изобретение
Номер охранного документа: 0002484483
Дата охранного документа: 10.06.2013
27.06.2013
№216.012.518a

Устройство для измерения и регистрации сферических координат удаленного объекта и способ определения сферических координат удаленного объекта на местности

Устройство содержит лазерный дальномер, датчик угла места в корпусе, оптико-электронный прибор и коллимирующий модуль. Оптико-электронный прибор выполнен в виде цифрового фотоаппарата и скреплен жестко с коллимирующим модулем, лазерным дальномером и корпусом датчика угла места. Оптические оси...
Тип: Изобретение
Номер охранного документа: 0002486467
Дата охранного документа: 27.06.2013
27.09.2013
№216.012.701e

Способ определения массы жидкости в резервуаре

Изобретение относится к измерительной технике, в частности к средствам контроля массы и уровня жидкости в резервуарах, например, на автозаправочных станциях, и может быть использовано также в нефтяной, топливной, химической и других отраслях промышленности. Способ определения массы жидкости...
Тип: Изобретение
Номер охранного документа: 0002494353
Дата охранного документа: 27.09.2013
20.05.2014
№216.012.c79a

Способ определения ориентации шлема пилота и устройство нашлемной системы целеуказания и индикации

Изобретения относятся к области измерительной техники, в частности - к системам ориентации и навигации. Чувствительные преобразователи установлены на шлеме пилота и в кабине ЛА, связанные с вычислителем. Чувствительный преобразователь на шлеме пилота выполнен в виде жестко закрепленных в зоне...
Тип: Изобретение
Номер охранного документа: 0002516857
Дата охранного документа: 20.05.2014
10.08.2014
№216.012.e650

Фотокатодный узел вакуумного фотоэлектронного прибора с полупрозрачным фотокатодом и способ его изготовления

Изобретение относится к области создания вакуумных фотоэлектронных приборов, а точнее к конструкции фотокатодного узла таких приборов, в частности, конструкции фотоэлектронных приборов (ФЭП), электронно-оптических преобразователей (ЭОП). Фотокатодный узел вакуумного фотоэлектронного прибора...
Тип: Изобретение
Номер охранного документа: 0002524753
Дата охранного документа: 10.08.2014
10.02.2015
№216.013.2322

Способ контроля степени адаптации светотехнического оборудования и контрольно-проверочный прибор

Изобретение относится к области измерительной техники и предназначено для определения степени адаптации светотехнического оборудования (СТО) кабин транспортных средств. Способ контроля степени адаптации включает регистрацию и наблюдение через светофильтр потока оптического излучения компонента...
Тип: Изобретение
Номер охранного документа: 0002540447
Дата охранного документа: 10.02.2015
10.08.2016
№216.015.5551

Комбинированный электронно-оптический преобразователь

Изобретение относится к области оптического приборостроения и касается электронно-оптического преобразователя. Преобразователь включает в себя корпус с вакуумно-плотными входным и выходным окнами, фотокатод на основе алмазной пленки, ускоряющие электроды, волоконно-оптическую пластину,...
Тип: Изобретение
Номер охранного документа: 0002593648
Дата охранного документа: 10.08.2016
29.12.2017
№217.015.f4ca

Оптический элемент и способ его изготовления

Оптический элемент содержит светопрозрачную рабочую и периферическую светопоглощающую части, изготовленные из оптического стекла, имеющего в составе соединения металлов. Светопоглощающая часть содержит слой восстановленной окиси свинца в диапазоне 0,3-0,5%, с плавным увеличением ее концентрации...
Тип: Изобретение
Номер охранного документа: 0002637362
Дата охранного документа: 04.12.2017
09.02.2019
№219.016.b87f

Сейсмокардиоблок и способ измерения сейсмокардиоцикла

Группа изобретений относится к медицинской технике. Сейсмокардиоблок содержит корпус с размещенными в нем трехосным блоком микромеханических акселерометров, трехосным блоком микромеханических гироскопов и схемой обработки и передачи данных. Схема обработки и передачи данных содержит вторичный...
Тип: Изобретение
Номер охранного документа: 0002679296
Дата охранного документа: 06.02.2019
Показаны записи 1-10 из 13.
27.04.2013
№216.012.3ba9

Бортовое устройство и способ контроля параметров движения транспортного средства при дорожно-транспортном происшествии

Группа изобретений относится к области контроля движения транспортного средства (ТС) с целью построения пространственной траектории его движения по зафиксированным данным для анализа причин дорожно-транспортного происшествия (ДТП). Устройство контроля параметров движения содержит средство...
Тип: Изобретение
Номер охранного документа: 0002480834
Дата охранного документа: 27.04.2013
10.06.2013
№216.012.49d7

