×
20.10.2014
216.012.fef7

ФОТОННО-КРИСТАЛЛИЧЕСКИЙ ВОЛНОВОД ДЛЯ СЕЛЕКТИВНОГО ПРОПУСКАНИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к волоконной оптике. Фотонно-кристаллический волновод гексагональной формы содержит оболочку и полую сердцевину, в которую введен мультислой капилляров. Период и диаметр каналов мультислоя капилляров, близкими или много меньшими длины волны излучения требуемого спектрального диапазона. Диаметр капилляров оболочки всегда больше диаметров каналов мультислоя. Технический результат - обеспечение возможности выделения спектральных компонент шириной менее 200 нм из потока оптического излучения широкополосного источника в пределах всего видимого диапазона длин волн. 1 з.п. ф-лы, 10 ил.
Реферат Свернуть Развернуть

Изобретение относится к области нанотехнологий, предназначенных для производства оптического волокна, используемого для различных целей, в том числе передачи информации, в нано- и оптоэлектронике, а также фотонике.

Фотонно-кристаллические волноводы представляют собой новый тип оптических волноводов, потенциальные возможности которых существенно выше, чему у стандартного оптического волокна. Это достигается благодаря необычной структуре оболочки вокруг сердцевины оптического волновода в виде фотонно-кристаллической решетки.

Различные типы фотонно-кристаллических волноводов используются в оптических приложениях и, в частности, при решении задач, связанных с управлением спектральными характеристиками оптической системы. В частности, оптические устройства, способные селективно пропускать оптическое излучение в требуемых спектральных диапазонах, могут применяться в фотовольтаике для концентрации мощного потока излучения на небольшую площадь приемника без снижения КПД преобразования и предотвращения высокого нагрева полупроводниковых элементов посредством фильтрации спектральных компонент, преобразуемых в электрическую энергию с наименьшей эффективностью.

Известны патент Южной Кореи KR №20120082130 и патент Китая СН №101561535. Также известно полое фотонно-кристаллическое волокно, патент США US №8306379, обладающее волноводными свойствами. Оболочечная область, окружающая воздушную жилу, состоит из массива микрокапилляров, структура имеет шаг в 5 раз больше чем длина волны. Шаг структуры менее 10 мкм, толщина стенки в диапазоне 200 нм - 1 мкм, структура - типа кагоме. Недостатком таких решений является широкий спектр пропускания либо наличие нескольких максимумов пропускания оптического излучения в видимом диапазоне, а также невысокая интенсивность прошедшего излучения в силу малого соотношения площадей полой сердцевины и структурной оболочки.

Наиболее близким к изобретению является решение, описанное в патенте США US №2012/0206726, где для выделения узких полос из спектра излучения от широкополосных источников используются оптические волноводы, сформированные в виде дефекта в фотонном кристалле. Устройство представляет собой оптический волновод, внедренный в структуру диэлектрика с периодически расположенными отверстиями. Спектр пропускания сформированного фотонно-кристаллического волновода задается массивом полых воздушных каналов и расстоянием между каналами. Значительным минусом данного решения является зависимость коэффициента пропускания структуры в максимуме от центральной длины волны максимума (уменьшение коэффициента пропускания структуры с уменьшением длины волны максимума пропускания). Также следует отметить сложность конструкции, а следовательно, трудность в достижении воспроизводимости и точности изготовления.

Задача предлагаемого изобретения - сужение полосы пропускания фотонно-кристаллического волновода в целевом спектральном диапазоне с сохранением максимально высокой интенсивности оптического излучения.

Это достигается тем, что в фотонно-кристаллический волноводе, имеющем в сечении, перпендикулярном к оси волновода, гексагональную форму, с периодически расположенным массивом отверстий, а центральная часть представляет собой полую сердцевину, в которую введен мультислой капилляров с периодом и диаметром, близких или много меньших длины волны из требуемого спектрального диапазона максимальной интенсивности пропускания.

Кроме того, диаметр капилляров оболочки волновода может быть выполнен больше диаметра каналов мультислоя.

Сущность заявляемого изобретения состоит в том, что за счет микро- и наноструктурирования оболочки и полой сердцевины волокна формируют частотный профиль дисперсии и пространственный профиль распределения электромагнитного поля. Период и диаметр каналов мультикапиллярной структуры волновода близки или много меньше длин волн видимого или ИК-излучения. Волноводный эффект в таких структурах возникает благодаря созданию широкой запрещенной зоны для излучения, распространяющегося вдоль такой структуры.

