×
10.11.2014
216.013.0485

Результат интеллектуальной деятельности: СПОСОБ И УСТАНОВКА ДЛЯ КОНВЕРСИИ МОНОКСИДА УГЛЕРОДА И ВОДЫ В ДИОКСИД УГЛЕРОДА И ВОДОРОД С УДАЛЕНИЕМ, ПО МЕНЬШЕЙ МЕРЕ, ОДНОГО ПОЛУЧАЕМОГО ГАЗА

Вид РИД

Изобретение

№ охранного документа
0002532555
Дата охранного документа
10.11.2014
Аннотация: Изобретение относится к способу и устройству для конверсии моноксида углерода и воды в диоксид углерода и водород, для промышленного использования. Способ выполнения реакции сдвига моноксида углерода с проведением реакции в жидкой фазе и удалением получаемого газа, диоксида углерода и/или водорода, характеризуется тем, что в качестве первого растворителя используют сухой метанол для поглощения моноксида углерода с одновременным образованием метилформиата и в качестве второго растворителя используют воду в области высвобождения получаемого газа, чтобы избежать потерь водорода с потоком диоксида углерода. Изобретение обеспечивает высокую конверсию при связывании моноксида углерода. 3 н. и 10 з.п. ф-лы, 1 ил.

Изобретение относится к реакции сдвига моноксида углерода для конверсии моноксида углерода и воды в диоксид углерода и водород, особенно для промышленного использования.

Эта реакция, соответствующая уравнению

является одной из самых важных реакций в химической промышленности. Сейчас эта реакция также стала интересной для электростанций, использующих ископаемое топливо. Основой этого является существующая тенденция к горению с низким уровнем образующегося СО; при сжигании топлива для этих электростанций. В соответствии со способом предварительного сжигания моноксид углерода должен быть конвертирован в диоксид углерода согласно вышеупомянутому уравнению (1) перед горением, чтобы отделить весь углерод в форме диоксида углерода. Таким образом, энергия моноксида углерода передается (сдвигается к) водороду, который может использоваться в газовых турбинах. Однако для удаления продуктов диоксида углерода и также водорода выделение из газовой фазы является чрезвычайно энергозатратным способом.

В способах, общепринятых до настоящего времени, реакцию сдвига моноксида углерода и удаление диоксида углерода выполняют, по существу, в отдельных подстадиях. Во-первых, реакцию сдвига моноксида углерода выполняют в газовой фазе. Диоксид углерода затем отделяют в дальнейшей стадии способа. Типичным примером удаления является скруббер Ректизол (Rectisol scrub), в котором диоксид углерода абсорбируют охлажденным метанолом. Соответственно, низкие температуры необходимы здесь, чтобы отделить диоксид углерода, и большое количество энергии необходимо для охлаждения, что снижает общую эффективность электростанции.

Европейский патент ЕР 0299995 В1 описывает способ выполнения реакции сдвига моноксида углерода, причем реакция протекает в жидкой фазе. В то же самое время может быть реализовано удаление образовавшегося диоксида углерода. Это относится особенно к примеру 6 патентного документа, а также к фиг. 2. Здесь метанол, содержащий воду, используют в качестве растворителя. Показатель рН метанола повышают добавлением карбоната, например карбоната калия. Однако, есть два важных пункта в этом патентном документе, которые делают использование сомнительным: не гарантируют, что газообразный исходный материал, моноксид углерода (СО), может быть превращен достаточно быстро в жидкую фазу для промышленного использования с целью последующей конверсии в формиат. Кроме того, ожидается значительная потеря водорода в отделяемый поток диоксида углерода из-за относительно высокой растворимости в используемом растворителе.

Проблемой, подлежащей решению, является выполнение реакции сдвига моноксида углерода в улучшенном варианте с получением газообразных продуктов, водорода и диоксида и отделением, по меньшей мере, одного из них.

Улучшенный вариант реакции сдвига моноксида углерода в жидкой фазе с одновременным удалением, по меньшей мере, одного продуктового газа достигается совокупностью признаков соответствующих пунктов формулы изобретения.

