×
20.10.2014
216.012.feb0

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ УДЕЛЬНОГО ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ МЕТАЛЛИЧЕСКОГО СПЛАВА МЕТОДОМ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, представляет собой способ и устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля и может использоваться для анализа материалов, в частности металлов и сплавов в жидком и/или твердом состоянии, путём бесконтактного определения электрического сопротивления нагреваемого тела в зависимости от температуры. Способ состоит в том, что определяют угол поворота образца во вращающемся магнитном поле, создаваемом магнитным узлом в виде трех катушек трехфазного статора, измеряют значения тока, по значениям угла поворота и тока определяют удельное электрическое сопротивление, при этом измерение тока в одной из катушек осуществляют посредством мультиметра, а нулевые значения тока в любой из катушек используют для сигнализации о нарушении параметров магнитного поля. Устройство для реализации способа включает источник вращающегося магнитного поля с магнитной системой в виде трех катушек трехфазного статора, датчики тока, подключенные к катушкам, и компьютер, дополнительный датчик тока, мультиметр и устройство сигнализации, содержащее три вычитающих устройства, сумматор, пороговый элемент, оптический индикатор, входы мультиметра соединены с дополнительным датчиком тока, выход мультиметра соединен с одним из входов компьютера, входы каждого вычитающего устройства подключены к выходам двух датчиков тока, подключенных к катушкам, выходы вычитающих устройств соединены со входами сумматора, выход которого через пороговый элемент соединен с оптическим индикатором, выход порогового элемента является выходом устройства сигнализации и соединен с другим входом компьютера. Техническим результатом является обеспечение сокращения времени измерений, упрощение эксперимента при сохранении требуемой точности. 2 н. и 3 з.п. ф-лы, 1 ил.

Изобретение относится к физике, а именно к анализу материалов путем бесконтактного определения электрического сопротивления нагреваемого тела в зависимости от температуры, в частности к определению относительной электропроводности металлов и сплавов в жидком и/или твердом состоянии.

Известны способ для бесконтактного измерения электрического сопротивления металлического твердого образца или его расплава методом вращающегося магнитного поля и устройство для его осуществления - см. пат. РФ №2299425 - аналог. Способ является относительным и заключается в том, что в каждой температурной точке, как при нагреве, так и при охлаждении, посредством отраженного светового луча по оптической шкале определяют угол поворота φ исследуемого металлического сплава, расположенного в электропечи на одном из концов подвески во вращающемся магнитном поле, создаваемом магнитным узлом, подключенным к трехфазной силовой сети и размещенным в зоне нагрева исследуемого сплава снаружи электропечи, определяют токи Ii, протекающие через каждую из катушек этого магнитного узла, выполненного в виде трехфазного статора, после чего продолжают последующие операции способа и вычисляют удельное электрическое сопротивление ρ по расчетной формуле:

где m, m0 - массы исследуемого и эталонного образцов; d, d0 - плотности исследуемого и эталонного образцов; ρ0 - удельное электрическое сопротивление эталона; φ, φ0 - углы закручивания исследуемого и эталонного образцов, определяемые по отклонениям отраженного светового луча на оптической шкале; I, I0 - ток, проходящий по катушкам магнитного узла, являющегося источником вращающегося магнитного поля при исследовании образца и эталона.

