×
20.10.2014
216.012.ff7c

Результат интеллектуальной деятельности: СПОСОБ ТОКОВОЙ ЗАЩИТЫ

Вид РИД

Изобретение

№ охранного документа
0002531260
Дата охранного документа
20.10.2014
Аннотация: Изобретение относится к электротехнике, а именно к системной автоматике и релейной защите. Технический результат - создание способа токовой защиты, обладающего высокой селективностью. Поставленная задача достигается способом токовой защиты, заключающимся в срабатывании токовой защиты при превышении величиной, зависящей от тока в месте ее включения, уставочного значения, уставочное значение выбирают с учетом моделирования или статистических расчетов эквивалентных схем в рабочем режиме и режиме короткого замыкания. Согласно предлагаемому способу наряду с амплитудой используют фазу тока, а величину, сравниваемую с уставочным значением, и само уставочное значение получают из отношения логарифмов совместных плотностей вероятности амплитуды и фазы тока в рабочем режиме и режиме короткого замыкания. 5 ил., 1 табл.
Основные результаты: Способ токовой защиты, заключающийся в срабатывании токовой защиты при превышении величиной, зависящей от тока в месте ее включения, уставочного значения, уставочное значение выбирают с учетом моделирования или статистического расчета эквивалентных схем в рабочем режиме и режиме короткого замыкания, отличающийся тем, что наряду с амплитудой тока используют фазу тока, а величину, сравниваемую с уставочным значением, и само уставочное значение получают из отношения логарифмов совместных плотностей вероятностей амплитуды и фазы тока в рабочем режиме и режиме короткого замыкания.

Изобретение относится к электротехнике, а именно к системной автоматике и релейной защите.

Известны токовые защиты, реагирующие на ток в защищаемом объекте. Принципы действия таких защит, варианты исполнения реле тока на электромагнитном принципе, а также с помощью средств вычислительной техники можно найти практически в любом учебнике по релейной защите электроэнергетических систем.

Известно, что наряду с амплитудой тока, характеризующей аварийный режим, в качестве информационного признака может выступать фаза тока [Например, Нагай В.И. Релейная защита ответвительных подстанций электрических сетей. - М.: Энергоатомиздат, 2002. - 312 с]. Однако схемные решения, сочетающие измерения как амплитуды, так и фазы тока для повышения эффективности (например, селективности) релейной защиты, авторам не известны.

Наиболее близким техническим решением к предлагаемому изобретению является способ токовой защиты [Патент РФ №2418347, Способ токовой защиты, опубл. 10.05.11, Б.И. №13], заключающийся в срабатывании токовой защиты при превышении величиной, зависящей от тока в месте ее включения, уставочного значения. Уставочное значение выбирают с учетом статистических распределений рабочего тока и тока короткого замыкания, полученных по результатам моделирования или статистических расчетов эквивалентных схем.

Недостатком такого способа токовой защиты является низкая селективность.

Статистический подход, применяемый в способе-прототипе, можно использовать для построения токовой защиты, сочетающей информацию об амплитуде и фазе тока, для выявления аварийных режимов в защищаемом объекте.

При этом проводится имитационное моделирование работы электроэнергетических объектов в рабочих режимах и в условиях возникновения коротких замыканий. Формируются совместные статистические распределения амплитуды и фазы тока для рабочего ppaб>(I, φ) и аварийного p(I, φ) режимов. Принятие решения на срабатывание релейной защиты осуществляется в соответствии с критерием отношения правдоподобия

,

где ppaб>(I, φ), p(I, φ) - плотности вероятности совместного распределения амплитуды и фазы тока соответственно в аварийном и рабочем режимах; Λ0 - пороговое (уставочное) значение.

Например, при нормальном (Гауссовском) законе распределения вероятностей в рабочем и аварийном режимах имеем

;

где Īраб, , Īав, - соответственно математические ожидания и дисперсии амплитуды токов в рабочем и аварийном режимах; , , , - соответственно математические ожидания и дисперсии фазы токов в рабочем и аварийном режимах; ρ - коэффициент корреляции между значениями амплитуды и фазы токов.

Для введенных ppaб(I, φ) и pав(I, φ) отношение правдоподобия будет выглядеть следующим образом

.

Введем обозначения для упрощения записи

; ;

;

;

; ;

тогда

.