Изобретение описывает способ, в котором реакцию сдвига моноксида углерода выполняют в жидкой фазе. В способе используют два различных растворителя. Сухой метанол используют в качестве первого растворителя, а воду используют в качестве второго растворителя. Абсорбция моноксида углерода сухим метанолом может применяться преимущественно, так как при использовании соответствующего катализатора одновременно происходит образование метилформиата. Таким образом, достигается высокая конверсия при связывании моноксида углерода.

Преимущественно, способ имеет место в сухом метаноле в качестве первого растворителя в комбинации с растворенным метоксидом натрия в качестве катализатора. Кинетика связывания моноксида углерода и конверсии моноксида углерода может проводиться экономно, как при промышленном получении муравьиной кислоты.

Метилформиат разлагается гидролитически или в присутствии основного катализатора до муравьиной кислоты и метанола. Образующаяся муравьиная кислота депротонируется до формиата в регулируемой основной области рН так, что рН падает течение реакции.

В результате первый растворитель, то есть сухой метанол, и второй растворитель, то есть вода, каждый течет в своем контуре, выделение продуктовых газов, диоксида углерода и водорода может быть произведено без больших потерь водорода в диоксид углерода или в поток диоксида углерода. Это означает, что особенно в результате разделения на два разных контура растворителей индивидуальные продуктовые газы действительно не входят в область или в поток другого газа в каждом случае.

Есть физический раздел между образованием двух газов, водорода и диоксида углерода, и удаление этих продуктовых газов становится возможным одновременно.

Два продуктовых газа, водород и диоксид углерода, производят в водной, а не метанольной среде, как в предшествующем уровне техники согласно европейскому патенту ЕР 0299995 В1. В противном случае результатом были бы большие потери водорода в полученном диоксиде углерода, так как водород значительно более растворим в метаноле, чем в воде.

Продуктовый газ водород может преимущественно быть произведен каталитическим разложением формиата, причем дополнительно образуется гидрокарбонат.

Продуктовый газ диоксид углерода может преимущественно быть получен из гидрокарбоната в другом месте в ходе процесса в результате увеличения температуры или снижения давления. Образующийся карбонат реагирует с водой, что приводит к увеличению рН.

Есть физический раздел между образованием двух газов, водорода и диоксида углерода, и удаление этих продуктовых газов становится возможным одновременно.

Настоящее изобретение имеет значительно измененную структуру процесса по сравнению с процессами, известными до настоящего времени для выполнения реакции сдвига моноксида углерода. В изобретении растворители, метанол и воду, используют в двух отдельных контурах.

Начальные стадии способа по изобретению выполняют способом, подобным способу промышленного производства муравьиной кислоты. Различие состоит в том, что чистый моноксид углерода не должен быть подан в способ, но вместо этого, например, синтез-газ, имеющий значительное количество моноксида углерода, подают в высушенной форме в способ. Сушка синтез-газа необходима, так как первые стадии способа имеют место в среде метанола.

Протекание реакции сдвига СО в жидкой фазе имеет энергетическое преимущество перед реакцией сдвига СО, выполняемой в газовой фазе, так как вода не должна испаряться при выполнении реакции. Это преимущество становится еще значительней, когда реакцию сдвига СО выполняют в присутствии избытка воды, что часто имеет место.

Главная цель состоит в том, чтобы получить водный раствор муравьиной кислоты. Различие между режимом работы в производстве муравьиной кислоты и режимом работы согласно изобретению является то, что в производстве муравьиной кислоты, концентрация муравьиной кислоты по существу представляет проблему, которая должна быть решена. Однако эта подстадия не является необходимой для целей настоящего изобретения. Скорее муравьиная кислота депротонируется в разбавленной форме, и образующийся формиат расщепляется каталитически. Сложный эфир, в частности метилформиат, образуется в качестве промежуточного соединения и отделяется от растворителя метанола и разлагается на метанол и муравьиную кислоту. На дальнейшей стадии способа метанол затем регенерируют, а диоксид углерода, который образуется при разложении гидрокарбоната, в то же самое время отделяют в дальнейшем потоке. Производство водорода происходит в дальнейшем объеме реакции в процессе реакции формиата с водой с получением гидрокарбоната и водорода. Диоксид углерода и водород, таким образом, образуются отдельно в двух различных стадиях способа и в каждом случае отделяются.