Предлагаемый фотонно-кристаллический волновод содержит полую сердцевину, окруженную периодическим массивом мультикапилляров, который окружен тонкостенными капиллярами большего диаметра. Для прочности конструкции снаружи уложены монолитные стеклянные штабики.

Техническим результатом предлагаемого изобретения является создание простой, дешевой конструкции, т.к.она выполнена из многокомпонентных стекол, а не из кварца, позволяющей получить узкие полосы пропускания менее 200 нм с сохранением максимально высокой интенсивности оптического излучения.

Распространение электромагнитного излучения в фотонно-кристаллическом волноводе происходит за счет периодической структуры оболочки, т.к. лучи света, отраженные от областей с разным показателем преломления, будут интерферировать друг с другом, усиливаясь или ослабляясь в зависимости от соотношения длины волны и периода структуры.

Определенные цвета (или частоты) выделяются из белого света за счет интерференции. В фотонном кристалле интерференция гасит (запрещает распространение) для целого диапазона длин волн - в этом случае возникают «запрещенные зоны». Такие запрещенные моды (длины волн) локализованы в центральной части волокна на всем его протяжении.

Таким образом, нет необходимости создавать определенную разницу в показателях преломления между жилой и оболочкой, как в случае классического оптоволокна, - выбор материала для внутренней части ничем не ограничен. Более того, полые волокна, где свет распространяется внутри воздушной полости, имеют преимущество перед классическими волокнами со ступенчатым изменением показателя преломления - сердцевина волокна там всегда должна иметь больший показатель преломления, чем оболочка.

Преимущество полых волокон состоит в бесконечно малой дисперсии, поскольку свет распространяется в практически бездисперсионной среде - воздухе.

На Фиг.1 показан способ укладки стеклянных капилляров в пакет гексагональной формы.

На Фиг.2 схематично показана геометрия внутренней структуры фотонно-кристаллического волновода для деления широкого спектра оптического излучения на узкие диапазоны, где 1 - ряд стеклянных штабиков для прочности и жесткости конструкции, 2 - тонкостенные стеклянные трубки, наружный слой структурной оболочки, 3 - мультикапиллярный массив, геометрия и параметры обеспечивают необходимое сужение полосы пропускания.

На Фиг.3 показана микрофотография поперечного сечения фотонно-кристаллического волновода для деления широкого спектра оптического излучения на узкие диапазоны.

На Фиг.4 показаны спектры пропускания некоторых образцов фотонно-кристаллических волноводов с различными размерами внутренней структуры:

а - диаметр полой сердцевины - 125 мкм, диаметр штабиков в слое 1 и капилляров в слоях 2 - 22 мкм, диаметр капилляров в мультикапиллярном слое 3 - 3 мкм, толщина стенок капилляров в слое 3 - 0,33 мкм;

б - диаметр полой сердцевины - 137 мкм, диаметр штабиков в слое 1 и капилляров в слоях 2 - 24,2 мкм, диаметр капилляров в мультикапиллярном слое 3 - 3,3 мкм, толщина стенок капилляров в слое 3 - 0,37 мкм;

в - диаметр полой сердцевины - 147 мкм, диаметр штабиков в слое 1 и капилляров в слоях 2 - 25,9 мкм, диаметр капилляров в мультикапиллярном слое 3 - 3,5 мкм, толщина стенок капилляров в слое 3 - 0,39 мкм;

г - диаметр полой сердцевины - 151 мкм, диаметр штабиков в слое 1 и капилляров в слоях 2 - 26,6 мкм, диаметр капилляров в мультикапиллярном слое 3 - 3,6 мкм, толщина стенок капилляров в слое 3 - 0,4 мкм;

д - диаметр полой сердцевины - 152 мкм, диаметр штабиков в слое 1 и капилляров в слоях 2 - 26,8 мкм, диаметр капилляров в мультикапиллярном слое 3 - 3,6 мкм, толщина стенок капилляров в слое 3 - 0,41 мкм;

е - диаметр полой сердцевины - 157 мкм, диаметр штабиков в слое 1 и капилляров в слоях 2 - 27,7 мкм, диаметр капилляров в мультикапиллярном слое 3 - 3,73 мкм, толщина стенок капилляров в слое 3 - 0,42 мкм;

ж - диаметр полой сердцевины - 182 мкм, диаметр штабиков в слое 1 и капилляров в слоях 2 - 32,1 мкм, диаметр капилляров в мультикапиллярном слое 3 - 4,3 мкм, толщина стенок капилляров в слое 3 - 0,49 мкм.

