×
27.10.2014
216.013.023b

Результат интеллектуальной деятельности: СЕГМЕНТАЦИЯ СЕРДЦА ПРИ ФОРМИРОВАНИИ ИЗОБРАЖЕНИЙ СЕРДЦА В ПОКОЕ И ПРИ НАГРУЗКЕ

Вид РИД

Изобретение

№ охранного документа
0002531969
Дата охранного документа
27.10.2014
Аннотация: Изобретение относится к медицине, а именно к способам и системам для формирования изображения. Пациенту в покое инъецируют первый изотопный радиоактивный индикатор. После первого периода поглощения пациент получает нагрузку и ему инъецируют второй изотопный радиоактивный индикатор. После периода поглощения второго изотопного радиоактивного индикатора первые и вторые данные изотопного формирования изображений одновременно определяются посредством устройств получения данных. Первые и вторые данные изотопного формирования изображений реконструируют в первое изображение или изображение в состоянии покоя, второе изображение или изображение в состоянии нагрузки, и опционально в комбинированное первое и второе изотопное изображение. Изображение с лучшей статистикой изображения сегментируют для генерации параметров сегментации, эти параметры сегментации применяют как к первому изображению или изображению в состоянии покоя, так и ко второму изображению или изображению в состоянии нагрузки. Таким образом, изображение, статистические показатели изображения которого могут оказаться слишком низкими для точной сегментации, точно сегментируют посредством генерации двух, по существу, выровненных изображений и применения одних и тех же параметров сегментации к ним обоим. Система выполнена с возможностью осуществления способа формирования изображений. Использование изобретения обеспечивает выравнивание изображений, соответствующих различным изотопам/радиоактивным индикаторам, а также усовершенствованную пропускную способность для пациентов. 5 н. и 10 з.п. ф-лы, 2 ил.

Настоящая заявка относится к формированию изображений с двумя изотопами и/или с двумя радиоактивными индикаторами. Она находит конкретное применение в отношении ОФЭКТ формирования изображений сердца с использованием двух изотопов и описана по отношению конкретно к ней. Однако следует принимать во внимание, что настоящую идею также можно применять к другим модальностям формирования изображений и формированию изображений других частей анатомических структур.

Изображения сердца в покое и при нагрузке типично получают на отдельных этапах получения ОФЭКТ изображения. Диагностику осуществляют посредством сравнения двух изображений, типично после автоматической сегментации изображений сердца.

Радиоактивные индикаторы на основе технеция (Tc) обладают хорошими статистическими показателями изображения и пригодны для операций сегментации. В одном протоколе Tc-изображение генерируют в одном из состояний покоя и нагрузки, и второе Tc-изображение генерируют в другом состоянии. Однако поскольку Tc вымывается относительно медленно, типично нужно ждать 4 или более часов между сеансами формирования изображений в покое и при нагрузке. Это не только замедляет пропускную способность для пациентов, но также создает проблемы выравнивания изображений при нагрузке и в покое.

В другом протоколе генерируют таллиевое (Tl) изображение в состоянии покоя, за которым следует технециевое (Tc) изображение в состоянии нагрузки. При выполнении этих двух сканирований, каждое порядка 15-25 минут, снижается пропускная способность для пациентов, что является недостатком. Кроме того, Tl-изображения обладают низкими статистическими показателями, делая сегментацию сложной и потенциально неточной, что оказывает неблагоприятное воздействие на интерпретацию изображения.

В другом протоколе сначала генерируют Tc-изображение, а затем Tl-изображение. Этот протокол обладает недостатками, схожими с протоколом, в котором сначала генерируют Tl-изображение, за которым следует Tc-изображение. Дополнительно, поскольку Tc вымывается медленно, в пациенте находится остаточный Tc во время получения Tl-данных. Tc, обладающий более высокой энергией, оставляет часть своей энергии при рассеивании. Это повышает возможность снижения рассеивания Tc до той же энергии, что Tl, затрудняя выявление различий между ними.

