×
27.10.2014
216.013.020a

ДВУХВАЛЕНТНЫЕ И ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ НИКОТИНА С ОКСО-МОСТИКОМ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002531920
Дата охранного документа
27.10.2014
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к гетероциклическому производному никотина с оксо-мостиком, выбранному из соединений, имеющих структуру, описываемую формулами (А) или (В), либо к их оптическому изомеру: где R представляет собой азото-, кислородо- и/или серосодержащий пяти- или шестичленный гетероцикл; галогенированный азото-, кислородо- и/или серосодержащий пяти- или шестичленный гетероцикл; либо замещенный или незамещенный фенил, где заместитель представляет собой галоген; R и R вместе образуют -CH-CH- или -CH-CH-CH-; R, R, R, R и R представляют собой водород; и Y представляет собой нитро. Также раскрываются агрохимические композиции для уничтожения или профилактики вредителей сельского хозяйства, содержащие указанные соединения. Технический результат: получены новые соединения формул (А) и (В), которые могут найти применение в сельском хозяйстве для уничтожения ряда вредителей сельского хозяйства, включая равнокрылых и чешуекрылых вредителей, таких как тли, носатки, белокрылки, цикады, большинство трипсов, хлопковых коробочных червей, капустных гусениц, капустную совку, хлопковых гусениц и гусениц. 5 н. и 15 з.п. ф-лы, 2 табл., 13 пр.
Реферат Свернуть Развернуть

Область техники

Настоящее изобретение относится к новому производному никотинового инсектицида, и способам его получения и применения. В частности, настоящее изобретение относится к нитрометиленовым аналогам имидаклоприда и двухвалентным гетероциклическим производным никотина с оксо-мостиком (или соединениям неоникатиноидам), созданным при помощи диальдегидов и способам их получения.

Предшествующий уровень техники

Новые производные никотиновых пестицидов, представленные имидаклопридом, обладают высокой инсектицидной активностью, широким инсектицидным спектром и низкой токсичностью для млекопитающих и водных животных, благоприятными систематическими свойствами и подходящей полевой стабильностью, а также экологичностью; поэтому стали важными стартовыми точками для новых агрохимических открытий. Впоследствии была последовательно обнаружена серия производных никотиновых инсектицидов, таких как тиаклоприд, клотианидин, тиаметоксам, ацетамиприд, нитенпирам и динотефуран (см. европейские патенты 247477, 296453, 685477, 235725, 235725, 315826, 192060, 244777, 0386565, 580553 и 1031556, а также японские патенты 62292765, 8259568, 8291171 и 7242633).

Однако, поскольку частое и чрезмерное использование имидаклоприда вызывало серьезные проблемы устойчивости и структурное сходство среди производных никотина привело к перекрестной устойчивости, применение этого класса соединений было, в определенной степени, ограничено и ограничена разработка новых соединений этого класса. Между тем, производные никотина прежде всего являются инсектицидами против равнокрылых и жесткокрылых, и их относительно узкий инсектицидный спектр также ограничивает их применение в борьбе с вредителями.

Поэтому в области структурной модификации соединений нитрометилена с высокой активностью для получения новых, еще более эффективных инсектицидов актуальным является решение проблемы устойчивости никотиновых производных инсектицидов, расширение инсектицидного спектра и применение тех же самых инсектицидных составов.

Краткое описание изобретения

Настоящее изобретение относится к новым, более эффективным инсектицидам и, таким образом, решает проблемы устойчивости производных никотиновых инсектицидов, расширяет инсектицидный спектр и решает проблемы предыдущего уровня техники.

Целью настоящего изобретения является обеспечение соединения, которое весьма эффективно в борьбе с вредителями, а также способ его получения.

Другой целью настоящего изобретения является обеспечение защиты для предотвращения зерновых культур от атак и вторжения насекомых в период роста и сбора урожая.

В одном из аспектов настоящее изобретение предлагает гетероциклическое производное никотина с оксо-мостиком, которое выбрано из соединений формулы (А) или (Б), или их оптического изомера, или агрохимически приемлемой соли:

где:

R1 представляет собой азото-, кислородо- и/или серосодержащий пяти- или шестичленный гетероцикл; галогенированый азото-, кислородо- и/или серосодержащий пяти- или шестичленный гетероцикл; или, замещенный или незамещенный фенил, где заместитель выбран из одной или нескольких следующих групп: галоген, C1-4 галогенированные алкильные или C1-4 хлорированные алкокси;

R3 и R4 представляют собой независимо друг от друга: водород, C1-6 алкил, аллил, бензил, C1-4 алкокси-С1-4 алкил, С1-4 алкокси-карбонил; феноксикарбонил, С3-6 алкинил-карбонил, C2-3 алкенил-карбонил, С3-6 циклоалкил-карбонил, бензоил; или бензоил, фуранилкарбонил или N,N-диметилкарбонил, замещенный одним или несколькими заместителями, выбранными из атомов галогена, C1-4 алкила, C1-4 гало-алкила, C1-4 алкокси и С1-4 алкил-карбонила, или R3 и R4 коллективных форм -СН2-СН2-, -СН2-СН2-СН2- или -CH2-XR-CH2, где Х представляет собой гетероатом и R является заместителем у гетероатома, выбранным из водорода, C1-6 алкила, аллила, бензила, фенила; C1-4 алкокси - C1-4 алкила; C1-4 алкокси-карбонила; феноксикарбонила, С2-6 алкинил-карбонила, C2-3 алкенил-карбонила, С3-6 циклоалкил-карбонила; бензоила; или бензоила, фуранилкарбонила, или N,N-диметилкарбонила, замещенного одним или несколькими заместителями, выбранными из атомов галогена, C1-4 гало-алкила, C1-8 насыщенных или ненасыщенных алкилов или алкокси и C1-4 алкил-карбонила;

R5, R6, R7, R8 и R9 представляют собой водород, насыщенный или ненасыщенный C1-4 алкил, галоген, C1-8 насыщенный или ненасыщенный алкокси, C1-4 галогенированный насыщенный или ненасыщенный алкокси, C1-4 алкил-карбонил, C1-8 алкил-эфир, C1-4 алкил-сульфонат, фенил или бензил и

Y представляет собой нитро, циано, трифторметил, трифторацетил или трифторметансульфонил.

В предпочтительном варианте гетероциклическое производное никотина с оксо-мостиком выбирают из следующих групп:

, ,

, ,

, ,

, ,

, и .

В другом предпочтительном варианте, гетероциклическое производное никотина с оксо-мостиком выбирают из следующих групп:

и .

В другом предпочтительном варианте гетероциклическое производное никотина с оксо-мостиком является антагонистом никотиновых ацетилхолиновых рецепторов у насекомых.

В другом предпочтительном варианте активность гетероциклических производных никотина с оксо-мостиком (1а) и (1b) против устойчивых к имидаклоприду коричневых цикадок и табачной белокрылки в от 2 до 30 раз выше, чем имидаклоприда.

В другом аспекте настоящее изобретение предлагает агрохимическую композицию, которая включает в себя:

(а) от 0,001 до 99,99 масс.% вышеупомянутого гетероциклического производного никотина с оксо-мостиком, его оптического изомера, или агрохимически приемлемой соли, или их комбинации, а также

(б) агрохимически приемлемый носитель и/или эксципиент.

В другом аспекте настоящее изобретение относится к применению указанной агрохимической композиции для уничтожения или профилактики вредителей сельского хозяйства, санитарных вредителей и вредителей, угрожающих здоровью животных, или в качестве инсектицидной композиции для уничтожения или профилактики вредителей сельского хозяйства, санитарных вредителей и вредителей, угрожающих здоровью животных.