В настоящем патенте представлена конструкция фотонно-кристаллических волноводов с полой сердцевиной, обеспечивающих возможность выделения спектральных компонент шириной 100-200 нм из потока оптического излучения от широкополосного источника в пределах всего видимого диапазона длин волн с сохранением максимально высокой интенсивности оптического излучения.

В качестве исходного материала для производства фотонно-кристаллических волноводов с полой сердцевиной используют круглые тонкостенные стеклянные капилляры. Стеклянные капилляры предварительно изготавливают из расплава стекла по классической волоконной технологии путем вытяжки на установке, состоящей из печи, фильерного узла и механизма вытяжки. В печи при нагреве (не более 1000°С) происходит размягчение стеклоблока, а форму, размер и последующую конфигурацию изделия формируют фильера, фильерный узел и работа механизма вытяжки.

После получения тонкостенных капилляров их укладывают в пакет (Фиг.1), причем геометрию структурной оболочки волновода формируют несколькими укладками и перетяжками. При необходимости осуществляют поочередную вытяжку нескольких элементов структуры промежуточных размеров из капилляров большого диаметра, а из многожильных элементов формируется структура целиком.

В центре симметрии фотонно-кристаллического волновода с полой сердцевиной нарушается периодичность воздушных каналов - таким образом формируют полый дефект решетки. Формирование полой сердцевины производят на этапе сборки структуры путем замены одного или нескольких стеклянных капилляров на такую же по геометрии направляющую втулку.

Основным геометрическим параметром структуры, оказывающим влияние на спектральные характеристики волновода, является толщина стенок капилляров в структурной оболочке. Длины волн максимумов пропускания фотонно-кристаллического волновода с полой сердцевиной зависят от толщины стенок капилляров оболочки и показателя преломления материала, из которого изготовлен волновод [1]:

,

где d - толщина стенки капилляров оболочки, n1 - показатель преломления среды, заполняющей структуру волновода (в данном случае воздуха, т.е. n1 равно единице), n2 - показатель преломления стекла, из которого изготовлен волновод.

Геометрия поперечного сечения волновода схематично изображена на Фиг.2. В частном случае, рассмотренном ниже, преформа структуры формировалась исходя из определенных геометрических соотношений. Данные размеры структуры приведены для детальной демонстрации технологического процесса. На этапе формирования преформы ее геометрия может варьироваться.

Пример

Структура заготовки для вытяжки волновода включает один ряд стеклянных штабиков (1) диаметром 1,85 мм, два ряда стеклянных капилляров (2) с внешним диаметром 1,85 мм, один ряд мультикапилляров шестигранной формы (3). Мультикапилляры (3) состоят из 37 стеклянных капилляров диаметром 250 мкм, толщина стенок капилляров 28 мкм.

Из заготовки (Фиг.2) вытягиваются волноводы (Фиг.3) с диаметром полой сердцевины 125-182 мкм. Каждому образцу волновода соответствует собственный спектр пропускания (Фиг.4).

На Фиг.5 показаны некоторые примеры спектров пропускания ФКВ, геометрические параметры которых приведены ниже. Данные спектры и соответствующие геометрические параметры волноводов приведены исключительно с целью детальной иллюстрации работы устройства. Геометрические параметры структур могут произвольно варьироваться при производстве с целью получения требуемых спектральных характеристик оптического устройства.

Литература

1. Желтиков А.М. "Цвета тонких пленок, антирезонансные явления в оптических системах и предельные потери собственных мод полых световодов". - Успехи физических наук, т.178, №6, стр.619-620.


ФОТОННО-КРИСТАЛЛИЧЕСКИЙ ВОЛНОВОД ДЛЯ СЕЛЕКТИВНОГО ПРОПУСКАНИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ
ФОТОННО-КРИСТАЛЛИЧЕСКИЙ ВОЛНОВОД ДЛЯ СЕЛЕКТИВНОГО ПРОПУСКАНИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ
ФОТОННО-КРИСТАЛЛИЧЕСКИЙ ВОЛНОВОД ДЛЯ СЕЛЕКТИВНОГО ПРОПУСКАНИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ
ФОТОННО-КРИСТАЛЛИЧЕСКИЙ ВОЛНОВОД ДЛЯ СЕЛЕКТИВНОГО ПРОПУСКАНИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 11.
10.04.2014
№216.012.afe3