Пример, который не ограничивает изобретение, описан ниже при помощи сопутствующего чертежа.

Чертеж показывает схему способа для реакции сдвига моноксида углерода, использующую три реактора 1, 3, 5 и две колонны 2, 4, причем сухой синтез-газ подают через питающую линию 6, и продуктовые газы, диоксид углерода и водород, образуются и отделяются в различных местах в способе, и также первый контур 21 для первого растворителя, то есть сухого метанола, и второй контур 22 для второго растворителя, то есть воды.

Реакция сдвига моноксида углерода и также подреакции, имеющие место в полном способе, описаны ниже.

Общая реакция сдвига моноксида углерода:

Абсорбция моноксида углерода жидкой фазой с получением метилформиата может быть представлена следующим уравнением:

Так как синтез-газ вводят в сухой метанол, вода не присутствует как растворитель в этой точке. Синтез-газ состоит, по существу, из моноксида углерода и водорода. В результате разделения растворителей на сухой метанол и воду, потери водорода, например, в поток диоксида углерода предотвращаются с самого начала.

Образующийся метилформиат каталитически разлагается па муравьиную кислоту и метанол, что приравнивается к гидролизу.

Образующаяся муравьиная кислота превращается в результате отрыва протона в формиат.

Водород производят каталитическим разложением формиата на водород и гидрокарбонат.

Высвобождение диоксида углерода в месте, отличающемся от того места, где высвобождается водород, протекает согласно следующему уравнению:

Образующийся карбонат реагирует с водой так, что рН снова увеличивается до первоначального значения.

Уравнения (2)-(7) вместе дают уравнение (1). Настоящая концепция базируется только частично на производстве муравьиной кислоты. Однако в сочетании с областью использования реакции сдвига моноксида углерода на электростанциях с удалением диоксида углерода идеально полное и селективное отделение углеродсодержащих компонентов от синтез-газа скорее, чем синтез муравьиной кислоты является важным аспектом.

Реакция сдвига моноксида углерода в жидкой фазе протекает через водный раствор муравьиной кислоты. Прямое образование растворенной муравьиной кислоты из газообразного моноксида углерода протекает согласно следующему уравнению реакции:

Проблемой, связанной с уравнением 8, является то, что реакция имеет очень низкую равновесную конверсию в обычных условиях. Эта реакция не может, таким образом, использоваться экономично без принятия дополнительных мер. Способ, описанный в ЕР 0299995 В1 для преодоления этого равновесного ограничения, использует депротонирование муравьиной кислоты посредством относительно высоких значений рН, чтобы удалить муравьиную кислоту из равновесия. Таким образом, общее содержание моноксида углерода может, в принципе, быть перенесено из газовой фазы в жидкую фазу в форме растворенного формиата. Однако из-за использования водного метанола в качестве растворителя этот подход приводит к большим потерям водорода, причем количество водорода, уходящего в поток диоксида углерода, и затраты энергии являются неэкономично высокими.

Кроме того, найдено, что простая структура процесса, как известно, например, из ЕР 0299995 В1, не может дать удовлетворительных результатов из-за сложного сочетания химических реакций. Когда применяют растворитель, предложенный в патенте, то есть метанол, имеющий низкое содержание воды, значительная доля водорода растворяется в растворителе. Эта нежелательная утечка водорода в поток диоксида углерода может быть предотвращена только посредством использования дополнительного растворителя, который течет во втором контуре.

Другой режим работы, в котором используют только растворитель воду вместо метанола, не привел к экономичной системе. Хотя потеря водорода может быть снижена до нескольких частей на тысячу от полного содержания водорода (несколько десятых долей процента) в этом режиме работы, количестве требуемой воды, даже если бы она циркулировала, было бы чрезвычайно высоким. Мерой этого является количество диоксида углерода, подлежащее отделению, что в комбинации с растворимостью газа в воде определяет расход воды. Этот большой поток воды приводит к необычно высокому расходу энергии, так как диоксид углерода отделяют, повышая температуру. Альтернативное удаление посредством снижения давления приводило бы к очень высоким рабочим давлениями и аналогично высокому расходу энергии.