В другом аспекте настоящее изобретение предлагает способ уничтожения и/или профилактики вредителей, включающий применение вышеупомянутой агрохимической композиции для страдающих растений, или которые могут пострадать от вредителей, а также для окружающей их почвы и окружающей среды.

В другом аспекте настоящее изобретение относится к применению вышеупомянутого соединения, оптического изомера, или их агрохимически приемлемой соли, или их комбинации для получения инсектицидной композиции.

В еще одном аспекте настоящее изобретение предлагает способ получения вышеупомянутого соединения, или оптического изомера, или их агрохимически приемлемой соли, включающий следующие стадии:

получение соединения формулы (А) или (Б) реакцией соединения формулы (а) с соединением формулы (б) или (с) при комнатной температуре в присутствии каталитического количества кислоты

где R1, R3, R4, R5, R6, R7, R8, R9 и Y приведены выше.

В предпочтительном варианте вышеупомянутый способ включает в себя следующие стадии:

получение соединения формулы (1а) путем проведения следующей реакции от 2 до 24 часов в ацетонитриле при комнатной температуре в присутствии каталитического количества кислоты:

;

получение соединения формулы (1b) путем проведения следующей реакции от 2 до 24 часов в ацетонитриле при комнатной температуре в присутствии каталитического количества кислоты:

;

получение соединения формулы (1с) путем проведения следующей реакции от 2 до 24 часов в ацетонитриле при комнатной температуре в присутствии каталитического количества кислоты:

;

получение соединения формулы (1d) путем проведения следующей реакции от 2 до 24 часов в ацетонитриле при комнатной температуре в присутствии каталитического количества кислоты:

;

получение соединения формулы (2а) путем проведения следующей реакции от 2 до 24 часов в ацетонитриле при комнатной температуре в присутствии каталитического количества кислоты:

;

получение соединения формулы (2b) путем проведения следующей реакции от 2 до 24 часов в ацетонитриле при комнатной температуре в присутствии каталитического количества кислоты:

;

получение соединения формулы (2с) путем проведения следующей реакции от 2 до 24 часов в ацетонитриле при комнатной температуре в присутствии каталитического количества кислоты:

;

получение соединения формулы (2d) путем проведения следующей реакции от 2 до 24 часов в ацетонитриле при комнатной температуре в присутствии каталитического количества кислоты:

;

получение соединения формулы (1е) путем проведения следующей реакции от 2 до 24 часов в ацетонитриле при комнатной температуре в присутствии каталитического количества кислоты:

;

и получение соединения формулы (2е) путем проведения следующей реакции от 2 до 24 часов в ацетонитриле при комнатной температуре в присутствии каталитического количества кислоты:

.

Примеры

Через экстенсивные и интенсивные исследования, основанные на структуре нитрометилена имидаклоприда существующих производных нитрометилена имидаклоприда никотиновых инсектицидов, изобретатели настоящего изобретения при взаимодействии диальдегида с соединением нитрометилена имидаклоприда синтезировали новое производное никотина, которое имеет заметно улучшенную инсектицидную активность и обладает широким инсектицидным спектром. Авторы настоящего изобретения осуществили данное изобретение на основе вышеописанного.

Определения функциональных групп

Используемый здесь термин "С1-6 алкил" относится к алкилу с нормальной или разветвленной цепью, имеющему от одного до шести атомов углерода, такому как метил, этил, пропил, изопропил, бутил, изобутил, втор-бутил, трет-бутил или аналогичным группам.

Термин "C1-4 алкокси" относится к нормальному или разветвленному алкоксилу, имеющему от одного до четырех атомов углерода, такому как метокси, этокси, пропокси, изопропокси, бутокси, изобутокси, втор-бутокси, трет-бутокси или аналогичным группам.

Термин "галоген" относится к фтору, хлору, брому или йоду. Термин "галогенированный" относится к группе, замещенной одним или более, различными или одинаковыми атомами вышеупомянутых галогенов, такой, как трифторметил, пентафторэтил или аналогичным группам.

Термин "пяти- или шестичленный гетероцикл" относится к пяти- или шестичленному кольцу, содержащему один или несколько гетероатомов, выбранных из азота, кислорода или серы, таких, как пиридил, тиазолил, пиримидил, тетрагидрофуранил, оксазолил и т.п.

Способ получения соединения по настоящему изобретению Соединение по настоящему изобретению может быть синтезировано по стадиям реакции, описанным выше.

В одном конкретном варианте осуществления настоящего изобретения способ синтеза соединения формулы (1а) выглядит следующим образом:

В одном конкретном варианте осуществления настоящего изобретения способ синтеза соединения формулы (1b) выглядит следующим образом:

.

В одном конкретном варианте осуществления настоящего изобретения, способ синтеза соединения формулы (1с) выглядит следующим образом:

.

В одном конкретном варианте осуществления настоящего изобретения способ синтеза соединения формулы (1d) выглядит следующим образом:

.

В одном конкретном варианте осуществления настоящего изобретения способ синтеза соединения формулы (2а) выглядит следующим образом:

.

В одном конкретном варианте осуществления настоящего изобретения способ синтеза соединения формулы (2b) выглядит следующим образом:

.

В одном конкретном варианте осуществления настоящего изобретения способ синтеза соединения формулы (2с) выглядит следующим образом:

.

В одном конкретном варианте осуществления настоящего изобретения способ синтеза соединения формулы (2d) выглядит следующим образом:

.

В одном конкретном варианте осуществления настоящего изобретения способ синтеза соединения формулы (1е) выглядит следующим образом:

.

В одном конкретном варианте осуществления настоящего изобретения способ синтеза соединения формулы (2е) выглядит следующим образом:

.

В одном из вариантов изобретения соединения формул (1а) - (1е) могут быть получены в следующих реакциях:

смешанный раствор 2,5-диэтокси тетрагидрофурана (2 г, 12,5 ммоль) и водного раствора соляной кислоты (0,1 М, 10 мл) нагревали до 90°С и проводили реакцию в течение одного часа, а затем охлаждали до комнатной температуры. Ацетонитрил (40 мл) и нитрометиленовый аналог имидаклоприда (10 ммоль) добавляли в реакцию и перемешивали систему при комнатной температуре.

Реакцию контролировали с помощью тонкослойной хроматографии, а после завершения реакции нейтрализовали смесь насыщенным водным раствором бикарбоната натрия. Систему экстрагировали, удаляли растворитель при пониженном давлении и осуществляли разделение с помощью колоночной хроматографии (элюент: дихлорметан/ацетон = 3/1 (V/V)), чтобы получить бледно-желтый порошок, т.е. продукт.

В другом варианте соединения по формулам (2а)-(2е) могут быть получены в следующих реакциях.

Нитрометиленовый аналог имидаклоприда (5 ммоль), 30 мл безводного ацетонитрила, 3 мл 25% водного раствора глутарового альдегида и каталитическое количество соляной кислоты помещали в 50 мл круглодонную колбу. Реакцию перемешивали при комнатной температуре и контролировали с помощью тонкослойной хроматографии. После завершения реакции, систему нейтрализовали насыщенным водным раствором бикарбоната натрия и экстрагировали. Растворитель удаляли при пониженном давлении и осуществляли разделение путем колоночной хроматографии (элюент: дихлорметан/ацетон = 3/1 (V/V)), чтобы получить бледно-желтый порошок, т.е. продукт.

