×
27.09.2014
216.012.f95c

Результат интеллектуальной деятельности: УСТРОЙСТВО ТРЕХМЕРНОГО СКАНИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ В БЛИЖНЕМ ПОЛЕ ЭЛЕКТРОННЫХ СРЕДСТВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, представляет собой устройство трехмерного сканирования электромагнитных излучений в ближнем поле электронных средств и может быть использовано для измерения напряженности электромагнитного поля при проведении испытаний, диагностики и тестирования электронных устройств и приборов на выполнение требований по электромагнитной совместимости в части помехоэмиссии. Устройство состоит из измерительного модуля, закрепленного над приборным столом на кронштейне с возможностью перемещения по высоте. Измерительный модуль состоит из массива датчиков поля, каждый из которых реализован на двух взаимно перпендикулярных индуктивностях поверхностного монтажа, выводы которых подсоединены к входам мультиплексоров строк и столбцов; с помощью мультиплексоров выбирается требуемый датчик поля. Таким образом, измерение поля в горизонтальной плоскости производится без применения механических перемещающих систем, а с помощью системы вертикального перемещения производятся измерения на различной высоте от испытуемого устройства. Техническим результатом является упрощение конструкции и ускорение процесса измерения при трехмерном сканировании излучаемого компонентами и проводниками печатной платы электронного устройства электромагнитного поля. 3 ил.
Основные результаты: Устройство трехмерного сканирования электромагнитных излучений в ближнем поле электронных средств состоит из измерительного модуля, состоящего из массива датчиков поля, подсоединенных к мультиплексорам, отличающееся тем, что датчик поля реализован на двух перпендикулярно расположенных друг относительно друга индуктивностях поверхностного монтажа, а сам измерительный модуль закреплен на кронштейне и размещен над приборным столом с возможностью перемещения по высоте.

Изобретение относится к технике радиоизмерений и может быть использовано для измерения напряженности электромагнитного поля при проведении испытаний, диагностики и тестирования электронных устройств и приборов на выполнение требований по электромагнитной совместимости в части помехоэмиссии.

В области измерения электромагнитных излучений появились требования к необходимой сертификации электронных средств на помехоэмиссию. Многие сертификационные испытания выполняются быстрее и точнее при помощи систем измерения электромагнитных излучений с компьютерным управлением. Однако для обеспечения эффективного и оптимального выполнения требований по электромагнитной совместимости, измерения электромагнитных полей начинаются с самых ранних стадий разработки изделия. При выполнении таких измерений необходимы простые в управлении, быстрые и недорогие устройства. Для комплексного анализа распределения электромагнитных полей необходим процесс визуализации результатов измерения, т.е. представление результатов в виде графиков или в виде цветовой карты распределения интенсивности электромагнитных излучений. Изображения могут быть сформированы не только в виде двумерных цветовых карт, но и в трехмерном виде.

Уровень техники

Известно устройство «Сканер электромагнитной совместимости RS-серии» корпорации Detectus, описанное в источниках [1,2]. Данное устройство состоит из корпуса, верхней частью которого является приборный стол, вдоль корпуса расположена система горизонтального перемещения по оси X, вертикальными стойками соединенная с горизонтальными направляющими рейками и горизонтальной системой перемещения по оси Y, образующие П-образную форму. На ней расположена вертикальная направляющая, имеющая П-образный профиль, в которой размещается вертикальная система перемещения по оси Z, соединенная с кронштейном крепления датчика поля и фотокамеры. Данные три системы перемещения позволяют механически перемещать датчик поля в трех направлениях, по осям XYZ соответственно. Датчик поля установлен на кронштейне и соединен кабелем с анализатором спектра, рядом с датчиком поля закреплена фотокамера.

Недостатком данной системы является громоздкость систем перемещения датчика поля, П-образная конструкция которого определяет максимальные размеры не только ширины, но и высоты испытуемого устройства, что не позволяет датчику переместиться по высоте ниже горизонтальной планки кронштейна. Таким образом, измерения могут проводиться только на определенной высоте от измеряемого устройства, не позволяя приблизиться датчику на максимально близкое расстояние к элементам устройства, а следовательно, не позволяет измерить ближнее электромагнитное поле с наибольшей чувствительностью и точностью. Датчик поля для измерения в каждой точке координатной сетки перемещается механическим путем, что замедляет процесс сканирования.