В настоящей заявке рассматривается новая и усовершенствованная система и способ, которые преодолевают указанные выше и другие проблемы.

Согласно одному аспекту предоставлен способ диагностического формирования изображений. Первые и вторые данные изотопного формирования изображений получают одновременно от первого изотопного радиоактивного индикатора, поглощенного субъектом в первом состоянии, и второго изотопного радиоактивного индикатора, поглощенного субъектом во втором состоянии. Полученные данные изотопного формирования изображений реконструируют для того, чтобы генерировать изображение первого состояния исходя из данных первого изотопного формирования изображений и изображение второго состояния исходя из данных второго изотопного формирования изображений. Оба изображения первого и второго состояния сегментируют на основе одного из изображений первого и второго состояния или комбинированного первого и второго изотопного изображения, которое обладает лучшими статистическими показателями изображения. Сегментированные изображения первого и второго состояния отображают одновременно.

Согласно другому аспекту предоставлена считываемая компьютером среда, эта среда несет программное обеспечение для управления компьютером для выполнения следующих этапов. Реконструируют одновременно полученные данные первого изотопного формирования изображений и данные второго изотопного формирования изображений, соответственно, в первое изотопное изображение, представляющее поглощение первого изотопного радиоактивного индикатора, инъецированного в субъект, и во второе изотопное изображение, представляющее поглощение второго изотопного радиоактивного индикатора, инъецированного в субъект, после периода поглощения первого изотопного радиоактивного индикатора после инъекции первого изотопного радиоактивного индикатора и периода поглощения второго изотопного радиоактивного индикатора перед одновременным получением данных формирования изображений с первым и вторым изотопом. Одно из первого и второго изотопного изображения, обладающее лучшими статистическими показателями изображения, или изображение, реконструированное как из первых, так и вторых данных изотопного формирования изображений, сегментируют для того, чтобы генерировать параметры сегментации. Параметры сегментации применяют к каждому из первого изотопного изображения и второго изотопного изображения.

Согласно другому аспекту предоставлена система диагностического формирования изображений. Реконструирующий процессор реконструирует одновременно полученные данные первого изотопного формирования изображений в первое изотопное изображение, представляющее поглощение первого изотопного радиоактивного индикатора, инъецированного в субъект, и данные второго изотопного формирования изображений во второе изотопное изображение, представляющее поглощение второго изотопного радиоактивного индикатора, инъецированного в субъект, после периода поглощения первого изотопного радиоактивного индикатора после инъекции первого изотопного радиоактивного индикатора и периода поглощения второго изотопного радиоактивного индикатора перед одновременным получением первых и вторых данных изотопного формирования изображений. Сегментирующий процессор сегментирует одно из первого и второго изотопного изображения, обладающее лучшими статистическими показателями изображения, или изображение, реконструированное как из первых, так и из вторых данных изотопного формирования изображений, чтобы генерировать параметры сегментации. Процессор подстройки изображения применяет параметры сегментации к каждому из первого и второго изотопного изображения для того, чтобы генерировать сегментированное первое изотопное изображение и сегментированное второе изотопное изображение. Устройство отображения одновременно отображает сегментированные первое и второе изотопное изображение.

Одно преимущество заключается в присущем выравнивании данных от различных изотопов/радиоактивных индикаторов.

Другое преимущество заключается в усовершенствованной пропускной способности для пациентов.

Другие дополнительные преимущества и выгоды станут ясны обычным специалистам в данной области техники после прочтения и осмысления следующего подробного описания.

Новшество может принимать форму в различных компонентах и компоновках компонентов и в различных этапах и последовательностях этапов. Чертежи служат лишь для целей иллюстрирования предпочтительных вариантов осуществления, и их не следует толковать как ограничивающие изобретение.

На фиг.1 приведено схематическое изображение системы диагностического формирования изображений в соответствии с настоящей идеей; и

на фиг.2 изображен способ использования.