Инсектицидная активность действующего вещества настоящего изобретения

Термин "активное вещество по настоящему изобретению" или "активное соединение по настоящему изобретению" означает соединение по настоящему изобретению, или оптический изомер, или их агрохимически приемлемую соль, обладающие значительно улучшенной инсектицидной активностью и широким инсектицидным спектром.

Термин "агрохимически приемлемая соль" означает, что анион такой соли, формирующий агрохимически приемлемые соли инсектицидов, известен или приемлем. Предпочтительно, чтобы такая соль растворялась в воде. Подходящие соли присоединения кислоты образуются из соединений формул (А) и (Б), включают соль, образованную неорганической кислотой, такую как гидрохлорид, фосфат, сульфат и нитрат, и соль, образованную органической кислотой, такую как ацетат или бензоат.

Активное вещество по настоящему изобретению может быть использовано для контроля и уничтожения различных вредителей растений сельского и лесного хозяйства, вредителей зерновых хранилищ, вредителей, которые наносят ущерб общественному здравоохранению, вредителей, которые наносят ущерб здоровью животных, и тому подобных. В настоящем описании "инсектицид" представляет собой любое вещество, которое обладает эффектом профилактики или контроля всех вышеупомянутых вредителей. Примеры вредителей включают, но не ограничиваются, жесткокрылых насекомых: Sitophilus zeamais, Tribolium castaneum, Henosepilachna vigintioctomaculata, Henosepilachna sparsa, Agriotes fuscicollis, Anomala cupripes, Popillia quadriguttata, Monolepta hieroglyphica, Monochamus alternatus, Echinocnemus squameus, Basiprionota bisignata, Anoplophora chinensis, Apriona germari, Scolytus schevy, или Agriotes fuscicollis; чешуекрылых насекомых: Lymantha dispar, Malacosoma neustria testacea, Diaphania perspectalis, Clania variegata, Cnidocampa flavescens, Dendrolimus punctatus, Orgyia gonostigma, Paranthrene tabaniformis, Spodoptera litura, Chilo suppressalis, Ostrinia nubilalis, Ephestia cautella, Adoxophyes orana, Laspeyresia splendana, Agrotis fucosa, Galleria mellonella, Plutella xylostella, Phyllocnistis citrella, Mythimna separata; равнокрылых насекомых: Nephotettix cincticeps, Nilaparvata lugens, Pseudococcus comstocki, Unaspis yanonensis, Myzus persicae, Aphis gossypii, Lipaphis erysimi pseduobrassicae, Stephanitis nashi или Bemisia tabaci; прямокрылых насекомых: Blattella germanica, Periplaneta americana, Gryllotalpa afhcana, или Locus migratoria; или термитов: Solenopsis invicta или Coptotermes formasanus; двукрылых насекомых: Musca domestica, Aedes aegypti, Delia platura, Culex sp. или Anopheles sinensis. Вредители, которые наносят ущерб здоровью животных, включая Boophilus microplus, Haemaphysalis longicomis, Hyalomma anatolicum, Hypoderma spp., Fasciola hepatica, Moniezia benedeni, Ostertagia spp., Trypanosoma evansi, Babes/a bigemina и тому подобные.

Соединение настоящего изобретения является особенно эффективным в отношении насекомых сельского и лесного хозяйства, имеющих колюще-сосущий или режуще-сосущий ротовой аппарат, таких как тля, цикады, носатки, трипсы, белокрылки и тому подобные.

Инсектицидные композиции, содержащие активное вещество по настоящему изобретению

Обычный метод может быть использован для получения инсектицидных композиций из активных веществ по настоящему изобретению. Такие активные соединения могут быть превращены в обычные препараты, такие как растворы, эмульсии, суспензии, порошки, пены, пасты или гранулы, аэрозоли, пропитанные активным веществом натуральные или синтетические материалы, микрокапсулы в полимере, комплекс, используемый для покрытия семян; препараты, которые будут использоваться вместе с устройством сгорания, таким как картридж фумигатора, фумигаторный флакон или фумигаторная пластина, и генераторы холодного и горячего тумана сверхнизких объемов.

Эти препараты могут быть получены с использованием известных методов, например, путем смешивания действующего вещества(веществ) и наполнителей, где наполнителями являются разбавители или носители в виде жидкости, сжиженного газа или твердого, при необходимости с поверхностно-активными веществами, т.е. эмульгаторами, и/или диспергирующими агентами, и/или пенообразующими агентами. Например, если вода используется в качестве наполнителя, в качестве вспомогательного растворителя также может быть использован органический растворитель.

Как правило, обычно используют жидкие растворители в качестве разбавителей или носителей, например: ароматические углеводороды, такие как ксилол, толуол, или алкилнафталины, хлорированные ароматические и хлорированные алифатические углеводороды, такие как хлорбензол, винилхлорид или дихлорметан, алифатические углеводороды, такие, как циклогексан или парафин, такой как фракция минерального масла; спирты, такие как этанол, этиленгликоль, а также простые и сложные эфиры; или кетоны, такие как ацетон, метилэтилкетон, метилизобутилкетон и циклогексанон, или реже используемые полярные растворители, такие какдиметилформамид, диметилсульфоксид и вода. Разбавитель или носитель в виде сжиженного газа относится к жидкостям, которые являются газообразными при нормальной температуре и атмосферном давлении, например, аэрозольные пропелленты, такие как галогенированные углеводороды, также как и пропан, бутан, азот и углекислый газ.

Твердые носители включают измельченные природные минералы, такие как: каолин, глина, тальк, кварц, активированная глина, монтмориллонит или кизельгур, или измельченные синтетические минералы, такие как мелкодисперсная кремниевая кислота, оксид алюминия и силикаты. Твердым носителем, используемым для гранул, служат дробленый и отсортированный природный циркон, такие как кальцит, мрамор, пемза, сепиолит и доломит, а также гранулы, синтезированные из неорганического или органического крупного порошка, и органические материалы, такие как гранулы из опилок, скорлупы кокосового ореха, початков кукурузы, табака или стеблей и тому подобного.

Неионные или анионные эмульгаторы могут быть использованы как эмульгаторы и/или пенообразующие агенты. Примеры включают в себя: полиоксиэтилены - эфиры жирных кислот и полиоксиэтилены - эфиры жирных спиртов, таких как эфиры алкиларилполиэтиленгликоля, эфиры алкилсульфонатов, эфиры алкилсульфатов, эфиры арилсульфонатов и продуктов гидролиза альбумина. Дисперсионные вещества включают, к примеру, отходы лигнин-сульфита и метилцеллюлозу.

В препаратах можно использовать клей, такой как карбоксиметилцеллюлоза и природные или синтетических полимеры (например, гуммиарабик, поливиниловый спирт и поливинилацетат), в виде порошков, гранул или эмульсий. Также может быть использован краситель, например неорганический краситель (к примеру, оксид железа, оксид кобальта или берлинская лазурь), или органический краситель (такой как азокраситель или металлической фталоцианиновый краситель), а также микроэлементы, такие как соли железа, марганец, бор, медь, кобальт, алюминий и цинк и тому подобные.

Эти активные соединения по настоящему изобретению могут, вместе с другими активными веществами, изготавливаться в смеси современного коммерческого препарата или лекарственной формы, изготовленной из коммерческого препарата; вышеупомянутые другие активные вещества включают, но не ограничиваются ими: инсектициды, приманки, бактерициды, акарициды, нематоциды, фунгициды, регуляторы роста и тому подобные. Инсектициды включают, к примеру, фосфатные эфиры, карбаминовые эфиры, эфир пиретрума, хлорированные углеводороды, бензоилмочевину, нейротоксины и вещества, вырабатываемые микроорганизмами, такими как абамектин.

