×
10.10.2014
216.012.fbda

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ "ВИРТУАЛЬНЫХ" КАНАЛОВ ПРИЕМА СИГНАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиотехники и может использоваться при проектировании и эксплуатации комплексов радиопеленгации или систем радиосвязи портативного, мобильного (бортового) и стационарного базирования. Технический результат - повышение устойчивости функционирования методов оценки напряженности электромагнитного или акустического поля Для этого на каждом элементе антенной решетки записывают интервал на временном интервале [0,Т], производят формирование дискретного спектра напряженности поля с использованием процедуры преобразования Фурье, при этом. для каждой из полученных спектральных компонент находят вектор комплексных амплитуд/вспомогательных источников как приближенное решение матрично-векторного уравнения с использованием процедуры квазирешения. Число вспомогательных источников определяется как число наиболее значимых собственных чисел автокорреляционной матрицы принятых антенной решеткой сигналов, т.е. наибольших и отличающихся от остальных по величине не менее, чем на порядок. Далее определяют значения поля спектральной компоненты в произвольной точке плоскости антенной решетки (формируют «виртуальный» канал приема сигналов) как скалярное произведение найденного вектора комплексных амплитуд вспомогательных источников и соответствующего вектора «виртуального» канала приема сигналов. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области радиотехники и может использоваться при проектировании и эксплуатации комплексов радиопеленгации или систем радиосвязи портативного, мобильного (бортового) и стационарного базирования.

Известен способ оценки напряженности электромагнитного или акустического поля по сигналам элементов антенной решетки, расположенных вблизи искажающего поле рассеивателя [1], заключающийся в том, что на каждом элементе антенной решетки записывают сигнал на временном интервале [0,Т], формируют дискретный спектр напряженности поля, выполняя над записанным сигналом процедуру преобразования Фурье, для каждой спектральной компоненты находят вектор В коэффициентов интерполяционной модели поля, удовлетворяющий матрично-векторному уравнению U(N)=QB, левая часть которого представляет собой вектор U(N) напряженностей поля спектральной компоненты элементов антенной решетки, а правая часть представляет собой произведение матрицы антенной решетки Q, элементы которой зависят от частоты и расположения элементов антенной решетки, и искомого вектора B коэффициентов интерполяционной модели поля, определяют значение поля спектральной компоненты в произвольной точке плоскости антенной решетки как скалярное произведение найденного вектора В коэффициентов интерполяционной модели поля и вектора q, зависящего от частоты и положения этой оцениваемой точки.

Однако описанный выше способ основан на необходимости решения систем линейных алгебраических уравнений (СЛАУ), в состав которых входят плохообусловленные матрицы, из-за чего он теряет устойчивость функционирования при наличии погрешностей в измерении комплексных амплитуд на элементах физически существующей антенной решетки, вызванных действиями шумов или несимметричностью каналов

Изобретение направлено на повышение устойчивости методов оценки напряженности электромагнитного или акустического поля (формирования «виртуальных» каналов приема сигналов) при их функционировании в условиях наличия шумов или несимметричности каналов антенной системы.

Это достигается тем, что на каждом элементе антенной решетки записывают сигнал на временном интервале [0,Т], формируют дискретный спектр напряженности поля, выполняя над записанным временным сигналом процедуру преобразования Фурье, для каждой спектральной компоненты находят вектор В комплексных амплитуд вспомогательных источников поля с помощью квазирешения матрично-векторного уравнения , например, в виде . При этом - вектор напряженностей поля спектральной компоненты элементов антенной решетки, Q - матрица вспомогательных источников, элементы которой зависят от частоты и взаимного расположения элементов антенной решетки и вспомогательных источников, Н H - знак Эрмитового сопряжения. При этом число вспомогательных источников определяется как, например, как число наиболее значимых собственных чисел автокорреляционной матрицы принятых антенной решеткой сигналов, т.е. наибольших и отличающихся от остальных по величине не менее, чем на порядок. Элементы матрицы Q определяются как Qn,m=exp(i·k0·rn,m)/rn,m, где k0 - волновое число свободного пространства, - расстояние от n-го элемента антенной решетки m-го до вспомогательного источника.

Формируют «виртуальный» канал приема сигналов (определяют значение поля спектральной компоненты в произвольной точке плоскости антенной решетки) как скалярное произведение вектора комплексных амплитуд вспомогательных источников и вектора , элементы которого зависят от частоты, положения формируемого «виртуального» канала приема сигналов в пространстве и числа вспомогательных источников. При этом произвольный m-й элемент вектора определяют как gm=exp(i·k0·rm)/rm, где k0 - волновое число свободного пространства, - расстояние от точки, в которой формируется «виртуальный» канал приема сигналов (определяется значение поля спектральной компоненты) до m-го вспомогательного источника.

