×
20.11.2014
216.013.082a

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ХЕМОСОРБЕНТА ДЛЯ ОЧИСТКИ ИНЕРТНЫХ ГАЗОВ И ГАЗОВ-ВОССТАНОВИТЕЛЕЙ ОТ ПРИМЕСЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения сорбентов для очистки газов. Инертную неорганическую подложку пропитывают раствором литий алюминий гидрида в диэтиловом эфире. Удаляют эфир вакуумированием и осуществляют пиролиз литий алюминий гидрида, нанесенного на подложку, при температуре 100-500°C в вакууме. Изобретение обеспечивает получение сорбента, эффективного для очистки инертных газов и газов-восстановителей от примесей кислот Льюиса, углеводородов, кислорода и/или летучих оксидов. 10 пр.
Основные результаты: Способ получения хемосорбента для очистки инертных газов и газов-восстановителей, выбранных из гелия, аргона, водорода, арсина, силана, метилсилана, диборана, от примесей кислот Льюиса, углеводородов и/или летучих оксидов, отличающийся тем, что формованную инертную неорганическую подложку с развитой поверхностью, в качестве которой используют инертный неорганический материал, не обладающий хемосорбционными свойствами по отношению к примесям, от которых очищают газы, выбранный из оксида алюминия, диоксида кремния, цеолита или смеси упомянутых веществ, пропитывают насыщенным раствором литий алюминий гидрида в диэтиловом эфире, после чего эфир удаляют вакуумированием, а затем проводят пиролиз литий алюминий гидрида, нанесенного на подложку, при подъеме температуры от 100°C до 500°C в вакууме до остаточного давления 2-4·10 мбар.

Изобретение относится к способу получения хемосорбента для очистки инертных газов и газов-восстановителей, таких как: гелий, аргон, водород, арсин, фосфин, силан, метилсилан, диборан, от примесей кислот Льюиса, углеводородов, и/или летучих оксидов (например, пары воды, кислорода, оксидов углерода, азота и т.п.), а именно к получению интерметаллических соединений лития и алюминия на формованной инертной неорганической подложке с развитой поверхностью.

Известен способ получения химических сорбентов методом растворения в органическом растворителе (чаще всего в гексане) металлоорганических соединений, содержащих литий, общей формулой RLi (где R - алкил, нафталин), с последующей пропиткой этим раствором неорганической подложки с развитой поверхностью (цеолиты, Al2O3). Растворитель удаляют, нагревая будущий сорбент в токе инертного газа. Дальнейшее нагревание приводит к пиролизу литийорганического соединения и образованию мелкодисперсного активного металла на поверхности подложки (Патенты US 5,015,419 МПК B01D 53/04; C10K 1/00; 1990; US 5,015,411 МПК B01D 53/04; B01J 20/04; C10K 1/00; 1991).

В международной заявке WO 9809712, МПК B01D 53/02, B01D 53/04, B01J 20/04, 1998 описано комплексное применение сорбентов на основе литийсодержащих соединений, таких как (C6H5)3CLi , нафталины лития, LiF, C6H5OLi, CH3OLi, [B(C6H5)]4Li, [t-C4H9B(CH2C6H5)3]Li и другие.

Существенными недостатками данного способа являются снижение восстановительных свойств сорбента за счет использования менее активных соединений лития (LiF, C6H5OLi), в которых атом лития находится в окисленном состоянии; возможность загрязнения очищаемого газа углеводородами - продуктами распада литийорганических соединений.

Наиболее близким к предлагаемому способу и принятым нами в качестве прототипа является способ получения хемосорбента, в котором оксид алюминия (Al2O3), высушенный при температуре 350°C в токе азота пропитывают раствором бутиллития в гексане с концентрацией 1,6 М, затем гексан удаляют при нагревании до 110°C в токе азота, далее проводят пиролиз при температуре 210°C в токе азота в течение 12 часов (Патент US 5,015,411 МПК B01J 20/32; C01B 21/04; C01B 23/00; C01B 25/06; C01B 6/06; 1991).

Известный способ получения хемосорбента обладает рядом недостатков:

- загрязнение очищаемого газа углеводородами - продуктами распада бутиллития;

- возможность самовозгорания раствора бутиллития на воздухе;

- высокие требования к применяемой аппаратуре;

- высокая квалификация работников;

- относительно небольшая емкость получаемого хемосорбента из-за малой доли лития в общей массе бутиллития;

- образование инертного карбида лития в процессе пиролиза бутиллития, который снижает активность и емкость хемосорбента;

- образование углеводородов, которые необходимо улавливать, и их утилизизация;

- образование инертного нитрида лития при пиролизе бутиллития в токе азота при 210°C, резко снижающего эффективность и емкость сорбента.