Кроме того, эти активные соединения по настоящему изобретению могут также, вместе с синергистом, быть в смеси современного коммерческого препарата или лекарственной формы, приготовленной из этих коммерческих препаратов. Синергистом является соединение, которое усиливает действие активных веществ; синергисты не обязательны, так как активные вещества активны по своей природе.

Как правило, препараты содержат 0,001 до 99,99 масс.% от веса активных соединений настоящего изобретения, предпочтительнее от 0,01 до 99,9 масс.%, более предпочтительно от 0,05 до 90 масс.%, по массе вышеупомянутого инсектицидного состава. Концентрация активных веществ в лекарственной форме, полученной из коммерческого препарата, может варьироваться в широких пределах. Концентрация активных веществ в лекарственной форме может быть между 0,0000001 до 100% (г/об), предпочтительно от 0,0001 до 1%.

Примеры

Изобретение будет проиллюстрировано ниже со ссылкой на следующие примеры. Следует понимать, что эти примеры лишь иллюстрируют настоящее изобретение, но не ограничивают объем изобретения. Экспериментальные способы без указания конкретных условий, описанные в следующих примерах, как правило, выполняются в обычных условиях или в соответствии с инструкцией производителя. Если не указано иное, проценты и части рассчитываются по массе. При этом "к.т." обозначает "при комнатной температуре".

Пример 1: Синтез 9-((6-хлоропирид-3-ил)метил)-4-нитро-8-оксо-10,11-дигидроимидазо-[2,3-а]-бицикло-[3,2,1]-окт-3-ена (соединение 1а)

Смешанный раствор 2,5-диэтилтетрагидрофурана (2 г, 12,5 ммоль) и водный раствор соляной кислоты (0,1 М, 10 мл) нагревали до 90°С и проводили реакцию в течение одного часа, а затем охлаждали до комнатной температуры. В ходе реакции добавляли ацетонитрил (40 мл) и 2-хлор-5-(2-нитрометилен-имидазолидин-1-ил метил)-пиридин (2,54 г, 10 ммоль) и перемешивали систему при комнатной температуре. За реакцией следили при помощи тонкослойной хроматографии, а после завершения реакции, систему нейтрализовали насыщенным водным раствором бикарбоната натрия. Систему экстрагировали, растворитель удаляли при пониженном давлении и выполняли разделение колоночной хроматографией (элюент: дихлорметан/ацетон = 3/1 (об./об.)) с получением бледно-желтого порошка. Выход: 53%; Т.пл. = 149,0-150,0°С, ЯМР (ЯМР - ядерно-магнитный резонанс) 1H (400 Мгц, ДМСО-d6): δ 8,35 (d, J=2,4 Гц, 1Н), 7,81 (dd, J1=2,4 Гц, J2=8,4 Гц, 1Н), 7,51 (d, J=8,4 Гц, 1Н), 5,36-5,39 (s, 2H), 5,00 (d, J=15,6 Гц, 1Н), 4,68 (d, J=15,6 Гц, 1Н), 3,57-3,73 (m, 4H), 1,94-2,04 (m, 4H) м.д., ЯМР 13С (100 Мгц, ДМСО-d6}: δ 155,6, 149,7, 149,6, 139,7, 132,6, 124,5, 109,6, 87,0, 75,1, 51,2, 50,3, 46,6, 31,9, 31,7 м.д.; расчетное значение в HRMS (High-resolution mass spectrometry - масс-спектрометрия высокого разрешения)(ES+): C14H16N4O335Cl (M+H)+, 323,0911; измеренное значение 323,0912. Расчетное значение: C14H16N14O337Cl (М+Н)+, 325,0811; измеренное значение 325,0895. Расчетное значение: C14H16N4O337Cl (M+H)+ 345,0730, вычисленное значение 345,0722. Расчетное значение: C14H15 N4O337ClNa (М+Na)+ 347,0701; вычисленное значение 347,0692.

Пример 2: синтез 9-((2-хлоротиазол-5-ил)метил)-4-нитро-8-оксо-10,11-дигидроимидазо-[2,3-а]-бицикло-[3,2,1]-окт-3-на (соединение 1b)

Способ подготовки похож на способ, описанный выше. Растворитель удаляли при пониженном давлении и выполняли разделение колоночной хроматографией (элюент: дихлорметан/ацетон = 3/1 (V/V)) для получения твердого порошка светло-желтого цвета. Выход: 56%; Т.пл. = 136,5-138,0°С, ЯМР 1H (400 Мгц, ДМСО-d6); δ 7,47 (s, 1H), 5,61 (d, J=5,2 Гц, 1Н), 5,28 (d, J=15,4 Гц, 1H), 5,16 (d, J=5,00 Гц, 1H), 4,70 (d, J=15,4 Гц, 1H), 3,66-3,82 (m, 3H), 3,54-3,61 (m, 1H), 2,22-2,29 (m, 1H), 2,12-2,21 (m, 2H), 1,99-2,07 (m, 1H) м.д., ЯМР 13С (100 Mг, ДМСО-d6): δ 154,6, 154,3, 140,6, 135,1, 110,4, 87,4, 75,4, 49,6, 47,9, 46,5, 31,8, 31,8 м.д.; расчетное значение в HRMS (ES+): C12H14N4O3S35Cl (M+H)+, 329,0475, вычисленное значение 329,0475. Расчетное значение: C12H14N4O3S37Cl (M+Н)+, 331,0446, вычисленное значение 331,0461.

Пример 3: Синтез 9-бензил-4-нитро-8-оксо-10,11-дигидроимидазо-[2,3-а]-бицикло-[3,2,1]окт-3-ена (соединение 1с)

Способ подготовки похож на способ, описанный выше. Растворитель удаляли при пониженном давлении, и выполняли разделение колоночной хроматографией (элюент: дихлорметан/ацетон = 3/1 (V/V)) для получения твердого порошка светло-желтого цвета. Выход: 58%, т.пл. = 149,0-149,8°С, ЯМР 1H (400 Мгц, ДМСО-d6); δ 7,28-7,39 (m, 5H), 5,66 (d, J=4,3 Гц, 1H), 5,14 (d, J=4,5 Гц, 1H), 4,92-5,01 (m, 2H), 3,57-3,74 (m, 3H), 3,47-3,53 (m, 1H), 2,30-2,34 (m, 1H), 2,13-2,22 (m, 2H), 2,00-2,07 (m, 1H) м.д., ЯМР 13С (100 Mг, ДМСО-d6): δ 155,5, 135,9, 128,9, 128,2, 128,1, 87,7, 75,6, 54,4, 48,9, 47,2, 31,8, 31,6 м.д.; расчетное значение в HRMS (ES+): C15H17N3O3 (М+H)+, 287,1270; вычисленное значение 287,1272.