Со ссылкой на фиг.1, устройство 10 диагностического формирования изображений, такое как система ОФЭКТ формирования изображений, имеет область 12 формирования изображений, выполненную для того, чтобы вмещать часть субъекта 14, которая должна быть сформирована в изображении. Устройства 16 получения данных формирования изображений установлены на гентри (портале) для получения данных изотопного формирования изображений. В изображенном варианте осуществления система диагностического формирования изображений представляет собой ОФЭКТ систему, в которой устройства получения данных формирования изображений включают в себя одну или несколько ОФЭКТ или гамма-камер 16, которые установлены на гентри 18 для вращения вокруг субъекта 14. Также предусмотрены другие системы формирования изображений, такие как ПЭТ, комбинированные ПЭТ или ОФЭКТ КТ, комбинированные ПЭТ или ОФЭКТ МР, или т.п.

Со ссылкой на фиг. 2, в варианте осуществления формирования изображений перфузии миокарда (ВПМ) для определения заболевания коронарной артерии (ЗКА) посредством формирования изображений ишемических областей в миокарде, субъекту в покое инъецируют 20 Tc изотопный радиоактивный индикатор. Как рассмотрено ниже, также предусмотрены другие изотопы. Пациент остается в покое 22 на срок покоя или поглощения первого изотопа, например 30-60 мин. Затем субъект получает нагрузку 24 и ему инъецируют 26 Tl изотопный радиоактивный индикатор. Как рассмотрено ниже, второй радиоактивный индикатор может содержать другие изотопы. После выжидания 28 продолжительности нагрузки или поглощения второго изотопа, типично приблизительно 15-30 мин, сканер 10 начинает одновременно получать данные 30 формирования изображений от обоих изотопов.

Одновременно полученные первые и вторые данные изотопного формирования изображений и, опционально, информацию о селекции хранят в буфере 40 данных формирования изображений. Процессор 42 коррекции осуществляет этап 43 коррекции для того, чтобы опционально корректировать одно или несколько из затухания, рассеивания, пространственного разрешения, перекрестного загрязнения и т.п. Опционально, программа алгоритма процессора сердечной или физиологической селекции (синхронизации) или другое средство 44 селектирует или сортирует 45 данные по фазе сердечного или физиологического цикла субъекта. Энергетический дискриминатор 46 осуществляет операцию отсечения по энергии 48 для того, чтобы разделить данные формирования изображений, соответствующие многочисленным полосам дискриминации энергии. Другие полосы дискриминации энергии также можно использовать для измерения свойств затухания сигнала, относящегося к субъекту, измерения фонового рассеивания или т.п. Данные полосы дискриминации энергии хранят в отдельных блоках памяти для полосы дискриминации энергии.

Один или несколько реконструирующих процессоров 56 реконструируют 58 данные формирования изображений по одному или нескольким блокам памяти для полосы дискриминации энергии. Результирующие реконструированные изображения хранят в первом блоке 601 памяти изображения/изотопа, втором блоке 602 памяти изображения/изотопа и блоке 60C памяти комбинированного изотопного изображения, соответственно. Реконструирующий процессор может осуществлять коррекцию в ответ на затухание, рассеивание и сигнал коллиматора. В одном варианте осуществления данные из многочисленных или всех полос дискриминации энергии реконструируют одновременно, по существу, осуществляя коррекцию в ответ на затухание, рассеивание и сигнал коллиматора. В другом варианте осуществления каждое изотопное изображение итерационно реконструируют из специфичного для изотопа поднабора энергий на отдельных этапах, осуществляя коррекцию в ответ на затухание, рассеивание и сигнал коллиматора. В еще одном другом варианте осуществления реконструкцию осуществляют на отдельных этапах для каждого изотопного изображения в специфичном для изотопа поднаборе полос дискриминации энергии.