Задачей настоящего изобретения является разработка простого, дешевого, безопасного и экологически чистого способа приготовления высокоэффективного хемосорбента для очистки инертных газов и газов-восстановителей, таких как: гелий, аргон, водород, арсин, силан, метилсилан, диборан, от примесей кислот Льюиса, углеводородов, и/или летучих оксидов (паров воды, кислорода, оксидов углерода, азота и т.п.).

Поставленная задача решается тем, что предложен способ получения хемосорбента для очистки инертных газов и газов - восстановителей, таких как: гелий, аргон, водород, арсин, силан, метилсилан, диборан, от примесей кислот Льюиса, углеводородов, и/или летучих оксидов, отличающийся тем, что формованную инертную неорганическую подложку с развитой поверхностью, в качестве которой можно использовать инертный неорганический материал, не обладающий хемосорбционными свойствами по отношению к примесям, от которых очищают газы, выбранный из оксида алюминия, диоксида кремния, цеолита или смеси упомянутых веществ, пропитывают насыщенным раствором литий алюминий гидрида в диэтиловом эфире, после чего эфир удаляют вакуумированием, а затем проводят пиролиз литий алюминий гидрида, нанесенного на подложку, при подъеме температуры от 100°C до 500°C в вакууме до остаточного давления 2-4·10-3 мбар.

В качестве формованной инертной неорганической подложки с развитой поверхностью могут быть использованы любые неорганические материалы, такие как оксид алюминия, различные цеолиты, двуокись кремния и смеси из них, не обладающие хемосорбционными свойствами к примесям, от которых очищают газы.

Понятие «формованная» означает, что подложка выполнена в виде дискретных частиц с любыми формами и размерами, зависящими от технологических приемов очистки. Например, для псевдоожиженного слоя пригодны микросферы размером 20-300 мкм, а для способов с неподвижной плотнофазной загрузкой - сферы с размером 0,3-5 мм или цилиндры-экструдаты близких размеров. Возможно использование и более сложных фигурных образований в виде трубок, колец Рашига, спиралей, многолучевых звезд, экструдатов различных форм и т.п. Понятие «развитая поверхность» подразумевает, что подложка имеет развитую систему пор, которые (по классификации, официально принятой Международным союзом по теоретической и прикладной физике UPAC) делятся на виды по размерам: микропоры - менее 2 нм; мезопоры - 2-50 нм; макропоры - более 50 нм.

Выбор концентрации раствора литий алюминий гидрида обусловлен тем, что при концентрациях меньше насыщенной для нанесения необходимого количества гидрида потребуется больше раствора. Это повлечет увеличение количества эфира, времени на его удаление и снизит экономические параметры процесса приготовления хемосорбента. Использование суспензии литий алюминий гидрида в эфире (концентрация больше насыщенной) приведет к неравномерному нанесению гидрида на инертную подложку, а при пиролизе - к спеканию ее частиц, уменьшению удельной поверхности, снижению емкости и активности хемосорбента.

Диапазон температур пиролиза предшественника сорбента обусловлен тем, что при 100°C начинается разложение литий алюминий гидрида с выделением водорода. Полное разложение этого вещества с образованием интерметаллида Li/Al достигается при температуре 500°C.

Остаточное давление 2-4·10-3 мбар легко достигается с помощью обычных дешевых форвакуумных насосов и гарантирует менее 1 ppm летучих примесей в хемосорбенте, что не приводит к существенному загрязнению ими очищаемых газов. Более высокий вакуум потребует дорогостоящих турбомолекулярных или диффузионных насосов, значительно увеличит время приготовления хемосорбента, что приведет к его сильному удорожанию. Менее глубокий вакуум приведет к загрязнению очищаемых газов летучими микропримесями, адсорбированными на хемосорбенте.