Чтобы преодолеть равновесное ограничение уравнения (8), возможен особый подход. Этот подход не включает прямое производство раствора формиата. Скорее метилформиат образуется в среде метанола согласно уравнению (2). В дальнейшем течении реакции метилформиат гидролизуется и превращается в раствор формиата согласно уравнению (3). Дополнительные стадии способа для этой последовательной процедуры увеличивают полный расход энергии только незначительно. В целом таким образом возможно достигнуть экономичного удаления диоксида углерода, одновременно выполняя реакцию сдвига СО посредством этого способа. Если, кроме того, безводный метанол используют в качестве первого растворителя, достигается высокая конверсия связывания моноксида углерода, так как моноксид углерода реагирует с метанолом с получением метилформиата.

Как показано на чертеже, несколько реакторов и колонн применяют для выполнения способа сдвига моноксида углерода.

Первый реактор 1 используют для поглощения моноксида углерода с одновременным получением метилформиата согласно уравнению (2). В последующей первой колонне 2 отделяют метилформиат. В последующей второй реакции 3 метилформиат разлагают гидролитически согласно уравнению (3) на метанол и муравьиную кислоту. В последующей второй колонне 4 диоксид углерода отделяют согласно уравнению (6), причем карбонат и гидрокарбонат способны реагировать согласно уравнениям (6) и (7). В третьем реакторе 5 водород отделяют каталитически от формиата с получением гидрокарбоната.

Чертеж может быть разделен грубо на метанольную область и водную область. На основе прерывистой разделительной линии 24, проходящей вертикально на чертеже между первой колонной 2 и вторым реактором 3, метанольная область находится слева от линии, а водная область находится справа от линии.

В метанольной области сухой синтез-газ предпочтительно подают по питающей линии 6 в первый реактор 1. Синтез-газ высушивают так, чтобы никакая вода не присутствовала перед фактическим способом. Кроме улучшенного отделения диоксида углерода от водорода, сушка синтез-газа необходима, чтобы предотвратить гидролиз используемого катализатора метоксида. Далее метанол и соответствующий катализатор вводят по линиям 7 и 14. Линия 19 служит для рециркуляции метанола в первый реактор 1 из второй колонны 4. Метилформиат и метоксид, которые растворены в метаноле, подают по линии 13 из первого реактора 1 в первую колонну 2. Первый контур 21 для растворителя метанола течет преимущественно по линиям 14 и 13, причем контур замыкается через первую колонну 2, кубовый материал которой поступает в линию 14. Поток 12 необходим, чтобы выгружать нежелательные твердые частицы, которые могут образовываться при разложении катализатора. Этот первый контур 21 для сухого метанола гарантирует, что включение водной фазы по существу предотвращено. Это гарантирует оптимальное поглощение моноксида углерода.

Кроме того, первая колонна 2 расположена в метанолыюй области. Здесь выполняют разделение материала, причем метилформиат отделяют и подают во второй реактор 3. Кроме того, только метилформиат отгоняют из этой первой колонны 2, а метанол и диоксид углерода дополнительно отгоняют из второй колонны 4, в то время как высококипящие растворители этих двух упомянутых контуров удаляют из соответствующих кубов. Полученным преимуществом является уменьшение общего расхода энергии.

В водной области, соответствующей правой части чертежа, разложение метилформиата согласно уравнению (3) сначала выполнят во втором реакторе 3. Продукты, метанол и муравьиную кислоту, подают по линии 15 во вторую колонну 4. Из второй колонны 4 водную муравьиную кислоту, которая может в этой точке уже присутствовать в депротонированной форме как формиат, подают по линии 16 в третий реактор 5, метанол подают по линии 19 в первый реактор 1, а непрореагировавший метилформиат подают по линии 18 во второй реактор 3. В третьем реакторе 5 водород, во-первых, образуется и удаляется, и во-вторых, гидрокарбонат в водном растворе рециркулируют во второй реактор 3. Второй контур 22, по существу, представляет линию 17, второй реактор 3, линию 15, линию 16 и третий реактор 5, снова соединенный по линии 17. Этот водный контур имеет преимущество в том, что водород только незначительно растворяется и удаляется в месте, в котором он производится.