Известны способ безэлектродного измерения электрического сопротивления металлов в твердом и жидком состоянии и установка для его реализации - см. А. В. Рябина и др. «Безэлектродный метод измерения электросопротивления металлов в твердом и жидком состоянии и установка для его реализации», журн. «Расплавы», 2009, №1, с.36-42 - аналог. Определяют угол поворота φ исследуемого сплава, расположенного в тигле на подвеске во вращающемся магнитном поле, создаваемом магнитным узлом, размещенным в зоне нагрева исследуемого сплава снаружи электропечи, и определяют токи Ii, протекающие через катушки этого магнитного узла, выполненного в виде трехфазного статора, после чего вычисляют удельное электрическое сопротивление ρ исследуемого металлического сплава. Для определения токов Ii и индикации целостности электрических цепей магнитного узла используют три амперметра Д-553, имеющих класс точности 0,2.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ для бесконтактного измерения удельного сопротивления методом вращающегося магнитного поля - см. Г.В. Тягунов и др. «Измерение удельного электросопротивления методом вращающегося магнитного поля», журн. «Заводская лаборатория. Диагностика материалов». М., 2003, №2, том 69, 35÷37 - прототип. Способ заключается в том, что в каждой температурной точке при нагреве или охлаждении исследуемого образца металлического сплава в электропечи определяют угол поворота этого образца, расположенного на одном из концов упругой подвески во вращающемся магнитном поле, создаваемом магнитным узлом в виде трех катушек трехфазного статора, измеряют значения тока в катушках трехфазного статора, по значениям угла поворота и тока в катушках трехфазного статора определяют удельное электрическое сопротивление металлического сплава. При этом индукционные токи в образце создают магнитный момент. Образец взаимодействует с внешним магнитным полем, создается вращательный механический момент, которому противодействует упругость нити. При фиксированном значении параметров нити, магнитного поля, в частности, тока Ii, в катушках магнитного узла, геометрии, массы и плотности эталонного и изучаемого образцов удельное электрическое сопротивление ρ однозначно связано с углом отклонения φ (или закручивания) как эталона, так и образца, который определяется по отклонению отраженного светового луча на шкале. Кроме того, измеряют токи Ii, по ним вычисляют средний ток Iср, который и подставляют в формулу (1).

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является устройство для бесконтактного измерения удельного сопротивления методом вращающегося магнитного поля - см. Г.В. Тягунов и др. «Измерение удельного электросопротивления методом вращающегося магнитного поля», журн. «Заводская лаборатория. Диагностика материалов». М., 2003, №2, том 69, 35÷37 - прототип, содержащее электропечь, в зоне нагрева которой на одном из концов упругой подвески закреплен тигель, в котором размещен исследуемый образец металлического сплава, источник вращающегося магнитного поля, магнитная система которого расположена вокруг электропечи в виде трех катушек трехфазного статора, электрически соединенных между собой, в частности, треугольником, датчики тока, подключенные к катушкам, и компьютер.

Недостатком аналогов и прототипа является то, что для реализации требуемой точности определения ρ, например, 3% - см. прототип, при измерениях, проводимых в каждой температурной точке как при нагреве, так и охлаждении исследуемого сплава, считывают значения токов Ii; в каждой катушке магнитного узла, затем усредняют эти данные, вычисляют среднее значения тока Icp и используют его для окончательных вычислений. При этом индикацию целостности электрических цепей магнитного узла осуществляют путем наблюдения за наличием ненулевых показаний измерителей тока, но сигнализация о нарушении этой целостности отсутствует. Это вводит элемент субъективности, усложняет и удорожает эксперименты и требует дополнительного времени для измерений.

Задачей предлагаемого изобретения является обеспечение сокращения времени измерений, упрощение и удешевление эксперимента при сохранении требуемой точности.

Для решения поставленной задачи предлагаются способ и устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля.

Способ бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля, при котором в каждой температурной точке при нагреве или охлаждении исследуемого образца металлического сплава в электропечи определяют угол поворота этого образца, расположенного на одном из концов упругой подвески во вращающемся магнитном поле, создаваемом магнитным узлом в виде трех катушек трехфазного статора, измеряют значения тока в трехфазном статоре, по значениям угла поворота и тока в катушках трехфазного статора определяют удельное электрическое сопротивление металлического сплава, ОТЛИЧАЮЩИЙСЯ тем, что измерение значения тока в одной из катушек трехфазного статора осуществляют посредством мультиметра, а нулевые значения тока в любой из катушек трехфазного статора используют для сигнализации о нарушении параметров магнитного поля магнитного узла.

Устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля, включающее электропечь, в зоне нагрева которой на одном из концов упругой подвески закреплен тигель, в котором размещен исследуемый образец металлического сплава, источник вращающегося магнитного поля, магнитная система которого расположена вокруг электропечи в виде трех катушек трехфазного статора, электрически соединенных между собой, в частности, треугольником, датчики тока, подключенные к катушкам, и компьютер, ОТЛИЧАЮЩЕЕСЯ тем, что в устройство введены дополнительный датчик тока, мультиметр и устройство сигнализации, содержащее три вычитающих устройства, сумматор, пороговый элемент, оптический индикатор, дополнительный датчик тока подключен к соединительному проводу одной из катушек трехфазного статора, входы мультиметра соединены с дополнительным датчиком тока, выход мультиметра соединен с одним из входов компьютера, датчики тока используют в качестве индикаторов тока, входы каждого вычитающего устройства подключены к выходам двух датчиков тока, подключенных к катушкам, выходы вычитающих устройств соединены со входами сумматора, выход которого через пороговый элемент соединен с оптическим индикатором, выход порогового элемента является выходом устройства сигнализации и соединен с другим входом компьютера.

Кроме того, магнитный узел обладает функцией вращения магнитного поля с частотой, кратной частоте силовой сети.

Кроме того, в качестве датчиков тока используют трансформаторы тока.

Кроме того, в качестве дополнительного датчика тока используют образцовый резистор.

Отличительные признаки предложенных технических решений - способа и устройства - обеспечивают технический результат: сокращение времени измерений, упрощение и удешевление эксперимента при сохранении требуемой точности.

Предлагаемое изобретение поясняется блок-схемой предлагаемого устройства, приведенной на чертеже.

Устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля содержит электропечь с тиглем, содержащим исследуемый сплав (на схеме не показаны), магнитный узел 1, выполненный как трехфазный статор в виде трех катушек 2, 3, 4, датчики тока 5, 6, 7, дополнительный датчик тока 8, мультиметр 9, компьютер 10, устройство сигнализации 11, состоящее из вычитающих устройств 12, 13, 14, сумматора 15, порогового элемента 16, оптического индикатора 17.

Магнитный узел 1 общей мощностью 650 Вт питается от силовой 3-фазной сети, стабилизированной посредством стабилизатора напряжения «Штиль 6000 3Р» (на схеме не показано) в пределах +/-7%, размещен вокруг электропечи в области зоны нагрева тигля с исследуемым образцом. Катушки 2, 3, 4 одинаковы и имеют парную симметричную конструкцию. Три датчика тока 5, 6, 7 выполнены в виде тороидальных трансформаторов тока ТТ43065 на 5 А фирмы «Гаммамет», г. Екатеринбург. Сквозь каждый из них пропущен соответствующий провод, подключенный к одному из концов каждой из катушек 2, 3, 4. Кроме того, в качестве датчиков тока 5, 6, 7 могут быть использованы, например, образцовые прецизионные сопротивления с погрешностью не больше 0,1%, или датчики Холла. Дополнительный датчик тока 8 выполнен в виде прецизионного резистора номиналом 0,1 Ом с погрешностью 0,1%. Прецизионный мультиметр 9 типа В7-62 на 4,5 знака снабжен стандартным интерфейсом RS232 для соединения с компьютером 10, который выполнен на основе Pentium - 4 и является управляющим и вычисляющим для всей лабораторной установки. Устройство сигнализации 11 содержит три одинаковых вычитающих устройства 12, 13, 14 и сумматор 15 резистивного типа, выполненные на четырех операционных усилителях микросхемы счетверенного усилителя LM324. Пороговый элемент 16 представляет собой триггер Шмитта, выполненный, например, на сдвоенном операционном усилителе LM 358, оптический индикатор 17 - светодиод АЛ 307. Устройство сигнализации 11 может быть полностью выполнено в виде виртуального блока, входящего в состав компьютера 10 с соответствующим программным обеспечением.