Пример 4: синтез 9-(4-хлор-бензил)-4-нитро-8-оксо-10,11-дигидроимидазо-[2,3-а]-бицикло-[3,2,1]окт-3-ена (соединение 1d)

Способ подготовки похож на способ, описанный выше. Растворитель удаляли при пониженном давлении и выполняли разделение колоночной хроматографией (элюент: дихлорметан/ацетон = 3/1 (V/V)) для получения твердого порошка светло-желтого цвета. Выход: 38%; Т.пл. = 140,0-140,9°С, ЯМР 1H (400 Мгц, ДМСО-d6); δ 7,27-7,34 (m, 4H), 5,63 (d, J=5,4 Гц, 1Н), 5,14 (d, J=5,2 Гц, 1Н), 5,04 (d, J=15,1 Гц, 1Н), 4,78 (d, J=15,1 Гц, 1Н), 3,62-3,73 (m, 3Н), 3.45-3.51 (m, 1Н), 2,26-2,31 (m, 1Н), 2,11-2,21 (m, 2H), 1,98-2,07 (m, 1Н) м.д., ЯМР 13С (100 Mг, ДМСО-d6): δ 155,3, 134,4, 133,9, 129,6, 129,0, 110,2, 87,6, 75,5, 53,9, 49,2, 47,0, 31,8, 31,7 м.д.; расчетное значение в HRMS (ES+): C15H17N3O337Cl (M+H)+, 322,0958; вычисленное значение: 322,0972. Расчетное значение: C15H17N3O337Cl (М+Н)+, 324,0929; вычисленное значение 324,0938.

Пример 5: Синтез 9-((тетрагидрофуран-3-ил) метил)-4-нитро-8-оксо-10,11-дигидроимидазо-[2,3-а]-бицикло-[3,2,1]-окт-3-ена (соединение 1е)

Способ подготовки похож на способ, описанный выше. Растворитель удаляли при пониженном давлении и выполняли разделение колоночной хроматографией (элюент: дихлорметан/ацетон = 3/1 (V/V)) для получения твердого порошка светло-желтого цвета. Выход: 57%. м = 126,3-127,9°С; 1Н-ЯМР (400 Mг, ДМСО-d6) δ 5,11 (s, 1Н), 5,00-5,03 (m, 1Н), 4,18 (d, J=3,2 Гц, 2H), 4,05-4,25 (m, 2H), 3,85-3,96 (m, 4H), 2,25 (m, 1Н), 1,66-1,81 (m, 4H), 2,35-2,40 (m, 1Н), 2,17-2,21 (m, 2H), 1,93-2,01 (m, 1Н) м.д.; ЯМР 13С (100 Мг, ДМСО-d6): δ 81,9, 81,6, 77,9, 68,2, 53,1, 49,9, 48,0, 44,1, 36,4, 33,9, 29,5, 23,2, 19,8 м.д., расчетное значение в HRMS (EI+): C13H19N3O4(М+), 281,1376; измеренное значение 281,1365.

Пример 6: Синтез 10-((6-хлоропирид-3-ил)метил)-4-нитро-9-оксо-11,12-дигидроимидазо-[2,3-а]-бицикло-[3,3,1]-нон-3-ена (соединение 2а)

1,27 г 2-хлор-5-(2-нитрометилен-имидазолидин-1-ил метил)-пиридина (0,005 моль), 30 мл безводного ацетонитрила, 3 мл водного 25% раствора глутарового альдегида и каталитического количества HCl помещали в 50 мл круглодонную колбу. Систему перемешивали при комнатной температуре. За реакцией следили при помощи тонкослойной хроматографии. После того как реакция была завершена, систему нейтрализовали насыщенным водным раствором бикарбоната натрия и экстрагировали. Растворитель удаляли при пониженном давлении, и выполняли разделение колоночной хроматографией (элюент: дихлорметан/ ацетон = 3/1 (об/об)), для получения светло-желтого порошка. Выход: 76%; Т.пл. = 174,7-175,4°С, ЯМР 1H (400 Mг, ДМСО-d6): δ 8,38 (dd, J1=0,6 Гц, J2=2,4 Гц, 1Н), 7,84 (dd, J1=2,4 Гц, J2=8,4 Гц, 1Н), 7,52 (dd, J1=0,6 Гц, J2=8,4 Гц, 1Н), 5,12 (s, 1Н), 5,04-5,05 (m, 1Н), 4,97 (d, J=15,6 Гц, 1Н), 4,71 (d, J=15,6 Гц, 1Н), 3,62-3,74 (m, 4H), 1,66-1,81 (m, 4H), 1,51-1,55 (m, 1Н), 1,32-1,44 (m, 1Н) м.д., ЯМР 13С (100 Mг, ДМСО-d6): δ 156,6, 149,7, 149,6, 139,7, 132,9, 124,5, 105,8, 81,7, 68,9, 51,7, 50,0, 46,3, 28,8, 27,2, 14,8 м.д.; расчетное значение в HRMS (EI+): C15H17N4O335Cl(M+), 336,0989; вычисленное значение 336,0988. Расчетное значение: C15H17N4O337Cl(M+), 338,0960; вычисленное значение 338,0968.

Пример 7: Синтез 10-((2-хлоротиазол-5-ил)метил)-4-нитро-9-оксо-11,12-дигидроимидазо-[2,3-а]-бицикло-[3,3,1]-нон-3-ена (соединение 2b)

Способ получения похож на способ, описанный выше. Растворитель удаляли при пониженном давлении и выполняли разделение колоночной хроматографией (элюент: дихлорметан/ацетон=3/1 (об/об)), для получения твердого порошка белого цвета. Выход: 62%; Т.пл. = 159,1-160,5°С, ЯМР 1H (400 Mг, ДМСО-d6): δ 7,48 (s, 1Н), 5.30 (d, J=3,2 Гц, 1Н), 5,24 (d, J=15,4 Гц, 1Н), 4,98 (s, 1Н), 4,78 (d, J=15,4 Гц, 1Н), 3,76-3,87 (m, 1Н), 3,60-3,71 (m, 3H), 2,12 (d, J=14,0 Гц, 1Н), 1,82-1,96 (m, 2H), 1,64-1,77 (m, 2H), 1,48-1,60 (m, 1Н) м.д., ЯМР 13С (100 Mг, ДМСО-d6): δ 155,7, 154,1, 140,5, 135,6, 107,0, 82,7, 69,4, 49,4, 48,3, 46,2, 29,4, 26,5, 14,9 м.д.; расчетное значение в HRMS (EI+): C13H15N4O3S35Cl(M+), 342,0553; расчетное значение: 342,0548. Расчетное значение C13H15N4O3S37Cl(M+), 344,0524; вычисленное значение 344,0564.

Пример 8: Синтез 10-бензил-4-нитро-9-оксо-11,12-дигидроимидазо-[2,3-а]-бицикло-[3,3,1]-нон-3-ена (соединение 2с)

Способ подготовки похож на способ, описанный выше. Растворитель удаляли при пониженном давлении и выполняли разделение колоночной хроматографией (элюент: дихлорметан/ацетон = 3/1 (об/об)) для получения твердого порошка светло-желтого цвета. Выход: 77%; Т.пл. = 180,5-181,2°С; 1H ЯМР (400 Mг, ДМСО-d6): δ 7,29-7,37 (m, 5H), 5,33 (d, J=3,1 Гц, 1Н), 5,02 (d, J=15,0 Гц, 1Н), 4,95 (s, 1Н), 4,85 (d, J=15,0 Гц, 1Н), 3,68-3,75 (m, 1Н), 3,48-3,64 (m, 3H), 2,14 (d, J=13,1 Гц, 1Н), 1,81-1,93 (m, 2H), 1,51-1,70 (m, 3H) м.д., ЯМР 13С (100 Mг, ДМСО-d6): δ 156,6, 136,4, 128,8, 128,3, 128,0, 106,7, 83,0, 69,7, 54,8, 48,6, 46,7, 29,5, 26,5, 15,0 м.д.; расчетное значение в HRMS (EI+): C16H19N3O3(М+), 301,1426; вычисленное значение: 301,1429.