Линия 8 служит для подачи воды и соответственно достигает водной области. Линия 9 служит для выгрузки газов, которые инертны в реакции, то есть газов, которые не реагируют в первом реакторе 1, причем водород может присутствовать.

В первой колонне 2 образующийся метилформиат отгоняют. Затрата энергии здесь является приемлемой, так как образующийся метилформиат кипит при относительно низкой температуре. При атмосферном давлении точка кипения составляет только 32°С. Метанол, остающийся при перегонке, непрерывно рециркулируют, по существу, по линии 14 в предыдущий первый реактор 1. Возможные продукты разложения катализатора кристаллизуются здесь и удаляются из процесса. Например, катализатор, метоксид, может реагировать с любыми следами воды с получением метанола и гидроксида. Гидроксиды обычно только очень умеренно растворимы в метаноле, так что они осаждаются в этой точке и могут быть удалены без проблем из метанола. Вследствие этой возможной реакции разложения должны быть приняты меры, чтобы гарантировать, что подаваемый газ, содержавший моноксид углерода, является безводным. С определенной вероятностью невозможно заменить метоксид в качестве каталитически активного вещества на менее чувствительное к гидролизу вещество. Очень сильный нуклеофил требуется для реакции с моноксидом углерода, что автоматически означает, что вещество является чувствительным к гидролизу. Кроме того, другие алкоксиды или другие сильные органические основания неприменимы, так как при переэтерификации они образовывали бы сложные эфиры, имеющие более высокие точки кипения вместо метилформиата, или в автоматически происходящих реакциях оснований с кислотами давали бы спирты или органические кислоты, имеющие точку кипения выше, чем точка кипения метанола.

Следствием этого был бы увеличенный расход энергии в колоннах. Метоксиды являются единственными веществами, которые образуют нужные сложные эфиры при переэтерификации, такие, что эта неизбежная реакция не может иметь отрицательного воздействия из-за образования более высококипящих сложных эфиров.

В то время как первый растворитель в первых двух аппаратах, то есть первом реакторе 1 и первой колонне 2, является сухим метанолом, водный раствор присутствует в последующей второй реакции 3. Здесь сложный эфир гидролизуется, обычно в 5-кратном избытке воды, причем эта реакция обычно протекает в присутствии кислотного или основного катализатора. Вариант с основным катализатором является более приемлемым, так как муравьиная кислота, которая образуется при гидролизе, немедленно депротонируется в формиат.

Затем следует вторая колонна 4, и из этой колонны негидролизованный сложный эфир и метанол, который образуется при гидролизе, рециркулируют в соответствующие реакторы. Кроме того, эта вторая колонна 4 подходит для отгона растворенного диоксида углерода, а часть гидрокарбоната и даже до некоторой степени карбоната превращается в газообразный диоксид углерода посредством зависящего от температуры равновесия в реакции между карбонатом, гидрокарбонатом и диоксидом углерода. Удаление указанных веществ перегонкой приводит к водному раствору формиата. Формиат вводят в третий реактор 5, в котором формиат разлагается в каталитической реакции, и образуется водород.


СПОСОБ И УСТАНОВКА ДЛЯ КОНВЕРСИИ МОНОКСИДА УГЛЕРОДА И ВОДЫ В ДИОКСИД УГЛЕРОДА И ВОДОРОД С УДАЛЕНИЕМ, ПО МЕНЬШЕЙ МЕРЕ, ОДНОГО ПОЛУЧАЕМОГО ГАЗА
Источник поступления информации: Роспатент

Показаны записи 181-190 из 1 427.
27.03.2014
№216.012.af59

Энергетический преобразовательный модуль с охлаждаемой ошиновкой

Изобретение относится к энергетическому преобразовательному модулю, по меньшей мере, с одним силовым полупроводниковым модулем (2, 4), которые термически активно соединены механически с жидкостным охладителем (6) и которые посредством ошиновки (8), содержащей по меньшей мере две изолированные...
Тип: Изобретение
Номер охранного документа: 0002510604
Дата охранного документа: 27.03.2014
10.04.2014
№216.012.b0a1