Способ лечения хронического тонзиллита у детей

Изобретение относится к области медицины, в частности к педиатрии, а именно к оториноларингологии, и может быть использовано при лечении хронического тонзиллита в детских лечебно-оздоровительных учреждениях, стационарах, поликлиниках. Воздействуют низкоэнергетическим лазерным излучением на...
Тип: Изобретение
Номер охранного документа: 0002510742
Дата охранного документа: 10.04.2014
10.10.2014
№216.012.fd97

Способ накопления, хранения электрической энергии и устройство для его осуществления

Группа изобретений относится к электротехнике, а именно к способам и устройствам для накопления и хранения электрической энергии. Техническим результатом изобретений является снижение саморазряда, увеличение КПД, при увеличении плотности энергии на единицу массы. Способ накопления и хранения...
Тип: Изобретение
Номер охранного документа: 0002530765
Дата охранного документа: 10.10.2014
10.04.2015
№216.013.3eed

Многоканальный наконечник для экстракции нуклеиновых кислот, белков и пептидов

Группа изобретений относится к многоканальным устройствам, модифицированным нанослоями анилинсодержащих полимеров. Предложен многоканальный наконечник для выделения нуклеиновых кислот, белков, пептидов и способ изготовления многоканального элемента, входящего в состав многоканального...
Тип: Изобретение
Номер охранного документа: 0002547597
Дата охранного документа: 10.04.2015
27.05.2015
№216.013.4ebe

Способ и устройство преобразования тепловой энергии в электрическую

Изобретение относится к преобразованию тепловой энергии в электрическую и может применяться в качестве автономного источника электрической энергии, используя для нагрева, например, солнечную тепловую энергию или любой другой источник тепла. Устройство для реализации способа содержит...
Тип: Изобретение
Номер охранного документа: 0002551676
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.524d

Фотонно-кристаллическое халькогенидное волокно и способ его изготовления

Изобретение относится к волоконной оптике. Фотонно-кристаллическое халькогенидное волокно состоит из центрального волноведущего стержня из халькогенидного стекла, микроструктурной волноведущей оболочки из чередующихся слоев халькогенидного стекла и воздушных зазоров и второй защитной...
Тип: Изобретение
Номер охранного документа: 0002552590
Дата охранного документа: 10.06.2015
27.07.2015
№216.013.67eb

Металлодиэлектрическая структура и способ ее изготовления

Металл-диэлектрическая структура и способ ее изготовления относятся к электронной промышленности и электротехнике и может найти применение как в современных энергосберегающих системах, так и в компонентах, которые являются неотъемлемой частью современных процессоров, в частности для создания...
Тип: Изобретение
Номер охранного документа: 0002558156
Дата охранного документа: 27.07.2015
25.08.2017
№217.015.a1b3

Чирпированный микроструктурный волновод и способ его изготовления

Изобретение относится к области нанотехнологий, в частности к области производства оптического волокна. Чирпированное фотонно-кристаллическое волокно состоит из центральной волноведущей жилы и структурированной оболочки в виде массива капилляров, диаметры которых возрастают от центра к...
Тип: Изобретение
Номер охранного документа: 0002606796
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.aa4d

Способ оценки количества гидроксильных групп на внутренней поверхности фотонно-кристаллического волновода

Изобретение относится к нанотехнологиям и может быть использовано для оценки количества гидроксильных групп на внутренней поверхности стеклянных фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС), в том числе с селективно запаянными внешними оболочками, используемых для...
Тип: Изобретение
Номер охранного документа: 0002611573
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.c0ce

Способ селективной запайки внешних оболочек фотонно-кристаллического волновода с полой сердцевиной

Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС) с селективно запаянными внешними оболочками для использования в различных целях, в т.ч. для изготовления конструктивных элементов сенсоров,...
Тип: Изобретение
Номер охранного документа: 0002617650
Дата охранного документа: 25.04.2017
20.11.2017
№217.015.ef85

Способ селективной запайки внешних оболочек фотонно-кристаллических волноводов с полой сердцевиной

Изобретение относится к области микро- и нанотехнологий и может быть использовано для получения образцов фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС). Способ запайки торцевой поверхности образца включает нагрев образца узконаправленным источником теплового воздействия. При...
Тип: Изобретение
Номер охранного документа: 0002629133
Дата охранного документа: 24.08.2017
Показаны записи 1-10 из 13.
10.10.2014
№216.012.fd97