Пример 9: Синтез 10 - (4-хлорбензил)-4-нитро-9-оксо-11, 12-дигидроимидазо-[2,3-а]-бицикло-[3,3,1]-нон-3-ена (соединение 2d)

Способ подготовки похож на способ, описанный выше. Растворитель удаляли при пониженном давлении, и выполняли разделение колоночной хроматографией (элюент: дихлорметан/ацетон = 3/1 (об./об.)) для получения твердого порошка светло-желтого цвета. Выход: 70%; Т.пл. = 156,9-158,3°С, ЯМР 1H (400 Мгц, ДМСО-d6): δ 7,29-7,34 (m, 4H), 5,33 (d, J=4,0 Гц, 1Н), 5,05 (d, J=15,1 Гц, 1Н), 4,96 (s, 1Н), 4,75 (d, J=15,1 Гц, 1Н), 3,66-3,73 (m, 1Н), 3,55-3,60 (m, 3Н), 2,14 (d, J=13,6 Гц, 1Н), 1,82-1,95 (m, 2H), 1,51-1,71 (m, 3H) м.д., ЯМР 13С (100 Mг, ДМСО-d6): δ 156,5, 134,9, 133,8, 129,7, 129,0, 106,8, 83,0, 69,6, 54,4, 48,9, 46,6, 29,6, 26,5, 15,0 м.д.; расчетное значение в HRMS (EI+): C16H18N3O335Cl(M+), 335,1037; вычисленное значение 335,1044. Расчетное значение: C16H18N3O337Cl(M+), 337,1007; вычисленное значение 337,1036.

Пример 10: Синтез 10-((тетрагидрофуран-3-ил) метил)-4-нитро-9-оксо-11,12-дигидроимидазо-[2,3-а]-бицикло-[3,3,1]-не-3-ена (соединение 2е)

1,065 г 1-((тетрагидрофуран-3-ил) метил)-2-(-нитрометилен)-1-имидазолина (0,005 моль), 3 мл 25% водного раствора глутарового альдегида и каталитического количества HCl помещали в 50-мл колбу. Систему перемешивали при комнатной температуре и контролировали реакцию при помощи ТСХ. После того, как реакцию завершали, растворитель удаляли и проводили разделение колоночной хроматографией с целью получения чистого продукта в виде порошка светло-желтого цвета. Выход составил 36%. Т.пл. = 115,3-116,9°С, ЯМР 1H (400 Мгц, ДМСО-d6): δ 5,11 (s, 1Н), 5,00-5,03 (m, 1Н), 4,18 (d, J=3,2 Гц, 2H), 4,05-4,25 (m, 2H), 3,85-3,96 (m, 4H), 2,25 (m, 1Н), 1,66-1,81 (м, 4H), 1,63-1,64 (m, 2H), 1,57-1,59 (m, 2H), 1,51-1,55 (m, 1Н), 1,32-1,44 (m, 1Н) м.д., ЯМР 13С (100 Mг, ДМСО-d6): δ 81,7, 80,6, 78,5, 68,9, 50,0, 49,7, 46,9, 44,6, 36,8, 33,9, 28,8, 27,2, 17,8, 14,8 м.д.; расчетное значение в HRMS (EI+): C14H21N3O4(M+), 295,1532; измеренное значение 295,1598.

Пример 11: Измерение инсектицидной активности соединений настоящего изобретения

(1) Инсектицидная активность против тлей

Тли, которые относятся к равнокрылым и имеют колюще-сосущий ротовой аппарат, являются основными вредителями сельскохозяйственных культур. Aphis craccivora использовали в качестве субъекта и для испытания использовали метод погружения.

Способ испытания: точно взвешивали каждый образец и добавляли 2 мл ДМСО (ДМСО - Диметилсульфоксид) и 18 мл воды соответственно, далее добавляли три капли эмульсии агента 200I, чтобы сделать тестовую жидкость; холостой контроль также получали путем добавления трех капель эмульсии агента 220I в 2 мл ДМСО и 18 мл воды. Широкие листья бобов, облепленные определенным количеством насекомых, погружали в тестируемую жидкость на три-пять секунд, затем доставали и высушивали на воздухе; насекомых перемещали в чистый контейнер вместе с кормом, а контейнер помещали в сухую, термостатируемую комнату. После 24 часов проверяли количество мертвых насекомых. Результаты показаны в таблице 1.

(2) Инсектицидная активность в отношении Nilaparvata lugens Nilaparvata lugens, которая относится к равнокрылым и имеет колюще-сосущий ротовой аппарат, является распространенным вредителем сельскохозяйственных культур. Nilaparvata lugens была использована в качестве субъекта, и для тестирования использовали описанный Нагатой метод микрокапельного измерения.

Порядок работы: в качестве испытуемых выбрали бесплодных крылатых самок двух-трех дней после вылупления, соединение растворяли в ацетоне в серии концентраций. Насекомых парализовали углекислым газом и капали жидкость (0,08 мкл) на переднеспинки насекомых, используя ручную микрокапельницу (Burkard Manufacturing Co., Ltd., Rickmansworth, Великобритания). Использовали каждую концентрацию для обработки около 30 насекомых в трех повторах. Ацетон использовали в качестве контроля. Обработанных взрослых насекомых культивировали на рисовой рассаде, выращенной без почвы в инкубаторе (20×20×10 см), где контролировали температуру на 25±1°С с 16/8 часовыми циклами света и тьмы. Результаты проверяли после 48 часов и ЛД50 (ЛД - летальная доза,) рассчитывали с использованием стандартного метода анализа вероятности. Результаты приведены в таблице 2.

(3) Инсектицидная активность в отношении гусениц

Личинки на второй стадии Pseudaletia separata Уокера использовали в качестве субъектов, а для тестирования использовали метод погружения.

Pseudaletia separata Уокера, которая является очень важным чешуекрылым вредителем различных зерновых культур, может быть удобна для использования в различных исследованиях, к примеру, при изучении токсичности, такой как желудочная токсичность, контактное отравление, всесторонние и остаточные явления действия инсектицидов и другие аспекты токсикологии насекомых, таких как скрининговые тесты для новых соединений. Инсектицидная активность против Pseudaletia separata Уокера была протестирована в соответствии с методом, описанным в литературе.

Методика выполнения процедуры листового макания: каждый образец точно взвешивали и добавляли 2 мл ДМСО и 18 мл воды соответственно, а затем, три капли эмульсии агента 200I (закуплены из Шанхая Nongyaochang Co, Ltd.) добавляли для образования тестируемой жидкости. Холостой контроль сделали, добавив три капли эмульсии агента 220I в 2 мл ДМСО и 28 мл воды. Свежие листья кукурузы разорвали на мелкие кусочки и погружали на пять секунд в жидкости, затем вынимали, сушили на воздухе и помещали в 100 мл банку. Около 20 личинок 2-й возрастной стадии помещали в банку. Банку закрывали при помощи белой марли и резинки и длительное время кормили личинок кукурузой, пропитанной жидкостью. Смертность личинок проверяли через пять дней. Заданная температура была от 22 до 27°С, влажность воздуха от 70 до 80%. Не было необходимости корректировать коэффициент смертности для каждой обработки, если в холостом контроле коэффициент смертности составлял 5% или менее, но если контрольный коэффициент смертности был от 5 до 20%, для коэффициента смертности при каждой обработке должна быть использована корректировка Эббота. Формула Эббота:

Корректировка коэффициента смертности = [(коэффициент смертности обработанных - коэффициент смертности контроля)/(100 - коэффициент смертности контроля) × 100].