Система автоматизации и способ управления системой автоматизации

Изобретение относится к системе автоматизации со средством управления автоматизации, периферийным блоком и системой шины, а также к способу управления подобной системой автоматизации. Техническим результатом является повышение надежности функционирования системы автоматизации. Система (1)...
Тип: Изобретение
Номер охранного документа: 0002510932
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b0df

Способ сварки заготовок из высокожаропрочных суперсплавов с особой массовой скоростью подачи сварочного присадочного материала

Изобретение относится к способу лазерной сварки заготовок (9) из высокожаропрочных суперсплавов. Создают с помощью лазерного источника (3) тепла зоны (11) подвода тепла на поверхности (10) заготовки. Подают с помощью устройства (5) сварочный присадочный материал (13) в зону (11) подвода тепла и...
Тип: Изобретение
Номер охранного документа: 0002510994
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b338

Временная синхронизация в автоматизированных приборах

Изобретения относятся к временной синхронизации в автоматизированных приборах. Способ заключается в том, что сформированный в выбранном модуле (11а) базовый временной тракт передается на по меньшей мере один другой модуль (11b) и применяется для синхронизации временного такта модулей (11а,...
Тип: Изобретение
Номер охранного документа: 0002511596
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b3b0

Соединительный контактный элемент

Соединительный контактный элемент (1, 1а, 1b) имеет первый и второй соединительные контактные участки (3, 4). Соединительные контактные участки (3, 4) соединены друг с другом через центральный участок (5). Центральный участок (5) имеет уменьшающуюся зону (16, 16а, 16b), при этом уменьшающаяся...
Тип: Изобретение
Номер охранного документа: 0002511716
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b3e5

Кольцевой узел лопаток газотурбинного двигателя

Кольцевой узел лопаток газотурбинного двигателя содержит лопаточный сегмент с дуговой направляющей и лопатками, проходящими от направляющей, а также полый цилиндрический корпус, имеющий кольцевую канавку для размещения направляющей. Направляющая закреплена в кольцевой канавке посредством...
Тип: Изобретение
Номер охранного документа: 0002511770
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b3ec

Устройство сгорания

Изобретение относится к устройству сгорания, в частности газотурбинному двигателю, содержащему: трубопровод подачи топлива в устройство сгорания для обеспечения подачи всего топлива в устройство сгорания; по меньшей мере одну горелку, включающую множество трубопроводов подачи топлива по меньшей...
Тип: Изобретение
Номер охранного документа: 0002511777
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b487

Уплотнительный элемент, сопловое устройство газовой турбины и газовая турбина

Уплотнительный элемент канала утечки между наружной площадкой турбинного сопла и удерживающим ее опорным кольцом включает лепестковое уплотнение и образующую ударные струи пластину. Опорное кольцо и наружная площадка включают поверхности, расположенные перпендикулярно оси соплового сегмента и...
Тип: Изобретение
Номер охранного документа: 0002511935
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b48a

Резонатор гельмгольца для камеры сгорания газовой турбины

Резонатор с приспосабливаемой частотой (f) резонатора для поглощения звука, создаваемого газовым потоком газовой турбины (110), при этом резонатор (100) содержит горловинную секцию (102), камеру (101) и деформируемый элемент (103), выполненный с возможностью деформации под действием изменения...
Тип: Изобретение
Номер охранного документа: 0002511939
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b82d

Электрическая машина, в частности, погружной электродвигатель с защищенным статором

Изобретение относится к области электротехники и может быть использовано в погружном электродвигателе с защищенным статором. Техническим результатом является повышение прочности и коэффициента полезного действия. Электрическая машина имеет корпус (4) статора и окружающий ротор (2) электрической...
Тип: Изобретение
Номер охранного документа: 0002512876
Дата охранного документа: 10.04.2014
Показаны записи 181-190 из 943.
10.03.2014
№216.012.aa61