Способ накопления, хранения электрической энергии и устройство для его осуществления

Группа изобретений относится к электротехнике, а именно к способам и устройствам для накопления и хранения электрической энергии. Техническим результатом изобретений является снижение саморазряда, увеличение КПД, при увеличении плотности энергии на единицу массы. Способ накопления и хранения...
Тип: Изобретение
Номер охранного документа: 0002530765
Дата охранного документа: 10.10.2014
10.04.2015
№216.013.3eed

Многоканальный наконечник для экстракции нуклеиновых кислот, белков и пептидов

Группа изобретений относится к многоканальным устройствам, модифицированным нанослоями анилинсодержащих полимеров. Предложен многоканальный наконечник для выделения нуклеиновых кислот, белков, пептидов и способ изготовления многоканального элемента, входящего в состав многоканального...
Тип: Изобретение
Номер охранного документа: 0002547597
Дата охранного документа: 10.04.2015
27.05.2015
№216.013.4ebe

Способ и устройство преобразования тепловой энергии в электрическую

Изобретение относится к преобразованию тепловой энергии в электрическую и может применяться в качестве автономного источника электрической энергии, используя для нагрева, например, солнечную тепловую энергию или любой другой источник тепла. Устройство для реализации способа содержит...
Тип: Изобретение
Номер охранного документа: 0002551676
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.524d

Фотонно-кристаллическое халькогенидное волокно и способ его изготовления

Изобретение относится к волоконной оптике. Фотонно-кристаллическое халькогенидное волокно состоит из центрального волноведущего стержня из халькогенидного стекла, микроструктурной волноведущей оболочки из чередующихся слоев халькогенидного стекла и воздушных зазоров и второй защитной...
Тип: Изобретение
Номер охранного документа: 0002552590
Дата охранного документа: 10.06.2015
27.07.2015
№216.013.67eb

Металлодиэлектрическая структура и способ ее изготовления

Металл-диэлектрическая структура и способ ее изготовления относятся к электронной промышленности и электротехнике и может найти применение как в современных энергосберегающих системах, так и в компонентах, которые являются неотъемлемой частью современных процессоров, в частности для создания...
Тип: Изобретение
Номер охранного документа: 0002558156
Дата охранного документа: 27.07.2015
25.08.2017
№217.015.a1b3

Чирпированный микроструктурный волновод и способ его изготовления

Изобретение относится к области нанотехнологий, в частности к области производства оптического волокна. Чирпированное фотонно-кристаллическое волокно состоит из центральной волноведущей жилы и структурированной оболочки в виде массива капилляров, диаметры которых возрастают от центра к...
Тип: Изобретение
Номер охранного документа: 0002606796
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.aa4d

Способ оценки количества гидроксильных групп на внутренней поверхности фотонно-кристаллического волновода

Изобретение относится к нанотехнологиям и может быть использовано для оценки количества гидроксильных групп на внутренней поверхности стеклянных фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС), в том числе с селективно запаянными внешними оболочками, используемых для...
Тип: Изобретение
Номер охранного документа: 0002611573
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.c0ce

Способ селективной запайки внешних оболочек фотонно-кристаллического волновода с полой сердцевиной

Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС) с селективно запаянными внешними оболочками для использования в различных целях, в т.ч. для изготовления конструктивных элементов сенсоров,...
Тип: Изобретение
Номер охранного документа: 0002617650
Дата охранного документа: 25.04.2017
20.11.2017
№217.015.ef85

Способ селективной запайки внешних оболочек фотонно-кристаллических волноводов с полой сердцевиной

Изобретение относится к области микро- и нанотехнологий и может быть использовано для получения образцов фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС). Способ запайки торцевой поверхности образца включает нагрев образца узконаправленным источником теплового воздействия. При...
Тип: Изобретение
Номер охранного документа: 0002629133
Дата охранного документа: 24.08.2017
04.04.2018
№218.016.36ce

Суперконденсаторная ячейка

Изобретение относится к области суперконденсаторов и может быть использовано в энергетических системах, функционирующих за счет запасаемой электрической энергии, в особенности солнечной энергетике, в качестве накопителей и автономных источников питания с управляемыми характеристиками заряда и...
Тип: Изобретение
Номер охранного документа: 0002646531
Дата охранного документа: 05.03.2018
+ добавить свой РИД