Способ осуществляют следующим образом. Проводят все требуемые подготовительные операции способа, после которых включают магнитный узел 1. При этом с датчиков тока 5, 6, 7 сигнал в виде напряжения поступает на входы трех вычитающих устройства 12, 13, 14 устройства сигнализации 11. Если нет обрывов в катушках 2, 3, 4, то отсутствуют сигналы на входах сумматора 15 и на выходе порогового элемента 16. Оптический индикатор 17 не светится. Если имеется обрыв хоть в одной из катушек 2, 3, 4, появляется разница в сигналах датчиков тока 5, 6, 7, на выходе вычитающих устройств 12, 13, 14 устройства сигнализации 11 появляется отличный от нуля сигнал, который поступает через сумматор 15 на пороговый элемент 16, который формирует сигнал, достаточный для срабатывания оптического индикатора 17. При этом можно подключить к датчикам тока 5, 6, 7, например трансформаторам тока, недорогие малогабаритные стрелочные микроамперметры, например, типа М47621 или М478 с выпрямительным диодом каждый, для использования их в качестве индикаторов как наличия, так и оценочного значения величины тока в каждой из катушек. При этом ток магнитного узла 1 определяют только в одной из катушек 2, 3, 4 посредством мультиметра 9, подключенного к дополнительному датчику тока 8, точность которого не хуже 0,1%. Это позволяет обойтись одним точным прибором вместо трех и использовать недорогие стрелочные индикаторы как индикаторы тока.

Пример. Проведено сравнительное определение ρ сплава Al-Co в диапазоне температур +(830÷1200)°C по 13 температурным точкам с использованием, во первых, показаний одного мультиметра 9, во вторых, показаний трех аналогичных мультиметров, подключенных по одинаковым схемам к каждой из трех катушек 2, 3, 4, с последующим усреднением этих показаний Ii в виде Icp и использованием Icp как величины тока I для расчетов по вышеприведенной формуле (1). В конечном, вычисленном по экспериментальным данным значении ρ, его величина закономерно изменялась от ρ=39,71 (при +830°C) до ρ=51,33 (при +1200°C)·10-8 Ом·м. Различие ρ для обоих методов в среднем +/-0,86·10-8 Ом·м, σ=1,05·10-8 Ом·м, т.е. разница в значении ρ, которая является общей относительной ошибкой, составляет примерно 2%. По литературным данным, аналогичная допустимая ошибка составляет 3% - см. прототип. Таким образом, погрешность 2%, которая может быть обусловлена использованием показаний одного мультиметра 9, допустима и обеспечивает сохранение точности экспериментов. Кроме того, надо учитывать погрешности сомножителей формулы (I): например, погрешность определения плотности d составляет величину (1,5÷1,8)%, а нестабильность сетевого источника питания магнитного узла 1, которая обусловливает нестабильность тока I, протекающего по трем катушкам 2, 3, 4 трехфазного статора может составлять, как указано выше, (6÷7)% даже после стабилизатора. С другой стороны, уменьшение массива данных в три раза, например с 39 до 13, по числу используемых в эксперименте температурных точек, при практическом сохранении точности ускоряет, упрощает и удешевляет эксперимент.

Технические решения, содержащие вышеуказанные совокупности отличительных признаков, а также совокупности ограничительных и отличительных признаков, не выявлены в известном уровне техники, что при достижении вышеописанного технического результата позволяет считать предложенные технические решения имеющими изобретательский уровень.


СПОСОБ И УСТРОЙСТВО ДЛЯ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ УДЕЛЬНОГО ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ МЕТАЛЛИЧЕСКОГО СПЛАВА МЕТОДОМ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 115.
27.02.2015
№216.013.2e4c

Применение 2-морфолино-5-фенил-6н-1,3,4-тиадизин, гидробромида в качестве средства, изменяющего суммарную мощность спектра вариабельности сердечного ритма и обладающего антибрадикардическими свойствами

Изобретение относится к области профилактической медицины, отдельных специальных разделов клинической медицины и к области биологически активных соединений. Предложено применение гидробромида 2-морфолино-5-фенил-6H-1,3,4-тиадизина в качестве средства, изменяющего суммарную мощность спектра...
Тип: Изобретение
Номер охранного документа: 0002543320
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.391f