Техническим результатом предлагаемого изобретения является:

- уменьшение риска возгорания в процессе получения хемосорбента, снижение требований к оборудованию и квалификации персонала вследствие того, что эфирный раствор литий алюминий гидрида не самовозгорается на воздухе;

- уменьшение времени удаления растворителя из предшественника хемосорбента, снижение энергозатрат из-за более низкой температуры кипения и большей летучести диэтилового эфира по сравнению с гексаном;

- экологическая чистота процесса, поскольку при приготовлении хемосорбента в окружающую среду выбрасывается только безвредный чистый водород, а растворитель полностью улавливается и используется повторно;

- увеличение активности и эффективности хемосорбента из-за большего содержания активных металлов в единице объема инертной подложки и исключения образования инертных карбидов и нитридов лития и алюминия;

- гарантированное отсутствие в хемосорбенте примесей углеводородов и растворителя за счет высокого вакуума, достигаемого в конце процесса приготовления хемосорбента.

Приведенные ниже примеры иллюстрируют, но не исчерпывают сущность данного изобретения.

Пример 1 (по прототипу).

200 мл оксида алюминия высушивают в токе азота в течение 48 часов при 350°C, а затем охлаждают в токе азота до 20°C. К оксиду алюминия добавляют 200 мл 1,6 М раствора н-бутиллития в гексане. Гексан удаляют в токе азота при 110°C. Оставшийся предшественник хемосорбента нагревают при 210°C в течение 12 часов в токе азота. Получают твердый продукт бледно-желтого цвета, 80 мл готового сорбента помещают в стеклянную трубку внутренним диаметром 25 мм и используют для очистки аргона, содержащего 1200 ppm кислорода; 110 ppm диоксида углерода, 60 ppm монооксид углерода и 45 ppm азота. Расход аргона составляет 120 мл/мин. Очищенный газ содержит: O2-0,1 ppm, CO2-0,4 ррт, СО-0,4 ррт, N2-4 ppm. Емкость сорбента по кислороду составляет приблизительно 15 литров O2 на 1 литр сорбента.

Пример 2.

Готовят насыщенный раствор LiAlH4 в диэтиловом эфире, растворяя 53 г LiAlH4 в 1,4 л свежеперегнанного сухого диэтилового эфира. Оксид алюминия (Al2O3) марки «А» с удельной поверхностью более 50 м2/г с радиусами пор от 7 до 300 нм в количестве 370 г выдерживают в вакууме при температуре 350°C и остаточном давлении Рост.=2·10-3 мбар, в течение 6 часов. Остывший сорбент заполняют аргоном особой чистоты и пересыпают в инертной атмосфере в реактор для дальнейшей пропитки. В реактор добавляют раствор литий алюминий гидрида. Затем удаляют эфир в вакууме при 20-30°C, улавливая растворитель в ловушке, охлаждаемой жидким азотом. Далее предшественник хемосорбента нагревают в вакууме, постепенно увеличивая температуру от 100°C до 500°C до установления Рост.=2·10-3 мбар. Готовый хемосорбент черного цвета извлекают в перчаточном боксе в атмосфере аргона и засыпают в стеклянную трубку или специальный патрон для дальнейшего использования.

Пример 3.

Готовят насыщенный раствор LiAlH4 в диэтиловом эфире, растворяя 46 г LiAlH4 в 1,2 л свежеперегнанного сухого диэтилового эфира. Цеолиты типа 5А СаА в количестве 300 г выдерживают в вакууме при температуре 350°C и остаточном давлении Рост.=2·10-3 мбар, в течение 6 часов. Остывший сорбент заполняют аргоном особой чистоты и пересыпают в инертной атмосфере в реактор для дальнейшей пропитки. В реактор добавляют раствор литий алюминий гидрида. Затем удаляют эфир в вакууме при 20-30°C, улавливая растворитель в ловушке, охлаждаемой жидким азотом. Предшественник хемосорбента нагревают в вакууме, постепенно увеличивая температуру от 100°C до 500°C до установления Рост.=4·10-3 мбар. Готовый хемосорбент черного цвета извлекают в перчаточном боксе в атмосфере аргона и засыпают в стеклянную трубку или специальный патрон для дальнейшего использования.

Пример 4.

В стеклянную трубку внутренним диаметром 25 мм загружают 80 мл хемосорбента, полученного аналогично примеру 2.

Снизу вверх при комнатной температуре и атмосферном давлении пропускают аргон с расходом 120 мл/мин. Очищаемый аргон содержит следующие примеси: кислород - 1200 ppm; диоксид углерода - 110 ppm, монооксид углерода - 60 ppm, азот - 45 ppm.

Выходящий из трубки газ анализируют. Найдено, что после очистки содержание примесей составляет: О2 - 0,01 ppm; CO2 - 0,04 ppm; CO - 0,05 ppm, N2 - 0,5 ppm.

Пример 5.

В стеклянную трубку внутренним диаметром 25 мм загружают 80 мл хемосорбента, полученного аналогично примеру 3.