Значение напряженности электромагнитного или акустического поля в точке плоскости антенной решетки, получаемое в конечном счете, трактуется как полезный сигнал с некоторого «виртуального» антенного элемента, размещенного в данной точке пространства. Таким образом, можно говорить о формировании «виртуальных» каналов приема сигналов, информация с которых может быть использована для повышения отношения сигнал / шум, уточнения координат источников радиоизлучения и т.д.

Отличительной особенностью данного метода является отсутствие необходимости решения системы линейных алгебраических уравнений (СЛАУ) относительно неизвестных комплексных амплитуд вспомогательных источников, в состав которых входят плохообусловленные матрицы. В данном случае вместо решения СЛАУ используется процедура квазирешения. Кроме того, число используемых вспомогательных источников определяется как величина наиболее значимых собственных чисел автокорреляционной матрицы входных сигналов, т.е. наибольших и отличающихся от остальных по величине не менее, чем на порядок.

На чертеже изображена блок-схема предлагаемого устройства для реализации способа. Устройство содержит N элементов антенной решетки, каждый из которых соединен с соответствующим приемником сигнала 1.1÷1.N. Выход каждого приемника сигнала 1.1÷1.N соединен со входом соответствующего блока формирования спектра 2.1÷2.N. Спектральные компоненты 1÷L с выходов блоков формирования спектров 2.1÷2.N поступают на соответствующие входы 1÷N блоков обработки сигнала спектральной компоненты 3.1÷3.L. Каждый блок обработки сигнала спектральной компоненты 3.1÷3.L содержит последовательно соединенные узел нахождения амплитуд вспомогательных источников 4 и узел нахождения оценки напряженности поля в точке плоскости антенной решетки 5.

В состав устройства также входят узел определения числа вспомогательных источников 6, блок формирования матриц вспомогательных источников 7, а также блок формирования векторов «виртуальных» каналов приема сигналов 8. Выход узла определения числа вспомогательных источников 6 соединен со входом блока формирования матриц вспомогательных источников 7. Выходы блока формирования матриц вспомогательных источников 7 соединены, соответственно, со входами узлов нахождения амплитуд вспомогательных источников 4. Выходы блока формирования векторов «виртуальных» каналов приема сигналов 8 соединены, соответственно, со входами узлов нахождения оценки напряженности поля в точках плоскости антенной решетки. Выходы узлов нахождения оценки напряженности поля в точках плоскости антенной решетки 5 являются выходами устройства.

Способ осуществляется следующим образом.

Сигнал с каждого элемента антенной решетки поступает на вход приемника сигнала 1.1÷1.N, где производятся процедуры фильтрации, переноса на видеочастоту, аналого-цифрового преобразования и т.д. Видеосигналы с выходов приемников сигнала 1.1÷1.N поступают на входы соответствующих блоков формирования спектра 2.1÷2.N, где записываются на временном интервале [0, Т]. Затем в блоках формирования спектра 2.1÷2.N формируют дискретный спектр напряженности поля, выполняя над записанным временным сигналом процедуру дискретного преобразования Фурье длиной L. Спектральные компоненты 1÷L с выходов блоков формирования спектра 2.1÷2.N поступают на соответствующие входы 1÷N блоков обработки сигнала спектральной компоненты 3.1÷3.L.

В блоке 6, на основе принятых антенной решеткой сигналов, производится определение числа необходимых вспомогательных источников. При этом значение величины используемых вспомогательных источников определяется как число наиболее значимых собственных чисел автокорреляционной матрицы принятых антенной решеткой сигналов, т.е. наибольших и отличающихся от остальных по величине не менее, чем на порядок. Далее, полученное значение используется для формирования матриц вспомогательных источников Q. Каждый элемент матрицы Q определяется как Qn,m=ехр(i·k0·rn,m)/rn,m, где - расстояние от n-го элемента антенной решетки m-го до вспомогательного источника.

Для каждой спектральной компоненты в узле нахождения амплитуд вспомогательных источников 4 находят вектор данных амплитуд . Вектор находят с помощью процедуры квазирешения матрично-векторного уравнения , в виде . При этом - вектор напряженностей поля спектральной компоненты элементов антенной решетки, значения которого поступают с блоков формирования спектра 2.1÷2.L, Q - матрица вспомогательных источников, элементы которой зависят от частоты и взаимного расположения элементов антенной решетки и вспомогательных источников, H - знак Эрмитового сопряжения.