Следует отметить, что выражение в круглых скобках является постоянным коэффициентом, так как не зависит от измеряемых параметров I, φ.

Прологарифмировав выражение для Λ(I, φ), переходим к правилу принятия

решения токовой защитой на основе логарифма отношения правдоподобия, состоящего в сравнении величины

l(I, φ=f·(a·I2+c·I+d·I·φ+е·φ+b·φ2)

с пороговым (уставочным) значением

.

Значения Īраб, , , , Īав, , , , ρ могут быть получены как по результатам имитационного моделирования и реализации модельных экспериментов, так и с помощью статистических расчетов эквивалентных схем нормального (рабочего) и аварийного режимов. При статистических расчетах вместо фиксированных параметров эквивалентных схем задают случайные переменные электрических величин.

Задача изобретения - создание способа токовой защиты, обладающего высокой селективностью.

Поставленная задача достигается способом токовой защиты, заключающимся в срабатывании токовой защиты при превышении величиной, зависящей от тока в месте ее включения, уставочного значения, уставочное значение выбирают с учетом моделирования или статистических расчетов эквивалентных схем в рабочем режиме и режиме короткого замыкания. Согласно предлагаемому способу наряду с амплитудой используют фазу тока, а величину, сравниваемую с уставочным значением, и само уставочное значение получают из отношения логарифмов совместных плотностей вероятности амплитуды и фазы тока в рабочем режиме и режиме короткого замыкания.

Для технической реализации способа воспользуемся выражениями логарифма отношения правдоподобия l(I, φ) и уставочного значения L0.

Вариант структурной схемы устройства, реализующего предлагаемый способ в цифровых терминалах релейной защиты, приведен на фиг.1

Устройство (фиг.1) содержит первый 1 и второй 2 квадраторы; первый 3, второй 4, третий 5, четвертый 6, пятый 7, шестой 8 и седьмой 10 умножители; сумматор 9 и схему сравнения 11.

Вход первого квадратора 1 объединен с первыми входами первого 3 и третьего 5 умножителей и является первым входом устройства. Вход второго квадратора 2 объединен со вторым входом первого умножителя 3 и первым входом пятого умножителя 7 и является вторым входом устройства. Вход второго умножителя 4 соединен с выходом первого квадратора 1, вход четвертого умножителя 6 соединен с выходом первого умножителя 3, вход шестого умножителя 8 соединен с выходом второго квадратора 2. На вторые входы второго 4, третьего 5, четвертого 6, пятого 7 и шестого 8 умножителей подаются постоянные коэффициенты соответственно а; с; d; е; Ь. Выхода второго 4, третьего 5, четвертого 6, пятого 7 и шестого 8 умножителей соединены соответственно с первым, вторым, третьим, четвертым и пятым входами сумматора 9. Выход сумматора 9 подключен к первому входу умножителя 10, на второй вход которой подается постоянный коэффициент f. Выход шестого умножителя 10 подключен к первому входу схемы сравнения 11, на второй вход которой подается пороговое (уставочное) значение l0. Выход схемы сравнения является выходом устройства.

Устройство работает следующим образом.

На вход устройства подают цифровые значения амплитуды и фазы тока (обработка производится для отдельной фазы). Таким образом, перед подачей на вход устройства, реализующего предлагаемый способ защиты, над током проводились следующие операции обработки: аналоговая фильтрация низких частот; аналого-цифровое преобразование; цифровая фильтрация отсчетов тока (например, по алгоритму дискретного преобразования Фурье); цифровое детектирование (вычисление абсолютного (модульного) значения); вычисление фазы сигнала. Как правило, исходя из поступающих на вход мгновенных значений, традиционно рассматриваются структуры цифровой токовой защиты [например, Шнеерсон Э.М. Цифровая релейная защита. - М.: Энергоатомиздат, 2007, стр.178, рис.4.10].

При реализации устройства (фиг.1) предварительно по полученным в результате моделирования (или статистических расчетов эквивалентных схем) значениям Īраб, , Īк.з., , , , , , ρ производится расчет постоянных коэффициентов а; с; d; е; b; f, а также выбор уставочного (порогового) значения l0.

Отметим, что выбор уставочного значения l0 может быть осуществлен и на основе данных моделирования. Поясним это положение примером.