Один или несколько процессоров 70 содержат процессор, алгоритм, программу или другое средство 72 обнаружения сердца для обнаружения 74 сердца субъекта на реконструированных изображениях. Процессор 70 работает с изображением с сильнейшими статистическими показателями. Когда первым и вторым изотопами являются Tc и Tl, Tc типично имеет лучшие статистические показатели. В альтернативном варианте осуществления, в котором генерируют комбинированное изображение, процессор 70 может работать с комбинированным изображением. Поскольку данные для всех изотопов получают одновременно, все изображения являются, по существу, выравненными, обычно масштабированными и т.п. Процессор, программа, алгоритм или другое средство 76 переориентации вычисляет по изображению с наилучшими статистическими показателями шума параметры 78 переориентации, которые переориентируют главные оси сердца с выравниванием по предварительно выбранным направлениям или осям. Например, левый желудочек ориентируют по вертикальной оси. Процессор 70 дополнительно содержит процессор, программу, алгоритм или другое средство 80, которое сегментирует 82 переориентированное изображение сердца с наилучшими статистическими показателями шума. Один или несколько процессоров, алгоритмов, программ или других средств 84 подстройки изображения применяют 86 параметры сегментации, параметры переориентации и т.п. к каждому из Tc и Tl-изображений для того, чтобы генерировать выравненные и обычно сегментированные Tc и Tl-изображения, которые хранят в блоке 881 памяти первого изображения и блоке 882 памяти второго изображения, соответственно.

Более конкретно, сегментирование изображения с наилучшими статистическими показателями шума можно выполнять автоматически, вручную или с использованием комбинации этих двух. Во время сегментации области изображения, соответствующие выбранным структурам, например, сердце, левый желудочек, аорта, печень или т.п., сегментируют, например, очерчивают для того, чтобы определить область изображения, соответствующую каждой физиологической структуре или области сердца. Как только изображение с наилучшими статистическими показателями шума было сегментировано, его параметры сегментации, например, определяемые области, налагают на или иным образом применяют к другому изображению(ям) для того, чтобы сегментировать его. Таким образом процесс сегментации осуществляют один раз, а параметры сегментации применяют ко всем соответствующим изображениям.

Монитор 90 одновременно отображает выравненные и обычно сегментированные Tc- и Tl- или другие первое и второе изотопное изображение. Опционально, процессор 92 наложения накладывает 94 сегментированные Tc- и Tl-изображения так, что монитор 90 одновременно отображает 96 наложенными два изображения, например, с различными цветовыми кодированиями.

Если данные получают в режиме селекции, то осуществляют селекционную реконструкцию на данных изотопного формирования изображений с наилучшими статистическими показателями изображения или на комбинированных данных. В режиме селекции полученные данные отделяют по положению движения фазы сердечного или физиологического цикла. Например, сердечный цикл можно разделить на 10 фаз. Данные из каждой фазы можно реконструировать и осуществить коррекцию в ответ на затухание, рассеивание и сигнал коллиматора, чтобы генерировать изображение сердца в соответствующей фазе сердечного цикла. Поскольку в каждой фазе находится только дробная часть данных, рассмотренные выше проблемы сегментации для изотопа или энергетических уровней с худшими статистическими показателями шума усиливаются. Изображение выбранной фазы с наилучшими статистическими показателями шума или изображение выбранной фазы из комбинированных данных сегментируют снова и применяют параметры сегментации к изображению(ям) выбранной фазы от другого изотопа(ов).

Процессор 70 дополнительно содержит процессор, программу, алгоритм или другое средство 100 оценки движения, которое оценивает движение или изменение положения среди селектированных фаз. Процессор, программа, алгоритм или другое корректирующее движение средство 102 генерирует параметры коррекции движения, которые используют в процессе 86 подстройки изображения для осуществления операции 104 коррекции движения одновременно на первом и втором изотопном изображении или которые можно подать обратно в реконструирующий процессор 56 для повторного осуществления реконструкции с использованием параметров движения для присущей коррекции движения. Параметры оценки движения можно использовать, например, для создания пространственного преобразования для преобразования изображения из одной фазы сердечного или физиологического цикла в другую. Например, изображения, селектированные по дыханию, можно пространственно преобразовать в конечную фазу выдоха. Параметры коррекции движения определяют по изображению с наилучшими статистическими показателями шума или по комбинированному изображению в каждой фазе. Параметры коррекции движения, например пространственное преобразование, затем применяют к другому изотопному изображению(ям) в той же фазе. Как только изображения фазы преобразованы для заданной фазы, все изображения фазы для заданного изотопа преобразуют в ту же фазу и комбинируют. Параметры движения также можно подать обратно в реконструирующий процессор для присущей коррекции движения во время реконструкции.