Значение вектора , определенное в узле нахождения амплитуд вспомогательных источников поля 4 поступает на первый вход узла нахождения оценки напряженности поля в точке плоскости антенной решетки 5. На второй вход узла оценки напряженности поля в точке, лежащей в плоскости антенной решетки 5, поступает значение вектора «виртуального» канала приема сигналов , которое формируется в блоке 8. Произвольный m-й элемент вектора определяют как gm=ехр(i·k0·rm)/rm, где k0 - волновое число свободного пространства, - расстояние от точки, в которой формируется «виртуальный» канал приема сигналов (определяется значение поля спектральной компоненты) до m-го вспомогательного источника. В узле оценки напряженности поля в точке плоскости антенной решетки значение поля спектральной компоненты определяется как скалярное произведение вектора комплексных амплитуд вспомогательных источников и вектора оцениваемой точки: .

Источник информации

1. RU, патент №2405165 C2, кл., G01S 3/00, 27.11.2010.


СПОСОБ ФОРМИРОВАНИЯ
СПОСОБ ФОРМИРОВАНИЯ
СПОСОБ ФОРМИРОВАНИЯ
СПОСОБ ФОРМИРОВАНИЯ
СПОСОБ ФОРМИРОВАНИЯ
СПОСОБ ФОРМИРОВАНИЯ
СПОСОБ ФОРМИРОВАНИЯ
СПОСОБ ФОРМИРОВАНИЯ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 243.
10.01.2015
№216.013.1812

Способ подачи пара в конденсационную камеру

Изобретение относится к очистке воздуха. При очистке газового потока средство для вдувания пара выполняют состоящим как минимум из двух цилиндров, которые располагают соосно один внутри другого с радиальным зазором, образуя при этом внутренние кольцевые каналы. Каждый цилиндр состоит из двух...
Тип: Изобретение
Номер охранного документа: 0002537590
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1847

Способ повышения эффективности теплообменного элемента

Изобретение относится к теплообменным аппаратам и может быть использовано в энергетике и смежных с ней отраслях промышленности. Способ заключается в интенсификации теплообмена путем выполнения периодических кольцевых выступов на внутренней поверхности теплообменного элемента. Теплообменный...
Тип: Изобретение
Номер охранного документа: 0002537643
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1849

Ветродвигатель

Изобретение относится к области ветроэнергетики, в частности к ветроэлектрогенераторным установкам. Ветродвигатель содержит направляющий элемент и два лопастных ротора с вертикальными валами и лопастями, размещенными с образованием между внутренними лопастями зоны перекрытия. В него...
Тип: Изобретение
Номер охранного документа: 0002537645
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.184c

Ветроколесо электрогенератора сегментного типа

Изобретение относится к ветроэнергетике, а именно к ветроколесам ветросиловых и ветроэлектроэнергетических установок с горизонтальной осью вращения, преимущественно предназначенным для работы с электрогенераторами сегментного типа. У ветроколеса электрогенератора сегментного типа, содержащего...
Тип: Изобретение
Номер охранного документа: 0002537648
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1855

Ветроколесо ветроэлектрогенератора

Изобретение относится к ветроэнергетике, а именно к ветроколесам ветросиловых и ветроэлектроэнергетических установок с горизонтальной осью вращения, преимущественно предназначенным для работы с электрогенераторами сегментного типа. У ветроколеса, содержащего ступицу, спицы, обод, выполненные в...
Тип: Изобретение
Номер охранного документа: 0002537657
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.187e

Статор генератора

Изобретение относится к области электротехники и ветроэнергетики, а именно к ветроэлектрогенераторам с вертикальной осью вращения. В предлагаемом статоре генератора, содержащем источники возбуждения, магнитопроводы, рабочую катушку и основания с крепежными элементами, согласно изобретению,...
Тип: Изобретение
Номер охранного документа: 0002537698
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.18db

Статор

Изобретение относится к электротехнике, ветроэнергетике, а именно к ветроэлектрогенераторам с вертикальной осью вращения. Технический результат состоит в повышении эффективности, которая обусловлена тем, что используются не только радиальные, но и торцевые зазоры. Статор содержит источники...
Тип: Изобретение
Номер охранного документа: 0002537791
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1901

Конденсационная камера

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Конденсационная камера для очистки газового потока содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного газового потока,...
Тип: Изобретение
Номер охранного документа: 0002537829
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19f0

Способ определения силы резания

Изобретение относится к измерительной технике и касается, в частности, определения силы, необходимой для обработки резанием металлов и сплавов. Сущность: стандартную экспериментальную кривую упрочнения перестраивают в координаты «напряжение (σ) - истинная относительная деформация (ε)»,...
Тип: Изобретение
Номер охранного документа: 0002538068
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b74

