×
27.09.2014
216.012.f965

НАНОКОМПОЗИТНЫЙ МАТЕРИАЛ С СЕГНЕТОЭЛЕКТРИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к наноструктурированным материалам с сегнетоэлектрической активностью. Технический результат заключается в получении сегнетоэлектрического материала с высокими и регулируемыми диэлектрическими и пироэлектрическими характеристиками. Нанокомпозитный материал с сегнетоэлектрическими свойствами содержит в качестве связующего вещества кремнезем SiO, а в качестве сегнетоактивного вещества соль триглицинсульфата (NHCHCOOH)·HSO при следующем соотношении компонентов, мас.%: SiO - 56-75, триглицинсульфат - 25-44. Материал имеет зернистую структуру с размерами зерен от 50 до 80 нм. 2 ил., 5 пр.
Основные результаты: Нанокомпозитный материал с сегнетоэлектрическими свойствами, содержащий в качестве связующего вещества кремнезем SiO, а в качестве сегнетоактивного вещества соль триглицинсульфата (NHCHCOOH)·HSO, отличающийся тем, что имеет выраженную зернистую структуру с размерами зерен от 50 до 80 нм при следующем соотношении компонентов, мас.%:Кремнезем SiO - 56-75;Триглицинсульфат - 25-44.
Реферат Свернуть Развернуть

Изобретение относится к наноструктурированным материалов с выраженной сегнетоэлектрической активностью и может быть применено в устройствах микро- и наноэлектроники в качестве функциональных и чувствительных элементов (датчиков).

Наиболее известны материалы, обладающие сегнетоэлектрическими свойствами, имеющие кристаллическую структуру, в основном это моно- и поликристаллы (М. Лайнс, А. Гласе. Сегнетоэлектрики и родственные им материалы: М.: Мир, 1982), на основе оксидов висмута, титана и лантана (патент РФ №2374207, C04B 35/475, 2009). Недостатками данных материалов являются:

- случайность характеристик; ограниченный температурный интервал, в котором обнаруживаются практически полезные параметры, невозможность регулировать в широких пределах диэлектрические и переполяризационные параметры указанных материалов;

- высокие значения практически важных характеристик в монокристаллах реализуются вблизи температуры фазового перехода, где наблюдается их очень сильная и неудобная для применений температурная зависимость.

Известны тонкопленочные сегнетоэлектрические материалы, представляющие собой электролитически осажденный на подложку порошок сегнетоэлектрика, например цирконат-титанат свинца, титанат бария, титанат висмута и др., причем материал предварительно спекают и осуществляют помол с получением фракций размером от 0,5 до 100 мкм (патент РФ №2278910, C25D 15/02,2006), а также сегнетоэлектрический нанокомпозитный пленочный материал в виде полимерной пленки, например из поликарбоната, имеющего цилиндрические отверстия, которые заполняются, например, сегнетокерамикой, сегнетоэлектрическими жидкими кристаллами, сегнетоэлектрическими монокристаллами (патент РФ №2436810). Недостатками данного материала являются:

- наличие диэлектрической подложки, влияющей на свойства создаваемых гетероструктур;

невозможность эффективного регулирования рабочих параметров пленочных сегнетоэлектрических материалов.

Известны керамические сегнетоэлектрические материалы, содержащие BaTiO3, SrTiO3 и (Ba1-xSix)Ln2Ti2Oi2 (патент РФ №2293717, C04B 35/46А, 2007) или представляющие собой сложный оксид металлов с общей формулой Pb(1-x-3/2y)CaxNdy[Ti0,98(W1/2Cd1/2)0,02]O3 (патент РФ №2305669, C04B 35/472, 007), обладающие размытым фазовым переходом и, следовательно, сглаженной температурной зависимостью рабочих характеристик. Недостатками данного материала являются:

- ограниченные возможности регулирования рабочих параметров, связанные с достаточно большими размерами спекаемых частиц и, следовательно, с малой величиной размерных эффектов;

- остаточная пористость, наличие которой характерно для любой керамики, ухудшает диэлектрические свойства материала, снижает его электрическую и механическую прочность, сокращает возможные области применения.