Способ получения фенацетина

Изобретение относится к способу получения фенацетина. Способ осуществляют путем восстановления п-этоксинитробензола, проводимым в изопропиловом спирте при перемешивании с катализатором Ni-Ренея под давлением водорода 2-4 атм при 60-70°C в присутствии уксусного ангидрида, ацилирования...
Тип: Изобретение
Номер охранного документа: 0002546111
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3b7c

Способ определения профиля поперечного распределения примеси германия в жиле и оболочке кремниевых стекловолокон

Использование: для определения профиля поперечного распределения примеси германия в жиле и оболочке кремниевых стекловолокон. Сущность изобретения заключается в том, что изготавливают из эпоксидной смолы таблетку-держатель с образцами анализируемых стекловолокон и проводят последующий анализ...
Тип: Изобретение
Номер охранного документа: 0002546716
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.419b

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смесители опорного 4 и сигнального 5 каналов,...
Тип: Изобретение
Номер охранного документа: 0002548293
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43da

Способ изготовления материала для получения магнитного клина

Изобретение относится к области электромашиностроения и может быть использовано для получения магнитодиэлектрического материала в виде листов или плит для изготовления магнитного клина электрических машин. Осуществляют смешивание ферромагнитного компонента, эпоксидной смолы и отвердителя,...
Тип: Изобретение
Номер охранного документа: 0002548868
Дата охранного документа: 20.04.2015
10.06.2015
№216.013.524b

Способ получения пленок твердых растворов замещения pbsnse методом ионного обмена

Пленки твердых растворов замещения PbSnSe - востребованный материал полупроводниковой оптоэлектроники и лазерной техники среднего и дальнего инфракрасного диапазона. Однако достигнутое на сегодня содержание олова в составе гидрохимически синтезируемых пленок PbSnSe не обеспечивает в полной мере...
Тип: Изобретение
Номер охранного документа: 0002552588
Дата охранного документа: 10.06.2015
27.06.2015
№216.013.58da

Способ и устройство определения поверхностного натяжения и/или плотности металлических расплавов

Изобретение относится к технической физике, а именно к анализу материалов, в частности к определению физико-химических параметров высокотемпературных металлических расплавов методом геометрии так называемой «большой капли», т.е. путем измерения параметров силуэта лежащей на подложке...
Тип: Изобретение
Номер охранного документа: 0002554287
Дата охранного документа: 27.06.2015
27.08.2015
№216.013.742a

Способ и устройство определения поверхностного натяжения и/или плотности металлических расплавов

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических расплавов методом геометрии контура «большой лежащей капли», т.е. путем измерения плотности и поверхностного натяжения неподвижно лежащей на подложке эллипсовидной капли образца...
Тип: Изобретение
Номер охранного документа: 0002561313
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7528

Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава

Настоящее изобретение относится к областям металлургии, а именно к способам термической обработки высоколегированных псевдо-β титановых сплавов. Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава, содержащего, мас.%: 4,0…6,3 алюминия, 4,5…5,9 ванадия,...
Тип: Изобретение
Номер охранного документа: 0002561567
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.75fa

Контактный теплоутилизатор с каплеуловителем

Изобретение относится к теплоэнергетике и может быть использовано в установках для нагрева воды уходящими дымовыми газами котельных или тепловых агрегатов. Контактный теплоутилизатор с каплеуловителем содержит контактную насадку с оросителем, по высоте которой монтирован каплеуловитель,...
Тип: Изобретение
Номер охранного документа: 0002561791
Дата охранного документа: 10.09.2015
Показаны записи 51-60 из 168.
10.02.2014
№216.012.9fcb

Инфракрасный световод с большим диаметром поля моды

Изобретение относится к инфракрасным световодам с большим диаметром поля моды. Световод включает сердцевину и оболочку, состоящую из стержней, расположенных в гексагональном порядке. Сердцевина диаметром 98-112 мкм выполнена из кристаллов на основе бромида серебра, содержащего твердый раствор...
Тип: Изобретение
Номер охранного документа: 0002506615
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a345