Устройство для прошивки глубоких отверстий в металлических заготовках и способ с его применением

Изобретение относится к электроэрозионной, электрохимической и эрозионно-химической прошивке глубоких отверстий в металлических заготовках. Устройство содержит подключенные к источнику тока электрод-инструмент и съемную втулку из эрозионностойкого материала, размещенную внутри...
Тип: Изобретение
Номер охранного документа: 0002538456
Дата охранного документа: 10.01.2015
Показаны записи 51-60 из 291.
10.07.2014
№216.012.dc30

Способ выравнивания температурного поля в газотурбинных устройствах

Способ может быть использован в энергетике, а именно в газоперекачивающих агрегатах материальных газопроводов, автономных электростанциях и других энергоустановках, содержащих газотурбинный привод, работающий на природном газе. В данном способе топливо к отдельным горелкам подается с...
Тип: Изобретение
Номер охранного документа: 0002522146
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc33

Электропривод вентилятора градирни

Изобретение относится к области теплоэнергетики и направлено на осуществление плавного регулирования скорости вращения вентилятора градирни с одновременным изменением углов наклона лопастей для повышения надежности и увеличения срока службы электропривода вентилятора принудительного охлаждения....
Тип: Изобретение
Номер охранного документа: 0002522149
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc38

Тракт охлаждения теплообменного аппарата

Изобретение относится к области теплотехники и может быть использовано в криогенной технике для испарения газообразных сред, находящихся в жидком состоянии, в ракетно-космической технике и в народном хозяйстве, например, для газификации сжиженных газов и их смесей. Тракт охлаждения...
Тип: Изобретение
Номер охранного документа: 0002522154
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dcfb

Ветроколесо ветроэлектрогенератора

Изобретение относится к ветроэнергетике, а именно к ветроколесам ветросиловых и ветроэлектроэнергетических установок с горизонтальной осью вращения, преимущественно предназначенным для работы с электрогенераторами сегментного типа. Ветроколесо содержит ступицу, соединенную с основной монолитной...
Тип: Изобретение
Номер охранного документа: 0002522349
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.dd78

Мобильный агрегат

Изобретение относится к транспортным средствам типа самоходного шасси, предназначенным для различных работ с присоединяемыми навесными машинами. Мобильный агрегат содержит раму, моторно-силовое отделение, кабину, переднеуправляемые колеса и балансирную тележку с промежуточным балансиром. Рама...
Тип: Изобретение
Номер охранного документа: 0002522482
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de8d

Теплообменный элемент

Изобретение относится к теплообменным аппаратам и может быть использовано в энергетике и смежных с ней отраслях промышленности. Теплообменный элемент представляет собой спиралевидную гибкую трубу с периодически расположенными на ее внутренней поверхности турбулизаторами, предпочтительно, в виде...
Тип: Изобретение
Номер охранного документа: 0002522759
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dfad

Устройство для обнаружения отказов в шаговом электроприводе

Изобретение относится к области электротехники и может быть использовано в системах с шаговым электроприводом на базе двигателей с различным числом фаз, работающих в режимах реверсивной поочередной и парной коммутации, стоянки под током и обесточенной стоянки, с автоматическим определением...
Тип: Изобретение
Номер охранного документа: 0002523047
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dfae

Устройство для обнаружения отказов в шаговом электроприводе

Изобретение относится к области электротехники и может быть использовано в системах с шаговым электроприводом на базе трехфазных, четырехфазных и шестифазных шаговых двигателей. Техническим результатом является расширение функциональных возможностей за счет обеспечения известных режимов...
Тип: Изобретение
Номер охранного документа: 0002523048
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e12e

Ветроэлектрогенератор сегментного типа

Изобретение относится к области электротехники и ветроэнергетики и может быть использовано в устройствах для выработки электроэнергии. Указанный технический результат достигается тем, что в предлагаемом ветроэлектрогенераторе сегментного типа, содержащем вал, зубчатый ротор и модульный...
Тип: Изобретение
Номер охранного документа: 0002523432
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e12f

Электрогенератор

Изобретение относится к электрическим машинам, а именно к синхронным генераторам индукторного типа, применяемым, например, в автотракторном оборудовании. Изобретение направлено на обеспечение возможности использования классического статора с ферромагнитным ротором в варианте индукторной машины....
Тип: Изобретение
Номер охранного документа: 0002523433
Дата охранного документа: 20.07.2014
+ добавить свой РИД