Наиболее близкими к изобретению являются твердый нанокомпозит с составом SiO2 - ТГС с соотношением 55 на 45% соответственно, полученного с использованием нанодисперсного гидрозоля SiO2 со средним размером частиц кремнезема 5-7 нм, плотностью 1.195 г/см3 и концентрацией 29.56% SiO2 и соли триглицинсульфата (С.Д. Миловидова, О.В. Рогазинская, А.С.Сидоркин и др. Сегнетоэлектрические свойства нанокомпозита гидрозоля SiO2 - ТГС. Изв. РАН, серия физическая, 2010, т.74, №9, с.1351-1354), выбранный в качестве прототипа изобретения.

Недостатком прототипа является невозможность направленного регулирования диэлектрических и пироэлектрических параметров при фиксированном соотношении компонент состава.

Заявленное изобретение предназначено для решения задачи регулирования функциональных параметров сегнетоэлектрических материалов и повышения эффективности их применения в современной микро- и наноэлектронике.

Технический результат, получаемый при осуществлении данной задачи, заключается в получении сегнетоэлектрического материала с высокими диэлектрическими и пироэлектрическими характеристиками и возможности регулирования этих характеристик за счет изменения процентного соотношения компонент состава.

Технический результат достигается тем, что нанокомпозитный материал с сегнетоэлектрическими свойствами, содержащий в качестве связующего вещества кремнезем SiO2, в качестве сегнетоактивного вещества соль триглицинсульфата (NH2CH2COOH)3·H2SO4, согласно изобретению имеет выраженную зернистую структуру с размерами зерен от 50 до 80 нм при следующем соотношении компонентов, мас.%:

Кремнезем SiO2 - 56-75;

Триглицинсульфат - 25-44.

Указанный нанокомпозитный сегнетоэлектрический материал получают по смесевой технологии. Используют нанодисперсный гидрозоль кремнезема SiO2 со средним размером частиц кремнезема 5-7 нм, плотностью 1,195 г/см3, концентрацией SiO2 в растворе 20-60% и соль триглицинсульфата (NH2CH2COOH)3·H2SO4.

В результате выпаривания воды из смеси гидрозоля кремнезема и водного раствора сегнетоэлектрической соли триглицинсульфата получают твердую структуру с равномерно распределенными по объему частицами функциональной сегнетоэлектрической компоненты.

В отличие от твердых растворов в синтезируемом композите существуют четко выделенные границы между различными компонентами. Малость размеров контактирующих частиц обеспечивает высокий размерный эффект, повышенную возможность регулирования свойств, а отсутствие пустот исключает возможность блужданий и, следовательно, повышает стабильность формируемого состава.

Регулирование функциональных параметров материала осуществляется изменением соотношения компонент от 56 до 75 мас.% для кремнезема SiO2 и от 25 до 44 мас.% для триглицинсульфата. Регулирование свойств нанокомпозитного состава возможно также за счет изменения размера контактирующих частиц (в данном случае частиц кремнезема). Кроме того, потенциальное использование компонент с различными упругими свойствами приведет к изменению степени зажатия сегнетоэлектрических частиц, обеспечивающему дополнительное изменение диэлектрических параметров композитного сегнетоэлектрического материала в целом.

На фиг.1 изображена зависимость пироэлектрического коэффициента от температуры для образца кремнезема SiO2 - ТГС с массовым соотношением кремнезема SiO2 - 56 мас.% и ТГС - 44 мас.%; на фиг.2 изображены фотографии поверхности твердого образца гидрозоля кремнезема SiO2 (а) и композита кремнезема SiO2 - ТГС (b), полученные с помощью сканирующего электронного микроскопа JSM-6380LV при увеличении ×30000.