При моделировании был выбран участок сети 100 кВ Нижегородской энергосистемы (фиг.2). Имитационная модель участка сети 110 кВ реализовалась в программном комплексе MATLAB, и изменяемые параметры модели, а также диапазоны их изменения, приведены в таблице 1.

Таблица 1
Изменяемые параметры участка сети 110 кВ
Объект Параметр Диапазон изменения
Источник питания Напряжение на шинах питающей ПС, кВ 104,5-115,5
Частота тока, Гц 49,8-50,2
Угол передачи, град 30-70
Активное сопротивление, Ом 0,65-0,95
Индуктивность, мГн 6-8
ВЛ Удельное активное сопротивление, Ом/км 0,19-0,26
Удельная индуктивность, мГн/км 1,2-1,4
Удельная емкость, нФ/км 8,8-9,2
Тран-р Активное сопротивление, Ом 14-16
Индуктивность, Гн 0,35-0,39
Активное сопротивление цепи намагничивания, МОм 1,1-1,4
Индуктивность цепи намагничивания, Гн 720-760
Потребители Нагрузка, МВА 20-30,5
cos(φ) 0,75-0,95

Имитировались междуфазные замыкания за трансформатором (Т5) в условия изменения параметров сети (фиг.2). По результатам моделирования строились совместные распределения вероятностей токов и напряжений в рабочем и аварийном режимах pраб(I, φ), pав(I, φ). Пример сечения этих плотностей вероятностей pраб(I, φ), pав(I, φ) по осям амплитуды и фазы тока приведены на фиг.3 и фиг.4. Анализ фиг.3, 4 свидетельствует, что значения как амплитуды тока, так и фазы тока в рабочих и аварийных режимах расположены в пересекающихся диапазонах, что свидетельствует о невозможности построения селективной токовой защиты. Действительно, как бы ни выбирались уставочные значения (фиг.3, 4) по амплитуде (Icp) и фазе (φcp) тока, совмещение рабочих и аварийных режимов приводит к вероятностям излишнего срабатывания (Ризл) или отказам в срабатывании (Ротк).

Однако распределение вероятностей p(L) статистики (фиг.5)

,

полученное по результатам моделирования примера (фиг.3, 4), свидетельствует об однозначном разделении аварийного и рабочего режимов и возможности построения селективной токовой защиты. В качестве уставочного (порогового) значения может быть, например, выбрано l0=0, а процедура сравнения сводится к определению знака статистики l. Достижение положительного эффекта, повышения селективности, обеспечивается более полным использованием информации, заключенной в значениях амплитуды и фазы тока, а также в их взаимосвязи (коэффициенте корреляции).

После расчета требуемых для функционирования величин Īраб, , Īк.з., , , , , , ρ, а также уставочного значения l0 устройство токовой защиты (фиг.1), реализующее предлагаемый способ, готово к работе. При поступлении на вход устройства дискретных значений амплитуды тока I и фазы тока φ устройство (фиг.1) реализует взвешенное суммирование

l(I, φ)=f·(а·I2+с·I+d·I·φ+е·φ+b·φ2).

В последующем значение 1(I, φ) сравнивается с уставкой (порогом) l0 для принятия решения о наличии аварийного режима на защищаемом объекте. Так, при 1(I, φ)≥l0 принимается решение о наличии аварийного режима, и защита срабатывает, в противном случае 1(1, φ)<l0 срабатывание защиты не происходит.

Приведенный в материалах заявки статистический принцип построения токовых защит и формирования уставочных значений справедлив не только для нормального, но и для других видов статистических распределений.

Способ токовой защиты, заключающийся в срабатывании токовой защиты при превышении величиной, зависящей от тока в месте ее включения, уставочного значения, уставочное значение выбирают с учетом моделирования или статистического расчета эквивалентных схем в рабочем режиме и режиме короткого замыкания, отличающийся тем, что наряду с амплитудой тока используют фазу тока, а величину, сравниваемую с уставочным значением, и само уставочное значение получают из отношения логарифмов совместных плотностей вероятностей амплитуды и фазы тока в рабочем режиме и режиме короткого замыкания.
СПОСОБ ТОКОВОЙ ЗАЩИТЫ
СПОСОБ ТОКОВОЙ ЗАЩИТЫ
СПОСОБ ТОКОВОЙ ЗАЩИТЫ
СПОСОБ ТОКОВОЙ ЗАЩИТЫ
СПОСОБ ТОКОВОЙ ЗАЩИТЫ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 24.
20.05.2016
№216.015.4008