Таблица 1
Инсектицидная активность целевых соединений против тлей и Pseudaletia separata Уокера
Соединение Aphis craccivora Pseudaletia separata Уокера
Коэффициент смертности (%, 500 мг/л-1) ЛК50 (ммоль/л-1), летальная концентрация Коэффициент смертности (%, 500 мг/л-1) ЛК50 (ммоль/л)
4 78,1 н.о. 100 106,97
5 97,7 н.о. 100 н.о.
6 100 5,19 100 15,26
100 1,52 100 12,5
1b 100 н.о. 100 н.о.
13,6 н.о. 0 н.о.
1d 95,7 н.о. 0 н.о.
87,3 н.о. 0 н.о.
2b 98,2 н.о. 0 н.о.
55,6 н.о. 0 н.о.
2d 38,9 н.о. 0 н.о.
Имидаклоприд 100 8,93 100 38,7

Таблица 2
Активность соединений в отношении чувствительных и устойчивых Niloparvata lugens
Вид Соединение Кривая токсичности ЛК50 (нг/вредители) Относительная токсичность Величина устойчивости
Восприимчивый вид у=7,3127+2,0474х 0,0742±0,0106 1,77 1,00
у=3,9543+1,6936х 4,1440±0,6136 0,32 1,00
Имидаклоприд у=7,1823+2,4778х 0,1316±0,0154 1,00 1,00
Устойчивый вид у=5,4068+1,3225х 0,4925±0,0811 50,00 6,64
у=3,1320+1,4613х 18,9795±2,3501 1,17 4,58
Имидаклоприд у=2,5873+1,7930х 22,1614±3,7522 1,00 168,40

Активность целевого соединения тестировали на тлях, Pseudaletia separata Уокера и Niloparvata lugens, и результаты представлены в таблицах 1 и 2. Из таблиц 1 и 2 можно видеть, что гетероциклическое соединение с оксо-мостиком 1а обладает очень высокой активностью, которая значительно выше, чем у имидаклоприда: ЛК50 против тлей 1,52 мг/л-1 и ЛК50 (ЛК - летальная концентрация) против Pseudaletia separata Уокера 12,5 мг/л"1. Еще более важно то, что активность соединения 1а в отношении чувствительных Nilopaivata lugens, как правило, такая же, что и у имидаклоприда, а их активность против имидаклоприд-устойчивых Niloparvata lugens в 50 раз больше, чем у имидаклоприда. Соединение 1а имеет относительно низкую активность. Интересно, что активность гетероциклических соединений с оксо-мостиком с 2а по 2с, которые получили из глутаральдегида, была гораздо слабее, а некоторые соединения были эффективны только против тли. Анализ кристаллической структуры соединений 1а и 2а показал, что соединения 1а и 2а имеют различные конфигурации оксо-мостика, где оксо-мостики имеют противоположную ориентацию, эта разница очень четко прослеживается путем наложения двух молекул. Эти различия в структуре оксо-мостика могут отвечать за заметную разницу в активности соединений 1а и 2а.

Пример 12: Исследование механизма действия соединения (1а)

Соединения (1а) по отдельности подвергали электрофизиологическому тестированию и тестированию замещением изотопного маркера. Соединение (1а) может ингибировать реакцию агониста, соединение (1а) не имеет агонистического действия ни на никотиновые рецепторы ацетилхолина Periplaneta americana, ни на N1 α 1/β 2-рецепторы, экспрессирующиеся ооцитами, и соединение (1а) может ингибировать реакцию агониста ацетилхолина. Эти эксперименты показали, что соединение является антагонистом никотиновых ацетилхолиновых рецепторов (nAChRs).

Пример 13: Получение инсектицидных композиций, содержащих соединения по настоящему изобретению

(а) Масляная суспензия

Готовили следующие компоненты: 25% масс.% одного из соединений с 1а по 1е и с 2а по 2е, 5% масс.% полиоксиэтилен сорбит гексоолеата и 70 масс.% высшего жирного углеводорода (нефти). Все компоненты измельчали вместе в песочной мельнице до уменьшения размера частиц твердых гранул до уровня менее пяти микрон. Полученная вязкая суспензия может быть использована непосредственно либо может быть использована для эмульгирования в воде.

(б) Водная суспензия

Готовили следующие компоненты: 25% масс.% одного из соединений с 1а по 1е и с 2а по 2е, 3% масс.% гидрата аттапульгита, 10 "масс.%" лигносульфоната кальция; 0,5 масс.% дигидрофосфата натрия и 61,5% масс.% воды. Все компоненты измельчали вместе в шаровой мельнице до сокращения размера частиц твердых гранул менее чем до десяти микрон. Водную суспензию можно использовать напрямую.

(с) Приманка

Готовили следующие компоненты: 0,1-10% масс.% одного из соединений с 1а по 1е и с 2а по 2е, 80% масс.% пшеничной муки и 19,9-10% "масс.%" мелассы. Эти компоненты тщательно перемешивали и по мере необходимости придавали форму. Съедобные приманки могут быть распространены в местах, зараженных санитарными вредителями, например, бытовых и промышленных помещениях, таких как кухня, больница, магазин или открытая площадка, таким образом, вредителей контролируют путем перорального приема.

Все литературные источники, упомянутые в настоящем приложении, включены в настоящую заявку посредством ссылок. Кроме того, следует иметь в виду, что после прочтения вышеупомянутой идеи специалистом в данной области может быть сделано множество вариаций и модификаций, и эти аналоги также подпадают под действие патента, как это определено в формуле изобретения.


ДВУХВАЛЕНТНЫЕ И ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ НИКОТИНА С ОКСО-МОСТИКОМ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
ДВУХВАЛЕНТНЫЕ И ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ НИКОТИНА С ОКСО-МОСТИКОМ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
ДВУХВАЛЕНТНЫЕ И ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ НИКОТИНА С ОКСО-МОСТИКОМ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
ДВУХВАЛЕНТНЫЕ И ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ НИКОТИНА С ОКСО-МОСТИКОМ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
ДВУХВАЛЕНТНЫЕ И ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ НИКОТИНА С ОКСО-МОСТИКОМ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
ДВУХВАЛЕНТНЫЕ И ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ НИКОТИНА С ОКСО-МОСТИКОМ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
ДВУХВАЛЕНТНЫЕ И ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ НИКОТИНА С ОКСО-МОСТИКОМ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
ДВУХВАЛЕНТНЫЕ И ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ НИКОТИНА С ОКСО-МОСТИКОМ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
ДВУХВАЛЕНТНЫЕ И ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ НИКОТИНА С ОКСО-МОСТИКОМ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
ДВУХВАЛЕНТНЫЕ И ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ НИКОТИНА С ОКСО-МОСТИКОМ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
ДВУХВАЛЕНТНЫЕ И ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ НИКОТИНА С ОКСО-МОСТИКОМ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
ДВУХВАЛЕНТНЫЕ И ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ НИКОТИНА С ОКСО-МОСТИКОМ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
ДВУХВАЛЕНТНЫЕ И ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ НИКОТИНА С ОКСО-МОСТИКОМ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
ДВУХВАЛЕНТНЫЕ И ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ НИКОТИНА С ОКСО-МОСТИКОМ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
ДВУХВАЛЕНТНЫЕ И ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ НИКОТИНА С ОКСО-МОСТИКОМ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
ДВУХВАЛЕНТНЫЕ И ГЕТЕРОЦИКЛИЧЕСКИЕ ПРОИЗВОДНЫЕ НИКОТИНА С ОКСО-МОСТИКОМ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-6 из 6.
10.10.2013
№216.012.72b6