Способ изготовления модифицированного электрода для электрохимического анализа (варианты)

Использование: для контроля состава природных, сточных вод, биологических объектов, пищевых продуктов, диагностики заболеваний в химической, металлургической, пищевой промышленности, медицине, экологии. Сущность: способ изготовления модифицированного электрода включает синтез на поверхности...
Тип: Изобретение
Номер охранного документа: 0002507512
Дата охранного документа: 20.02.2014
20.04.2014
№216.012.bb33

Способ измерения поглощенной дозы ионизирующего излучения в термолюминесцентном детекторе на основе анионо-дефектного монокристалла оксида алюминия (варианты)

Изобретение относится к радиационной физике, а именно к способам измерения поглощенной дозы ионизирующего γ-излучения, или β-излучения, или импульсного потока электронов в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия. Способ измерения поглощенной дозы...
Тип: Изобретение
Номер охранного документа: 0002513651
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c1b0

Термогравиметрическая установка

Термогравиметрическая установка предназначена для определения кислородной нестехиометрии в твердых оксидных материалах по изменению их массы в зависимости от температуры и парциального давления кислорода газовой атмосферы. Термогравиметрическая установка содержит измерительную систему,...
Тип: Изобретение
Номер охранного документа: 0002515333
Дата охранного документа: 10.05.2014
27.05.2014
№216.012.cb24

Способ определения плотности металлических расплавов

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических расплавов путем измерения плотности и поверхностного натяжения неподвижно лежащей на подложке эллипсовидной капли образца расплава посредством фотоэлектронной объемометрии. Образец...
Тип: Изобретение
Номер охранного документа: 0002517770
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.cb27

Способ определения поглощенной дозы ионизирующего ультрафиолетового или бета-излучения в детекторе на основе монокристалла нитрида алюминия

Изобретение относится к радиационной физике, а именно к способам определения поглощенной дозы ионизирующего ультрафиолетового или бета-излучения в детекторе на основе монокристаллического нитрида алюминия с использованием метода оптически стимулированной люминесценции (ОСЛ) в непрерывном режиме...
Тип: Изобретение
Номер охранного документа: 0002517773
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.ccd4

Способ термической обработки рельсов

Изобретение относится к области черной металлургии, в частности к производству железнодорожных рельсов, преимущественно длинномерных рельсов. Перед охлаждением прокатанного рельса при температуре конца прокатки 850-870°С концы рельса зажимают в клещевых зажимах и растягивают в продольном...
Тип: Изобретение
Номер охранного документа: 0002518207
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cdaf

Способ бестокового получения урана (v) в расплавленных хлоридах щелочных металлов

Изобретение относится к области создания пирохимических технологий переработки облученного ядерного топлива, в частности оксидного. Способ бестокового получения урана (V) в расплавленных хлоридах щелочных металлов (NaCl-2CsCl, NaCl-KCl, LiCl-KCl), содержащих ионы урана (VI), сущность которого...
Тип: Изобретение
Номер охранного документа: 0002518426
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d5eb

Аппликатор магнитный

Изобретение относится к медицине, а именно к магнитотерапии, и может быть использовано для лечения различных заболеваний воздействием магнитных полей, создаваемых постоянным магнитом, размещаемым снаружи тела. Аппликатор магнитный содержит гибкую пластину из магнитомягкого эластомера на основе...
Тип: Изобретение
Номер охранного документа: 0002520541
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.df1f

Способ извлечения редкоземельных элементов из жидких сплавов с цинком

Изобретение относится к области создания пирохимических технологий переработки облученного ядерного топлива, а именно к способу извлечения редкоземельных элементов из жидкого сплава с цинком. Предлагаемый способ включает погружение сплава в солевой расплав с последующим переводом редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002522905
Дата охранного документа: 20.07.2014
+ добавить свой РИД