Способ адаптации дистанционной защиты и определителя места повреждения линии электропередачи с использованием ее модели

Изобретение относится к электротехнике, а именно к релейной защите и автоматике линий электропередачи, и может быть использовано при создании устройств защиты и автоматики, требующих высокой степени адаптации характеристик срабатывания к режимам защищаемого объекта. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002584268
Дата охранного документа: 20.05.2016
13.01.2017
№217.015.851d

Способ определения места повреждения линии электропередачи

Изобретение относится к электротехнике и электроэнергетике и может быть использовано для определения места повреждения линии электропередачи. Технический результат: повышение точности определения места повреждения линии электропередачи. Сущность: фиксируют электромагнитные волны, возникающие в...
Тип: Изобретение
Номер охранного документа: 0002603247
Дата охранного документа: 27.11.2016
29.12.2017
№217.015.f94d

Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений

Изобретение относится к области электротехники, а именно к средствам обработки информации в электротехнике, и может быть использовано для определения места короткого замыкания на воздушной линии электропередачи (ЛЭП). Технический результат - повышение точности определения места повреждения на...
Тип: Изобретение
Номер охранного документа: 0002639590
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.fa5f

Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений

Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места обрыва на воздушной линии электропередачи (ЛЭП). Технический результат - повышение точности определения места повреждения на линии...
Тип: Изобретение
Номер охранного документа: 0002640091
Дата охранного документа: 26.12.2017
19.01.2018
№218.016.0c12

Способ определения расстояния до места повреждения на линии электропередачи

Изобретение относится к области электротехники и электроэнергетики и может быть использовано для определения места повреждения в трехфазной линии электропередачи (ЛЭП) высокого и сверхвысокого напряжения. На каждом из концов линии измеряют токи и напряжения, выделяют из измеренных токов и...
Тип: Изобретение
Номер охранного документа: 0002632583
Дата охранного документа: 06.10.2017
10.05.2018
№218.016.3e29

Способ дифференциальной защиты участка электрической сети

Использование: в области электротехники. Технический результат - повышение надежности способа дифференциальной защиты. Согласно способу защиты участка электрической сети, содержащего, по меньшей мере, одну пару систем шин, соединенных между собой в каждой паре через трехфазный...
Тип: Изобретение
Номер охранного документа: 0002648249
Дата охранного документа: 23.03.2018
29.05.2018
№218.016.567f

Способ дифференциальной токовой защиты трехфазного трансформатора и автотрансформатора

Использование: в области электротехники. Технический результат - повышение надежности способа дифференциальной защиты трансформатора путем выявления неисправностей трансформаторов тока, а также повреждений на ошиновках трансформатора без ухудшения быстродействия защиты и применения сложных...
Тип: Изобретение
Номер охранного документа: 0002654511
Дата охранного документа: 21.05.2018
25.06.2018
№218.016.665d

Способ автоматического повторного включения кабельно-воздушной линии электропередачи

Использование: в области электротехники. Технический результат - упрощение способа автоматического повторного включения кабельно-воздушной линии электропередачи, а также обеспечение выдачи запрещающего сигнала на повторное включение, если повреждение произошло хотя бы на одном из кабельных...
Тип: Изобретение
Номер охранного документа: 0002658673
Дата охранного документа: 22.06.2018
09.08.2018
№218.016.78cf

Способ автоматического повторного включения кабельно-воздушной линии электропередачи

Использование: в области электротехники. Технический результат - обеспечение выдачи разрешающего сигнала на повторное включение, если повреждение произошло только на воздушных участках ЛЭП. Согласно способу автоматического повторного включения кабельно-воздушной линии электропередачи (ЛЭП)...
Тип: Изобретение
Номер охранного документа: 0002663413
Дата охранного документа: 06.08.2018
01.03.2019
№219.016.c898

Способ ограничения перегрузки кабельной линии электропередачи

Использование: в области электротехники. Технический результат заключается в повышении эксплуатационной надежности и эффективности ограничения перегрузки высоковольтной кабельной линии электропередачи. Согласно способу проводят измерение температуры и тока в линии электропередачи и формируют...
Тип: Изобретение
Номер охранного документа: 0002680816
Дата охранного документа: 27.02.2019
Показаны записи 11-20 из 46.
20.05.2016
№216.015.4008