Снизу вверх при комнатной температуре и атмосферном давлении пропускают аргон с расходом 120 мл/мин. Очищаемый аргон содержит следующие примеси: кислород - 1200 ppm; диоксид углерода - 110 ppm, монооксид углерода - 60 ppm; азот - 45 ppm.

Выходящий из трубки газ анализируют. Найдено, что после очистки содержание примесей составило: О2 - 0,04 ppm; CO2 - менее 0,1 ppm; CO - менее 0,1 ppm; N2 - 0,4 ppm.

Пример 6.

В стеклянную трубку внутренним диаметром 25 мм загружают 80 мл хемосорбента, полученного аналогично примеру 2. Сверху вниз при комнатной температуре и атмосферном давлении пропускают моносилан с расходом 110 мл/мин. Очищаемый моносилан содержит следующие примеси: кислород - 400 ppm; СО - 60 ppm; пропан - 120 ppm.

Выходящий из трубки газ анализируют. После очистки содержание примесей составило: О2 - 0,01 ppm; CO - менее 0,01 ppm, углеводородов на выходе обнаружено не было при пропускании 100 объемов газа через 1 объем сорбента.

Емкость хемосорбента в расчете на кислород составила 80 л O2 на 1 л хемосорбента.

Пример 7.

В стеклянную трубку внутренним диаметром 25 мм загружают 80 мл хемосорбента, полученного аналогично примеру 3. Сверху вниз при комнатной температуре и атмосферном давлении пропускают гелий с расходом 120 мл/мин. Очищаемый гелий содержит следующие примеси: кислород - 400 ppm; азот - 100 ppm.

Выходящий из трубки газ анализируют. Найдено, что после очистки содержание примесей составило: О2 - 0,04 ppm; N2 - 0,1 ppm. Емкость хемосорбента в расчете на кислород составляет 70 л O2 на 1 л хемосорбента.

Пример 8.

В стеклянную трубку внутренним диаметром 25 мм загружают 80 мл хемосорбента, полученного аналогично примеру 2. Снизу вверх при комнатной температуре и атмосферном давлении пропускают арсин с расходом 110 мл/мин. Очищаемый арсин содержит следующие примеси: пары воды - 1200 ppm, кислород - 400 ppm; азот - 45 ppm.

Выходящий из трубки газ анализируют. Найдено, что после очистки содержание примесей составило: H2O - менее 0,01 ppm, О2 - менее 0,01 ppm; N2 - 0,1 ppm.

Пример 9.

В стеклянную трубку внутренним диаметром 25 мм загружают 80 мл хемосорбента, полученного аналогично примеру 2. Снизу вверх при комнатной температуре и атмосферном давлении пропускают метилсилан с расходом 100 мл/мин. Очищаемый метилсилан содержит следующие примеси: пары воды 200 ppm, кислород (О2) 400 ppm; азот N2 60 ppm, этиловый спирт 100 ppm, углеводороды 140 ppm.

Выходящий из трубки газ анализируют. Найдено, что после очистки содержание примесей составило: H2O менее 0,01 ppm, 02 менее 0,01 ppm; N2 0,2 ppm, спирта и углеводородов не обнаружено.

Пример 10.

В стеклянную трубку внутренним диаметром 25 мм загружают 80 мл хемосорбента, полученного аналогично примеру 2. Сверху вниз при комнатной температуре и атмосферном давлении пропускают диборан с расходом 100 мл/мин. Очищаемый диборан содержит следующие примеси: пары воды 400 ppm, кислород (О2) 360 ppm; азот N2 70 ppm.

Выходящий из трубки газ анализируют. Найдено, что после очистки содержание примесей составило: H2O менее 0,01 ppm, О2 менее 0,01 ppm; N2 0,2 ppm.

Способ получения хемосорбента для очистки инертных газов и газов-восстановителей, выбранных из гелия, аргона, водорода, арсина, силана, метилсилана, диборана, от примесей кислот Льюиса, углеводородов и/или летучих оксидов, отличающийся тем, что формованную инертную неорганическую подложку с развитой поверхностью, в качестве которой используют инертный неорганический материал, не обладающий хемосорбционными свойствами по отношению к примесям, от которых очищают газы, выбранный из оксида алюминия, диоксида кремния, цеолита или смеси упомянутых веществ, пропитывают насыщенным раствором литий алюминий гидрида в диэтиловом эфире, после чего эфир удаляют вакуумированием, а затем проводят пиролиз литий алюминий гидрида, нанесенного на подложку, при подъеме температуры от 100°C до 500°C в вакууме до остаточного давления 2-4·10 мбар.
Источник поступления информации: Роспатент