Получения заявленного нанокомпозита

Пример 1. В исходный нанодисперсный гидрозоль кремнезема с размерами частиц 5-7 нм плотностью 1.195 г/см2 и концентрацией 29,56% SiO2, нагретый до +50°С, вносили соль триглицинсульфата до получения насыщенного раствора. Затем каплю смешанного раствора наносили на специальную медную подложку с нанесенным сусальным серебром и охлаждали до комнатной температуры. При испарении воды на подложке образовывался образец твердого нанокомпозита кремнезем SiO2 - ТГС с соотношением 56 на 44 соответственно. На полученный образец наносили электроды из проводящей серебряной пасты.

Примеры 2, 3

Нанокомпозит SiO2 - ТГС получали по технологии, изложенной в примере 1, только использовался нанодисперсный гидрозоль оксида кремния с концентрацией SiO2 в растворе 20 и 60% соответственно. Были получены нанокомпозиты с содержанием кремнезема SiO2 менее 55% и более 75% соответственно.

Примеры 4, 5

Нанокомпозит кремнезем SiO2 - ТГС получали по технологии, изложенной в примере 1, но использовался нанодисперсный гидрозоль оксида кремния с размерами частиц SiO2 94 нм и 156 нм.

Диэлектрические измерения проводились с помощью цифрового моста LCR meter 41R в слабом измерительном поле напряженностью 5 В/см на частоте 1 кГц. Температура измерялась цифровым термометром с точностью 0,1 К. Все экспериментальные результаты записывались и обрабатывались с помощью компьютера. Пироэлектрические исследования проводились с помощью кулонометра UT-6801A. Все исследования контролировались аналогичными измерениями образцов обычного объемного монокристалла ТГС.

Диэлектрические измерения показали, что значения ε для образцов композита, полученных в Примере 1, при комнатной температуре в 2-3 раза превышают соответствующие значения для объемного ТГС. С последующим увеличением температуры наблюдается рост ε вплоть до размытого максимума со значениями порядка 103 при температурах 100-105°С. Для диэлектрической проницаемости в окрестности точки Кюри выполняется закон Кюри-Вейса, что свидетельствует о сохранении в нанокомпозите фазового перехода, характерного для объемного ТГС.

Согласно расчету, произведенному по ненасыщенным петлям гистерезиса, поляризация для указанного композита достигает максимального значения 1,2÷1,4 мкКл/см2 при температуре 58°С, то есть в 2÷3 раза ниже, чем в монокристаллическом триглицинсульфате. Значения пироэлектрического коэффициента для указанного композита изменяются в пределах 2-12 ед. CGSE (фиг.1). Расчеты демонстрируют, что материал обладает хорошей пиродобротностью порядка 0,6. Высокие значения пиродобротности и расширенный рабочий интервал температур позволяют рекомендовать полученный материал для применения в качестве пирочувствительного элемента в современных устройствах микроэлектроники и электротехники.

Дифрактометрические исследования показали, что образцу композита SiO2 - ТГС соответствует аморфное состояние с набором линий, характерных для кристалла ТГС, хотя и меньшей интенсивности. Сравнительное исследование поверхностей твердого чистого SiO2 и нанокомпозита SiO2 -ТГС обнаруживают большую плотность структуры поверхности композита по сравнению с чистым кремнеземом, что свидетельствует о встраивании частиц SiO2 в структуру ТГС (фиг.2). Неравномерное распределение подобных неоднородностей по объему композита приводит к размытию фазового перехода.

По изображениям поверхности образцов, полученным при увеличении в 30000 раз, была проведена оценка размеров частиц композита. Показано, что указанный композит имеет плотную зернистую структуру с размерами частиц порядка 50-80 нм.

Образцы, полученные в примере 2, обладают пониженной прочностью и устойчивостью к внешним воздействиям, что объясняется уменьшением связующей роли кремнезема по отношению к кристаллитам триглицинсульфата. При концентрации SiO2 75% (пример 3) массовая доля сегнетоактивного вещества оказывается слишком мала, что приводит к ухудшению диэлектрических параметров материала.