Способ адаптации дистанционной защиты и определителя места повреждения линии электропередачи с использованием ее модели

Изобретение относится к электротехнике, а именно к релейной защите и автоматике линий электропередачи, и может быть использовано при создании устройств защиты и автоматики, требующих высокой степени адаптации характеристик срабатывания к режимам защищаемого объекта. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002584268
Дата охранного документа: 20.05.2016
13.01.2017
№217.015.851d

Способ определения места повреждения линии электропередачи

Изобретение относится к электротехнике и электроэнергетике и может быть использовано для определения места повреждения линии электропередачи. Технический результат: повышение точности определения места повреждения линии электропередачи. Сущность: фиксируют электромагнитные волны, возникающие в...
Тип: Изобретение
Номер охранного документа: 0002603247
Дата охранного документа: 27.11.2016
29.12.2017
№217.015.f94d

Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений

Изобретение относится к области электротехники, а именно к средствам обработки информации в электротехнике, и может быть использовано для определения места короткого замыкания на воздушной линии электропередачи (ЛЭП). Технический результат - повышение точности определения места повреждения на...
Тип: Изобретение
Номер охранного документа: 0002639590
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.fa5f

Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений

Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места обрыва на воздушной линии электропередачи (ЛЭП). Технический результат - повышение точности определения места повреждения на линии...
Тип: Изобретение
Номер охранного документа: 0002640091
Дата охранного документа: 26.12.2017
19.01.2018
№218.016.0c12

Способ определения расстояния до места повреждения на линии электропередачи

Изобретение относится к области электротехники и электроэнергетики и может быть использовано для определения места повреждения в трехфазной линии электропередачи (ЛЭП) высокого и сверхвысокого напряжения. На каждом из концов линии измеряют токи и напряжения, выделяют из измеренных токов и...
Тип: Изобретение
Номер охранного документа: 0002632583
Дата охранного документа: 06.10.2017
10.05.2018
№218.016.3e29

Способ дифференциальной защиты участка электрической сети

Использование: в области электротехники. Технический результат - повышение надежности способа дифференциальной защиты. Согласно способу защиты участка электрической сети, содержащего, по меньшей мере, одну пару систем шин, соединенных между собой в каждой паре через трехфазный...
Тип: Изобретение
Номер охранного документа: 0002648249
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.4434

Способ быстродействующей максимальной токовой защиты электроустановок

Использование: в области электротехники. Технический результат – повышение быстродействия токовой защиты. Согласно способу осуществляют измерения тока и его аналого-цифровое преобразование, непрерывно определяют действующее значение тока, сравнивают полученное значение с допустимым током,...
Тип: Изобретение
Номер охранного документа: 0002649719
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.46fb

Способ направленной дифференциальной защиты двух трехфазных параллельных линий

Использование: в области электротехники. Технический результат - повышение надежности направленной дифференциальной защиты двух трехфазных параллельных линий. Согласно способу в трансформаторах тока преобразуют токи каждой из фаз каждой из параллельных линий, осуществляют геометрическое...
Тип: Изобретение
Номер охранного документа: 0002650488
Дата охранного документа: 16.04.2018
29.05.2018
№218.016.567f

Способ дифференциальной токовой защиты трехфазного трансформатора и автотрансформатора

Использование: в области электротехники. Технический результат - повышение надежности способа дифференциальной защиты трансформатора путем выявления неисправностей трансформаторов тока, а также повреждений на ошиновках трансформатора без ухудшения быстродействия защиты и применения сложных...
Тип: Изобретение
Номер охранного документа: 0002654511
Дата охранного документа: 21.05.2018
09.06.2018
№218.016.5b52

Добавка, сохраняющая свежесть мясных пищевых продуктов

Изобретение относится к пищевой промышленности. Добавка содержит лимонную кислоту, а также продукт взаимодействия компонента природного происхождения с раствором электроактивированной воды (анолитом), пропиленгликоля и глицерина, в котором соотношение пропиленгликоля к глицерину составляет 3:1....
Тип: Изобретение
Номер охранного документа: 0002655851
Дата охранного документа: 29.05.2018
+ добавить свой РИД