Конфигурирование энергетического устройства автоматизации

Данная группа изобретений относится к средствам конфигурирования энергетического устройства автоматизации. Технический результат заключается в повышении качества, скорости процесса конфигурирования энергетического устройства автоматизации, а также в уменьшении ошибок. Для этого предложено, что...
Тип: Изобретение
Номер охранного документа: 0002509332
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ab94

Монокристаллическая сварка направленно упрочненных материалов

Изобретение относится к способу лазерной наплавки упрочненного сварного шва на подложку конструктивного элемента из жаропрочного сплава с направленной ориентацией дендритов. Осуществляют подачу порошка и лазерного луча на наплавляемую поверхность подложки с расплавлением подаваемого порошка и...
Тип: Изобретение
Номер охранного документа: 0002509639
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac40

Способ эксплуатации электродуговой печи с по меньшей мере одним электродом, регулирующее и/или управляющее устройство, машиночитаемый программный код, носитель данных и электродуговая печь для осуществления способа

Изобретение относится к области металлургии, в частности к способу управления процессом плавления твердого материала в электродуговой печи. Способ включает подачу в электродуговую печь твердого материала, его расплавление посредством сформированной по меньшей мере одним электродом электрической...
Тип: Изобретение
Номер охранного документа: 0002509811
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac96

Регулировочное устройство направляющих лопаток осевого компрессора, система поворотных направляющих лопаток осевого компрессора и способ регулирования направляющих лопаток осевого компрессора

Регулировочное устройство направляющих лопаток содержит множество рядов поворотных направляющих лопаток, множество рычагов, множество регулировочных колец и регулировочный привод. Рычаги расположены на наружной стороне несущего элемента направляющих лопаток для вращения последних. Каждое из...
Тип: Изобретение
Номер охранного документа: 0002509897
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac97

Установочное устройство

Установочное устройство содержит становочный штифт, имеющий первый и второй концы, наружный корпус осевого компрессора газотурбинного двигателя и зажимную пластину для прижимания первого конца установочного штифта к первой стороне наружного корпуса. Наружный корпус имеет первую и вторую...
Тип: Изобретение
Номер охранного документа: 0002509898
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acd2

Завихритель, камера сгорания и газовая турбина с улучшенным завихрением

Завихритель для смешивания топлива и воздуха содержит множество лопастей, расположенных радиально вокруг центральной оси завихрителя, множество смешивающих каналов для смешивания топлива и воздуха. По меньшей мере, один смешивающий канал из множества смешивающих каналов задан противоположными...
Тип: Изобретение
Номер охранного документа: 0002509957
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.aceb

Устройство отображения и способ для отображения измеренных данных

Изобретение относится к измерению данных (M(t)) установки (35) передачи энергии и/или распределения энергии. Способ контроля установки (35) передачи или распределения энергии, в котором посредством множества полевых и/или управляющих приборов формируют измеренные данные M(t) установки передачи...
Тип: Изобретение
Номер охранного документа: 0002509982
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acf0

Устройство для измерения вибраций подшипников для турбомашины

Изобретение касается устройства для измерения вибраций подшипников для турбомашины и турбомашины, которая снабжена устройством для измерения вибрации подшипников. Заявленная группа устройств содержит устройство для измерения вибраций подшипников для турбомашины (1), в котором с помощью по...
Тип: Изобретение
Номер охранного документа: 0002509987
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad57

Устройство с разрядником защиты от перенапряжений

Устройство защиты содержит разрядник (1, 1a) для защиты от перенапряжений, который содержит первый (4) и второй (5) присоединительные терминалы. По меньшей мере, один присоединительный терминал (4, 5) соединен с электропроводящей присоединительной токовой цепью (6), которая установлена...
Тип: Изобретение
Номер охранного документа: 0002510090
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad5b

Вакуумная переключающая лампа

Изобретение касается вакуумной переключающей лампы (1) с корпусом, который имеет два размещенных и выполненных симметрично относительно средней плоскости (S) участка (16, 17) корпуса из изолирующего материала. Каждый из обоих участков (16, 17) корпуса из изолирующего материала включает в себя...
Тип: Изобретение
Номер охранного документа: 0002510094
Дата охранного документа: 20.03.2014
+ добавить свой РИД