Образцы, полученные в примере 4, отличаются низкими значениями диэлектрической постоянной (около 102) и снижением температуры сегнетоэлектрического фазового перехода до 60-70°С. Использование частиц кремнезема диаметром 156 нм (пример 5) делает невозможным получение аморфной композитной структуры, как в предыдущих примерах.

Нанокомпозитный материал с сегнетоэлектрическими свойствами, содержащий в качестве связующего вещества кремнезем SiO, а в качестве сегнетоактивного вещества соль триглицинсульфата (NHCHCOOH)·HSO, отличающийся тем, что имеет выраженную зернистую структуру с размерами зерен от 50 до 80 нм при следующем соотношении компонентов, мас.%:Кремнезем SiO - 56-75;Триглицинсульфат - 25-44.
НАНОКОМПОЗИТНЫЙ МАТЕРИАЛ С СЕГНЕТОЭЛЕКТРИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ
НАНОКОМПОЗИТНЫЙ МАТЕРИАЛ С СЕГНЕТОЭЛЕКТРИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ
Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
20.03.2014
№216.012.abe1

Способ создания композитной сегнетоэлектрической наноструктуры

Изобретение относится к способам синтезирования новых материалов с заданными электрофизическими характеристиками и может быть применено для создания функциональных материалов с управляемыми характеристиками для нужд современной микро- и наноэлектроники. Технический результат изобретения -...
Тип: Изобретение
Номер охранного документа: 0002509716
Дата охранного документа: 20.03.2014
27.09.2014
№216.012.f9f2

Способ повышения устойчивости сегнетоэлектрической пленки к многократным переключениям

Изобретение относится к области применения сегнетоэлектрических материалов в качестве носителей записи информации. Технический результат заключается в уменьшении связанного с многократными переключениями эффекта усталости сегнетоэлектрической пленки. Способ повышения устойчивости...
Тип: Изобретение
Номер охранного документа: 0002529823
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fc63

Устройство для измерения вязкости материала

Изобретение относится к технике измерения вязкости веществ, а именно к устройствам для измерения эффективной вязкости материала с помощью ротационного вискозиметра. Устройство для измерения вязкости материала включает плиту, стойку с установленной на ней панелью, на которой закреплено...
Тип: Изобретение
Номер охранного документа: 0002530457
Дата охранного документа: 10.10.2014
10.01.2015
№216.013.1bed

Способ создания композиционной мембраны для очистки водорода

Изобретение относится к созданию селективных мембран, функционирующих за счет избирательной диффузии газов сквозь тонкую пленку металлов или их сплавов. Способ включает нанесение на двухслойную керамическую подложку со сквозной пористостью селективной пленки металла или его сплава методом...
Тип: Изобретение
Номер охранного документа: 0002538577
Дата охранного документа: 10.01.2015
13.01.2017
№217.015.79e9

Нанокомпозитный сегнетоэлектрический материал на базе нанокристаллической целлюлозы и триглицинсульфата

Изобретение относится к наноструктурированным материалам с выраженной сегнетоэлектрической активностью и может быть применено в устройствах микро- и наноэлектроники. Технический результат заключается в получении сегнетоэлектрического материала с высокими и регулируемыми диэлектрическими,...
Тип: Изобретение
Номер охранного документа: 0002599133
Дата охранного документа: 10.10.2016
Показаны записи 1-9 из 9.
20.03.2014
№216.012.abe1

Способ создания композитной сегнетоэлектрической наноструктуры

Изобретение относится к способам синтезирования новых материалов с заданными электрофизическими характеристиками и может быть применено для создания функциональных материалов с управляемыми характеристиками для нужд современной микро- и наноэлектроники. Технический результат изобретения -...
Тип: Изобретение
Номер охранного документа: 0002509716
Дата охранного документа: 20.03.2014
27.09.2014
№216.012.f9f2