Показаны записи 51-57 из 57.
25.08.2017
№217.015.b97d

Способ получения органомагнийоксаналюмоксанов, связующие и пропиточные материалы на их основе

Изобретение относится к способу получения органомагнийоксаналюмоксанов. Способ включает взаимодействие полиалкоксиалюмоксанов с ацетилацетонатом магния [CH(O)CCH=C(CH)O]Mg в среде органического растворителя при температуре 20°С-70°С с последующей отгонкой растворителя сначала при атмосферном...
Тип: Изобретение
Номер охранного документа: 0002615147
Дата охранного документа: 04.04.2017
26.08.2017
№217.015.da33

Способ получения поликарбонатных формовок с двухслойным покрытием

Изобретение относится к получению формовок из поликарбоната с защитным покрытием, которые могут быть использованы в приборостроении, на автотранспорте, в осветительной технике, в строительстве и др., для производства абразиво- и атмосферостойких изделий широкого ассортимента, в том числе...
Тип: Изобретение
Номер охранного документа: 0002623783
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.dd93

Способ получения олигоборсилазанов

Изобретение относится к области химической технологии азотсодержащих соединений кремния. Предложен способ получения олигоборсилазанов взаимодействием олигосилазанов, содержащих N-H и Si-H группы, в качестве которых используют кремнийорганические соединения класса силазанов, не содержащие при...
Тип: Изобретение
Номер охранного документа: 0002624442
Дата охранного документа: 04.07.2017
20.01.2018
№218.016.0fe1

Способ получения 3,3'-дихлор-4,4'-диаминодифенилметана

Изобретение относится к улучшенному способу получения 3,3'-дихлор-4,4'-диаминодифенилметана. Получаемое соединение может быть использовано для вулканизации и отверждения высокотемпературных эпоксидных композиций при изготовлении высокопрочных термостойких конструкционных изделий из полимерных...
Тип: Изобретение
Номер охранного документа: 0002633525
Дата охранного документа: 13.10.2017
17.02.2018
№218.016.2b6a

Способ получения метил(фенил) силоксановых олигомеров с концевыми трифенилсилильными группами

Изобретение относится к технологии получения линейных бис(трифенилсилил)олигометилфенилсилоксанов. Предложен способ получения метил(фенил)силоксановых олигомеров с концевыми трифенилсилильными группами общей формулы PhSiO[Si(Me)(Ph)O]SiPh, где N≥4, заключающийся во взаимодействии...
Тип: Изобретение
Номер охранного документа: 0002643367
Дата охранного документа: 01.02.2018
17.02.2018
№218.016.2c39

Способ получения солей бис(дикарболлид) кобальта

Изобретение относится к способу получения солей бис(дикарболлид) кобальта и триалкиламмонийных или тетраалкиламмонийных солей бис(дикарболлид) кобальта. Способ включает взаимодействие нидо-7,8(7,9)-дикарбаундекаборатов щелочных металлов или нидо-7,8(7,9)-дикарбаундекаборатов триалкиламмония или...
Тип: Изобретение
Номер охранного документа: 0002643368
Дата охранного документа: 01.02.2018
04.04.2018
№218.016.30b7

Способ получения органомагнийоксаниттрийоксаналюмоксанов, связующие и пропиточные материалы на их основе

Изобретение относится к способу получения органомагнийоксаниттрийоксаналюмоксанов общей формулы где k, р=0,1-6, m=3-12; k/m+l+x+2y+z=3; s+t+2r=3; R - CH, n=2-4; R* - C(CH)=CHC(O)OCH; R** - C(CH)=CHC(O)CH. Способ включает взаимодействие полиалкоксиалюмоксанов с гидратом ацетилацетоната иттрия...
Тип: Изобретение
Номер охранного документа: 0002644950
Дата охранного документа: 15.02.2018
Показаны записи 81-90 из 120.
09.05.2019
№219.017.4e39

Способ защиты объектов бронетанковой техники и устройство для его осуществления

Изобретение предназначено для защиты транспортных средств гражданского и военного назначения, преимущественно бронетанковой техники, от целеуказывающих и атакующих средств противника, действующих в широком диапазоне электромагнитного излучения: видимом, инфракрасном (ИК) и радиоволновом (РЛ). В...
Тип: Изобретение
Номер охранного документа: 0002321816
Дата охранного документа: 10.04.2008
18.05.2019
№219.017.53d0