Способ изготовления наноэлектромеханического преобразователя и наноэлектромеханический преобразователь с автоэлектронной эмиссией

Изобретение относится к области измерительной техники, в частности к средствам измерения линейных ускорений, угловых скоростей и тепловых полей малой интенсивности в инфракрасной и терагерцовой области. Сущность способа изготовления наноэлектромеханического преобразователя на основе...
Тип: Изобретение
Номер охранного документа: 0002484483
Дата охранного документа: 10.06.2013
27.06.2013
№216.012.518a

Устройство для измерения и регистрации сферических координат удаленного объекта и способ определения сферических координат удаленного объекта на местности

Устройство содержит лазерный дальномер, датчик угла места в корпусе, оптико-электронный прибор и коллимирующий модуль. Оптико-электронный прибор выполнен в виде цифрового фотоаппарата и скреплен жестко с коллимирующим модулем, лазерным дальномером и корпусом датчика угла места. Оптические оси...
Тип: Изобретение
Номер охранного документа: 0002486467
Дата охранного документа: 27.06.2013
27.09.2013
№216.012.701e

Способ определения массы жидкости в резервуаре

Изобретение относится к измерительной технике, в частности к средствам контроля массы и уровня жидкости в резервуарах, например, на автозаправочных станциях, и может быть использовано также в нефтяной, топливной, химической и других отраслях промышленности. Способ определения массы жидкости...
Тип: Изобретение
Номер охранного документа: 0002494353
Дата охранного документа: 27.09.2013
20.05.2014
№216.012.c79a

Способ определения ориентации шлема пилота и устройство нашлемной системы целеуказания и индикации

Изобретения относятся к области измерительной техники, в частности - к системам ориентации и навигации. Чувствительные преобразователи установлены на шлеме пилота и в кабине ЛА, связанные с вычислителем. Чувствительный преобразователь на шлеме пилота выполнен в виде жестко закрепленных в зоне...
Тип: Изобретение
Номер охранного документа: 0002516857
Дата охранного документа: 20.05.2014
10.08.2014
№216.012.e650

Фотокатодный узел вакуумного фотоэлектронного прибора с полупрозрачным фотокатодом и способ его изготовления

Изобретение относится к области создания вакуумных фотоэлектронных приборов, а точнее к конструкции фотокатодного узла таких приборов, в частности, конструкции фотоэлектронных приборов (ФЭП), электронно-оптических преобразователей (ЭОП). Фотокатодный узел вакуумного фотоэлектронного прибора...
Тип: Изобретение
Номер охранного документа: 0002524753
Дата охранного документа: 10.08.2014
10.02.2015
№216.013.2322

Способ контроля степени адаптации светотехнического оборудования и контрольно-проверочный прибор

Изобретение относится к области измерительной техники и предназначено для определения степени адаптации светотехнического оборудования (СТО) кабин транспортных средств. Способ контроля степени адаптации включает регистрацию и наблюдение через светофильтр потока оптического излучения компонента...
Тип: Изобретение
Номер охранного документа: 0002540447
Дата охранного документа: 10.02.2015
10.08.2016
№216.015.5551

Комбинированный электронно-оптический преобразователь

Изобретение относится к области оптического приборостроения и касается электронно-оптического преобразователя. Преобразователь включает в себя корпус с вакуумно-плотными входным и выходным окнами, фотокатод на основе алмазной пленки, ускоряющие электроды, волоконно-оптическую пластину,...
Тип: Изобретение
Номер охранного документа: 0002593648
Дата охранного документа: 10.08.2016
29.12.2017
№217.015.f4ca

Оптический элемент и способ его изготовления

Оптический элемент содержит светопрозрачную рабочую и периферическую светопоглощающую части, изготовленные из оптического стекла, имеющего в составе соединения металлов. Светопоглощающая часть содержит слой восстановленной окиси свинца в диапазоне 0,3-0,5%, с плавным увеличением ее концентрации...
Тип: Изобретение
Номер охранного документа: 0002637362
Дата охранного документа: 04.12.2017
09.02.2019
№219.016.b87f

Сейсмокардиоблок и способ измерения сейсмокардиоцикла

Группа изобретений относится к медицинской технике. Сейсмокардиоблок содержит корпус с размещенными в нем трехосным блоком микромеханических акселерометров, трехосным блоком микромеханических гироскопов и схемой обработки и передачи данных. Схема обработки и передачи данных содержит вторичный...
Тип: Изобретение
Номер охранного документа: 0002679296
Дата охранного документа: 06.02.2019
+ добавить свой РИД