Несмотря на то, что на фиг. 2 коррекция движения показана после ориентации сердца, следует принимать во внимание, что ее можно выполнять в других, в частности более ранних, точках в процессе. Таким образом, селектированные изотопные данные из отдельной или комбинированной полосы дискриминации с хорошими статистическими показателями шума используют для селекции и коррекции движения в данных изображений от изотопа, чьи статистические показатели слишком низки для селекции и коррекции движения. Селекцию и коррекцию движения также можно выполнять во время реконструкции.

Оценку движения или пространственное корректирующее преобразование также можно использовать для преобразования параметров сегментации или определяемых областей из одной фазы в другую. Таким образом, фазовое изображение, реконструированное из полос(ы) дискриминации энергии с наилучшими статистическими показателями шума, можно сегментировать, и параметры сегментации можно преобразовывать и применять к другим фазовым изображениям того же изотопа и к другим фазовым изображениям другого изотопа.

Несмотря на то, что один процессор 70 изображен выполняющим несколько функций или процессов, следует принимать во внимание, что каждую функцию или процесс можно выполнять посредством специализированного процессора, ASIC или т.п. Кроме того, функции или процессы можно разделить различными способами и в различных сочетаниях среди множества процессоров.

В другом варианте осуществления Tl-201 используют для перфузии в покое, за которой следует Tc-99m для исследования с нагрузкой. В другом варианте осуществления за исследованием перфузии в покое с Tc-99m следует исследование с нагрузкой с Tl-201. В другом варианте осуществления Tc-99m используют для перфузии, а I-123-BMIPP используют для метаболического измерения, оба в покое, чтобы получить информацию о хронической ишемии или инфаркте миокарда и жизнеспособности ткани. В другом варианте осуществления за тестом перфузии с нагрузкой на основе Tc-99m в течение короткого времени (например, менее 4 часов) следует исследование в покое, объединяющее повторную инъекцию Tc-99m для перераспределения и I-123-BMIPP для измерения ишемической памяти. В другом варианте осуществления за измерением с нагрузкой с Tc-99m-ECDG для определения нарушения перфузии в течение короткого времени следует измерение в покое с I-123-BMIPP для ишемической памяти. В другом варианте осуществления выполняют сочетания измерений перфузии с Tc-99m и искусственной иннервации с I-123-MIBG. Эти способы не ограничены ОФЭКТ сердца. Их можно применять к любым многочисленным изотопным протоколам ОФЭКТ формирования изображений/применениям, где осуществляют сегментацию или коррекцию движения, а также к ПЭТ, функциональной МРТ и другим модальностям «формирования изображений».

Изобретение описано касательно предпочтительных вариантов осуществления. Модификации и изменения могут возникнуть при прочтении и осмыслении предшествующего подробного описания. Предполагают, что изобретение следует толковать как включающее все такие модификации и изменения в такой мере, в какой они входят в объем приложенной формулы изобретения или ее эквивалентов.


СЕГМЕНТАЦИЯ СЕРДЦА ПРИ ФОРМИРОВАНИИ ИЗОБРАЖЕНИЙ СЕРДЦА В ПОКОЕ И ПРИ НАГРУЗКЕ
СЕГМЕНТАЦИЯ СЕРДЦА ПРИ ФОРМИРОВАНИИ ИЗОБРАЖЕНИЙ СЕРДЦА В ПОКОЕ И ПРИ НАГРУЗКЕ
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
12.01.2017
№217.015.6381