Способ получения симметричных метилфенилдисилоксанов и гексафенилдисилоксана дегидроконденсацией триорганосиланов

Изобретение относится к химии и технологии получения симметричных гексаорганодисилоксанов. Предложен способ получения симметричных метилфенилдисилоксанов и гексафенилдисилоксана общей формулы [RRSi]O, где R - СН; R - СН; n=0÷2, дегидроконденсацией индивидуальных триорганосиланов вида RRSiH, в...
Тип: Изобретение
Номер охранного документа: 0002687736
Дата охранного документа: 16.05.2019
18.05.2019
№219.017.595c

Способ непрерывного получения моносилана

Изобретение может быть использовано в производстве полупроводникового кремния. Моносилан непрерывно получают из галогенида кремния и гидрида металла при их стехиометрическом соотношении в жидкой реакционной среде в одном вертикальном аппарате колонного типа, секционированном по высоте на...
Тип: Изобретение
Номер охранного документа: 0002414421
Дата охранного документа: 20.03.2011
29.05.2019
№219.017.68ea

Устройство и способ получения высокодисперсного диоксида кремния

Изобретение относится к технологии получения высокодисперсного порошка диоксида кремния методом сжигания жидких кремнийсодержащих соединений (прекурсора) в пламени горючих газов. Устройство для получения порошка диоксида кремния с регулируемой дисперсностью состоит из блока горения (I) с...
Тип: Изобретение
Номер охранного документа: 0002435732
Дата охранного документа: 10.12.2011
19.06.2019
№219.017.85b0

Способ получения клозо-боратных кластеров

Изобретение относится к получению клозо-боратных кластеров додекабората триэтиламмония [(CH)NH]BH, декабората трибутиламмония [(CH)NH]BH, гексабората трибутиламмония [(CH)NH]BH. Их получают проведением реакции боргидрида натрия NaBH и триэтиламинборана (СН)NBH при молярном соотношении NaBH к...
Тип: Изобретение
Номер охранного документа: 0002344070
Дата охранного документа: 20.01.2009
10.07.2019
№219.017.ad3b

Способ получения пирогенного диоксида кремния и горелка для его осуществления

Изобретение может быть использовано в химической промышленности. Диоксид кремния получают гидролизом в пламени многоканальной трубчатой горелки, содержащей от 3 до 5 концентрических труб. На выходе из горелки образуется многослойная структура потока из чередующихся концентричных струй, имеющих...
Тип: Изобретение
Номер охранного документа: 0002350559
Дата охранного документа: 27.03.2009
10.07.2019
№219.017.b026

Способ получения метилхлорида

Изобретение относится к способу получения метилхлорида, включающему взаимодействие метанола с хлористым водородом в реакторе синтеза с получением парогазовой смеси, включающей метилхлорид, и выделение метилхлорида из парогазовой смеси путем ее парциальной конденсации, последующей промывки ее...
Тип: Изобретение
Номер охранного документа: 0002404952
Дата охранного документа: 27.11.2010
19.07.2019
№219.017.b602

Способ и аппарат для очистки кремнийорганических соединений от летучих компонентов

Изобретение относится к способам очистки кремнийорганических соединений и устройствам для их реализации. Предложен способ очистки кремнийорганических соединений от летучих компонентов, при котором нагретый поток очищаемого кремнийорганического соединения подается в виде пучка множественных...
Тип: Изобретение
Номер охранного документа: 0002694845
Дата охранного документа: 17.07.2019
02.10.2019
№219.017.cb11

Способ ускорения заживления роговицы при ее механических травмах

Изобретение относится к области медицины, а именно к офтальмологии, и предназначено для ускорения заживления роговицы после ее механических травм. Для ускорения заживления роговицы после ее механических травм проводят субконъюнктивальные инъекции и наружные аппликации в виде капель на рану...
Тип: Изобретение
Номер охранного документа: 0002701178
Дата охранного документа: 25.09.2019
02.10.2019
№219.017.cf66

Способ получения кристаллического литийалюминийдейтерида

Изобретение относится к области получения дейтеридов металлов для применения в качестве селективного восстановителя в органическом синтезе, для дейтерирования лекарственных препаратов с целью последующего использования в медицине и фармацевтике. Способ получения кристаллического...
Тип: Изобретение
Номер охранного документа: 0002700522
Дата охранного документа: 17.09.2019
+ добавить свой РИД