Способ повышения устойчивости сегнетоэлектрической пленки к многократным переключениям

Изобретение относится к области применения сегнетоэлектрических материалов в качестве носителей записи информации. Технический результат заключается в уменьшении связанного с многократными переключениями эффекта усталости сегнетоэлектрической пленки. Способ повышения устойчивости...
Тип: Изобретение
Номер охранного документа: 0002529823
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fc63

Устройство для измерения вязкости материала

Изобретение относится к технике измерения вязкости веществ, а именно к устройствам для измерения эффективной вязкости материала с помощью ротационного вискозиметра. Устройство для измерения вязкости материала включает плиту, стойку с установленной на ней панелью, на которой закреплено...
Тип: Изобретение
Номер охранного документа: 0002530457
Дата охранного документа: 10.10.2014
10.01.2015
№216.013.1bed

Способ создания композиционной мембраны для очистки водорода

Изобретение относится к созданию селективных мембран, функционирующих за счет избирательной диффузии газов сквозь тонкую пленку металлов или их сплавов. Способ включает нанесение на двухслойную керамическую подложку со сквозной пористостью селективной пленки металла или его сплава методом...
Тип: Изобретение
Номер охранного документа: 0002538577
Дата охранного документа: 10.01.2015
13.01.2017
№217.015.79e9

Нанокомпозитный сегнетоэлектрический материал на базе нанокристаллической целлюлозы и триглицинсульфата

Изобретение относится к наноструктурированным материалам с выраженной сегнетоэлектрической активностью и может быть применено в устройствах микро- и наноэлектроники. Технический результат заключается в получении сегнетоэлектрического материала с высокими и регулируемыми диэлектрическими,...
Тип: Изобретение
Номер охранного документа: 0002599133
Дата охранного документа: 10.10.2016
18.05.2018
№218.016.51f8

Магнитоэлектрический композиционный материал для датчика магнитного поля

Использование: для получения МЭ композиционных материалов с внутренним постоянным магнитным полем. Сущность изобретения заключается в том, что магнитоэлектрический композиционный материал для датчика магнитного поля содержит магнитострикционную и пьезоэлектрическую из керамики цирконат-титаната...
Тип: Изобретение
Номер охранного документа: 0002653134
Дата охранного документа: 07.05.2018
13.09.2018
№218.016.8702

Сегнетоэлектрический нанокомпозитный материал на базе нанокристаллической целлюлозы и сегнетовой соли

Изобретение относится к наноструктурированным материалам с выраженной сегнетоэлектрической активностью с требуемыми характеристиками, используемым в качестве функциональных материалов в современной микро- и наноэлектронике. Сегнетоэлектрический нанокомпозитный материал включает в качестве...
Тип: Изобретение
Номер охранного документа: 0002666857
Дата охранного документа: 12.09.2018
16.05.2023
№223.018.60b8

Сегнетоэлектрический нанокомпозитный материал на базе пористого стекла и материалов группы дигидрофосфата калия

Изобретение относится к наноструктурированным материалам с выраженной сегнетоэлектрической активностью, используемым в качестве функциональных материалов в современной микро- и наноэлектронике. Сегнетоэлектрический нанокомпозитный материал содержит матрицу из пористого стекла и в качестве...
Тип: Изобретение
Номер охранного документа: 0002740563
Дата охранного документа: 15.01.2021
16.05.2023
№223.018.60b9

Сегнетоэлектрический нанокомпозитный материал на базе пористого стекла и материалов группы дигидрофосфата калия

Изобретение относится к наноструктурированным материалам с выраженной сегнетоэлектрической активностью, используемым в качестве функциональных материалов в современной микро- и наноэлектронике. Сегнетоэлектрический нанокомпозитный материал содержит матрицу из пористого стекла и в качестве...
Тип: Изобретение
Номер охранного документа: 0002740563
Дата охранного документа: 15.01.2021
+ добавить свой РИД