Гетероциклические азотсодержащие или кислородсодержащие соединения с инсектицидной активностью, образованные из диальдегидов, и их получение и применения

Изобретение относится к новым гетероциклическим азот- и кислородсодержащим соединениям, обладающим инсектицидной активностью. В формулах (А), (В), (С), (D): R представляет собой 5- или 6-членный гетероцикл, содержащий атом азота, кислорода и/или серы, галогенозамещенный 5- или 6-членный...
Тип: Изобретение
Номер охранного документа: 0002495023
Дата охранного документа: 10.10.2013
10.02.2014
№216.012.9ea5

Универсальная линия для обработки стальной полосы для производства различных видов высокопрочной стали

Изобретение относится к линиям обработки стальной полосы для производства различных видов высокопрочных стальных изделий. Линия содержит станцию разматывания и промывки, станцию нагрева, станцию выдержки, станцию замедленного охлаждения, станцию газоструйного охлаждения, станцию водной закалки,...
Тип: Изобретение
Номер охранного документа: 0002506321
Дата охранного документа: 10.02.2014
10.06.2014
№216.012.d1b7

Универсальная линия для обработки стальной полосы для производства различных видов высокопрочной стали

Изобретение относится к линиям обработки стальных полос. Линия содержит последовательно расположенные станцию разматывания и промывки, станцию нагрева, станцию выдержки и станцию замедленного охлаждения, после которых параллельно расположены станция охлаждения водородом и станция водной...
Тип: Изобретение
Номер охранного документа: 0002519458
Дата охранного документа: 10.06.2014
30.08.2018
№218.016.8185

Способ и устройство синхронной высокоскоростной фотосъемки вращения микрочастицы в поле гидроциклона

Изобретение относится к способу и устройству для синхронной высокоскоростной фотосъемки вращения микрочастицы в поле гидроциклона, в частности к способу и устройству для определения скорости вращения микрочастицы в поле гидроциклона путем использования сочетания системы синхронной...
Тип: Изобретение
Номер охранного документа: 0002665344
Дата охранного документа: 29.08.2018
29.04.2019
№219.017.41db

Способ и оборудование для обработки образующихся при охлаждении кокса стоков

Изобретение относится к очистке загрязненных маслами стоков и раскрывает способ очистки образующихся при охлаждении кокса в процессе замедленного коксования стоков в нефтехимической отрасли. Способ включает в себя следующие этапы: охлаждение стоков, образующихся при охлаждении кокса в процессе...
Тип: Изобретение
Номер охранного документа: 0002356846
Дата охранного документа: 27.05.2009
12.10.2019
№219.017.d4e3

Бензопроизводные с шестичленным кольцом в качестве ингибитора dpp-4 и их применение

Настоящее изобретение относится к соединению общей формулы I, его фармацевтически приемлемой соли, или его оптически активному изомеру: В формуле (I) X выбран из O, S или NH; A представляет собой бензольное кольцо с 1-5 заместителями, где каждый заместитель независимо выбран из галогена или...
Тип: Изобретение
Номер охранного документа: 0002702644
Дата охранного документа: 09.10.2019
Показаны записи 1-8 из 8.
10.10.2013
№216.012.72b6

Гетероциклические азотсодержащие или кислородсодержащие соединения с инсектицидной активностью, образованные из диальдегидов, и их получение и применения

Изобретение относится к новым гетероциклическим азот- и кислородсодержащим соединениям, обладающим инсектицидной активностью. В формулах (А), (В), (С), (D): R представляет собой 5- или 6-членный гетероцикл, содержащий атом азота, кислорода и/или серы, галогенозамещенный 5- или 6-членный...
Тип: Изобретение
Номер охранного документа: 0002495023
Дата охранного документа: 10.10.2013
10.02.2014
№216.012.9ea5

Универсальная линия для обработки стальной полосы для производства различных видов высокопрочной стали

Изобретение относится к линиям обработки стальной полосы для производства различных видов высокопрочных стальных изделий. Линия содержит станцию разматывания и промывки, станцию нагрева, станцию выдержки, станцию замедленного охлаждения, станцию газоструйного охлаждения, станцию водной закалки,...
Тип: Изобретение
Номер охранного документа: 0002506321
Дата охранного документа: 10.02.2014
10.06.2014
№216.012.d1b7

Универсальная линия для обработки стальной полосы для производства различных видов высокопрочной стали

Изобретение относится к линиям обработки стальных полос. Линия содержит последовательно расположенные станцию разматывания и промывки, станцию нагрева, станцию выдержки и станцию замедленного охлаждения, после которых параллельно расположены станция охлаждения водородом и станция водной...
Тип: Изобретение
Номер охранного документа: 0002519458
Дата охранного документа: 10.06.2014
04.07.2018
№218.016.6ab2

Передатчик и приемник, способ приема и способ передачи через fbmc сигнала

Изобретение относится к технике связи и может быть использовано для обработки сигналов на основе банка фильтров. Способ передачи на множестве несущих набора фильтров (FBMC) включает в себя этапы, на которых: генерируют символы квадратурной амплитудной модуляции со сдвигом (OQAM), содержащиеся...
Тип: Изобретение
Номер охранного документа: 0002659352
Дата охранного документа: 03.07.2018
09.05.2019
№219.017.4cd3

Однократно холоднокатаная стальная полоса для теневой маски и способ ее производства

Изобретение относится к производству стальной полосы, используемой для теневой маски в цветном кинескопе. Полоса изготовлена из стали следующего состава, вес.%: С≤0,002; Ti 0,035-0,05; Mn 0,10-0,25; Al 0,03-0,06; Cr 0,002-0,03; Si≤0,03; N≤0,003; Р≤0,012; S≤0,001; О≤0,004; Fe и неизбежные...
Тип: Изобретение
Номер охранного документа: 0002381294
Дата охранного документа: 10.02.2010
09.05.2019
№219.017.4cd4

Мягкая черная жесть для лужения и способ для ее производства

Изобретение относится к области металлургии, а именно к производству мягких черных жестей с твердостью HR30T 49±3 или HR30T 53±3, предназначенных для лужения. Выплавляют сталь, содержащую следующие компоненты, вес.%: углерод≤0,006, марганец 0,10-0,20, алюминий 0,025-0,075, кремний≤0,03, титан...
Тип: Изобретение
Номер охранного документа: 0002381293
Дата охранного документа: 10.02.2010
09.05.2019
№219.017.4cda

Мягкие черные жести с твердостью hr 30т, составляющей 51±3, для лужения и способ для их производства

Изобретение относится к области металлургии, а именно к производству мягкой черной жести с твердостью HR30T 51±3, предназначенной для лужения. Выплавляют сталь, содержащую следующие компоненты, вес.%: углерод ≤0,005, марганец 0,20-0,30, алюминий 0,03-0,06, кремний ≤0,03, титан 0,038-0,06,...
Тип: Изобретение
Номер охранного документа: 0002382111
Дата охранного документа: 20.02.2010
29.06.2019
№219.017.99c5

Способ и устройство осуществления мониторинга и прогнозирования многопоточной нагрузки

Устройство и способ осуществления мониторинга и прогнозирования многопоточной нагрузки в системе мобильной сотовой связи CDMA, включающие модуль измерения индикатора уровня радиосигнала (RSSI) для измерения общей мощности интерференции и обработки полученного значения для устранения дрожания;...
Тип: Изобретение
Номер охранного документа: 0002277300
Дата охранного документа: 27.05.2006
+ добавить свой РИД