Устройство прямого проецирования

Изобретение относится к области проецирования через изображение. Технический результат - обеспечение повышения качества смоделированных проекционных данных посредством уменьшения искажений. Устройство прямого проецирования для выполнения прямой проекции через изображение содержит: блок...
Тип: Изобретение
Номер охранного документа: 0002589386
Дата охранного документа: 10.07.2016
Показаны записи 891-900 из 1 329.
20.10.2015
№216.013.8457

Система и способ для отслеживания точки взгляда наблюдателя

Группа изобретений относится к области медицины. Система для отслеживания точки взгляда наблюдателя, наблюдающего объект, содержит устройство для регистрации изображения глаза наблюдателя, средство для предоставления светящегося маркера на наблюдаемом объекте или связанного с ним и средство для...
Тип: Изобретение
Номер охранного документа: 0002565482
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.846f

Автономное связывание информационных записей о пациенте, хранимых в различных объектах

Изобретение относится к связыванию соответствующих информационных записей о пациентах. Техническим результатом является повышение достоверности связывания соответствующих информационных записей о пациентах. Множество объектов имеет соответствующие базы данных пациентов, содержащие...
Тип: Изобретение
Номер охранного документа: 0002565506
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8470

Система и способ для улучшения качества изображения

Изобретение относится к системе и способу улучшения данных изображения и находит применение в компьютерной томографии. Технический результат заключается в снижении шума получаемых данных изображения. Технический результат достигается за счет способа, который включает в себя генерацию улучшенных...
Тип: Изобретение
Номер охранного документа: 0002565507
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8473

Система для быстрой и точной количественной оценки черепно-мозговой травмы

Изобретение относится к способу автоматической сегментации структур мозга. Техническим результатом является повышение точности и надежности идентификации структурной атрофии после черепно-мозговой травмы. Способ содержит этапы, на которых выбирают в качестве интересующей анатомической структуры...
Тип: Изобретение
Номер охранного документа: 0002565510
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.847e

Обработка набора данных изображения

Изобретение относится к формированию обработанного набора данных изображения. Техническим результатом является повышение точности обработки набора данных изображения пациента. Система содержит: множество наборов данных параметров, причем набор данных параметров соответствует клинически...
Тип: Изобретение
Номер охранного документа: 0002565521
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84b7

Конфигурационный блок и способ конфигурирования датчика обнаружения присутствия

Изобретение относится к управлению источниками освещения. Техническим результатом является обеспечение улучшенной, более эффективной конфигурации датчика. Упомянутый технический результат достигается тем, что конфигурационный блок (1) функционально соединен с передатчиком (4) и множеством...
Тип: Изобретение
Номер охранного документа: 0002565578
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84b8

Керамическое осветительное устройство

Изобретение относится к области светотехники. Техническим результатом является повышение эффективности теплоотвода и упрощение конструкции. Осветительное устройство (100) содержит источник (110) света, скомпонованный для генерации света, несущий элемент (120), скомпонованный для поддержки...
Тип: Изобретение
Номер охранного документа: 0002565579
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84bb

Устройство управления освещением

Изобретение относится к области светотехники. Устройство управления освещением предназначено для управления одним или несколькими параметрами освещения каждого источника света. Устройство управления освещением содержит по меньшей мере первый элемент взаимодействия с пользователем, блок...
Тип: Изобретение
Номер охранного документа: 0002565582
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84bd

Инструментальное средство освещения для создания световых сцен

Изобретение относится к области светотехники. Инструментальное средство освещения для задания параметров освещения множества источников (1) света. Обеспечен процессор (2), который имеет возможность соединения с множеством источников (1) света и выполнен с возможностью управления параметрами...
Тип: Изобретение
Номер охранного документа: 0002565584
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84c8

Детектор контакта с кожей

Изобретение относится к устройствам личной гигиены. Технический результат - обеспечение эффективного контакта с кожей во время фотоэпиляции. Детектор кожи содержит генератор сигнала для генерирования электрического запускающего сигнала; контрольную схему, содержащую емкость (C) и сопротивление...
Тип: Изобретение
Номер охранного документа: 0002565595
Дата охранного документа: 20.10.2015
+ добавить свой РИД