Известна «Система для прецизионного сканирования электромагнитных излучений EPS3000» фирмы Noiseken [3,4], состоящая из корпуса, часть верхней крышки корпуса выполнена из стекла, эта область является приборным столом, внутри корпуса расположены системы горизонтального перемещения датчика поля по осям XY и датчик поля. Сверху корпуса установлен кронштейн, на котором расположена фотокамера. На приборный стол для измерения помещается испытуемое устройство, датчик поля, находящийся снизу данного устройства, перемещается по заданной координатной сетке. Снятые характеристики поля передаются на обработку в анализатор спектра и в ПК. Плата управления двигателями установлена в ПК, фотокамера производит фотоснимок, который в ПК совмещается с картой распределения интенсивности электромагнитных излучений.

Недостатком данной системы является измерение напряженности электромагнитного поля с обратной стороны платы, т.е. с противоположной стороны от компонентов, что может препятствовать верному обнаружению излучающего компонента. Отсутствие возможности перемещения датчика по вертикали также является недостатком данного устройства, так как не позволяет проводить трехмерное сканирование электромагнитных излучений диагностируемого устройства. Датчик поля для измерения в каждой точке координатной сетки перемещается механическим путем, что замедляет процесс сканирования.

Из известных устройств наиболее близким является устройство «Сканер печатных плат» корпорации EMSCAN [1,5,6,7,8]. Устройство представляет собой корпус, верхняя часть которого является приборным столом, на котором устанавливается испытуемое устройство, внутри корпуса размещен массив датчиков поля, сконструированных в виде сетки на основе многослойной печатной платы, выход каждого из датчика подключен к мультиплексору столбцов и мультиплексору строк, производящих выбор определенного датчика. Выходы мультиплексоров подключаются к анализатору спектра, показания которого в свою очередь обрабатываются в ПК.

Недостатком данного устройства является отсутствие возможности измерения с изменением высоты от датчика поля до диагностируемого устройства, т.е. невозможность проведения трехмерного сканирования. Еще одним недостатком является измерение электромагнитного поля с обратной стороны от радиоэлементов печатной платы, вследствие чего усложняется задача определения излучающего элемента, а в некоторых случаях даже отсутствует возможность его определения.

Сущность изобретения

Решаемой технической задачей изобретения является увеличение скорости измерения при трехмерном сканировании электромагнитного поля излучаемого компонентами и проводниками печатной платы электронного устройства при одновременном упрощении конструкции.

Это достигается тем, что на печатной плате формируется массив датчиков поля, все датчики поля подсоединены к мультиплексорам, первые выводы всех датчиков подсоединены к входам мультиплексора строк, вторые выводы датчиков поля подсоединены к входам мультиплексора столбцов, таким образом при подаче управляющего сигнала на мультиплексоры производится выбор одного из датчиков, после чего анализатором спектра с него снимаются характеристики электромагнитного поля и измерения передаются на обработку в ПК. Соответственно, чтобы измерить поле в плоскости XY не требуется механических перемещающих систем, а измерение всей горизонтальной плоскости производится переключением входов мультиплексора и выбором нужного датчика поля, что позволяет значительно сократить время измерений. Измерительный модуль закреплен на кронштейне, который в свою очередь установлен на системе вертикального перемещения, позволяющей перемещать измерительный модуль по вертикали. Сигнал с датчиков поля измеряется анализатором спектра, данные о измерениях передаются в ПК, где заносятся в соответствующую ячейку на хранение с последующей обработкой. Программное обеспечение ПК формирует управляющий сигнал и передает в блок управления и синхронизации, который управляет мультиплексорами и вертикальной перемещающей системой.

Сущность изобретения поясняется приведенными далее чертежами. На Фиг.1 представлена структурная схема сканирующего устройства, на Фиг.2 схематически представлена реализация измерительного устройства, на Фиг.3 представлен участок из измерительных датчиков. Предлагаемое устройство (Фиг.1) содержит измерительный модуль 1 на основе многослойной печатной платы, состоящий из массива датчиков поля 2, обращение к определенному датчику осуществляется с помощью двух мультиплексоров: мультиплексора строк 3 и мультиплексора столбцов 4, управляемых с блока управления и синхронизации 5. Сигнал от датчика через блок управления и синхронизации поступает на измерительное устройство 7, в качестве измерительного устройства может использоваться анализатор спектра или измерительный приемник. Блок управления и синхронизации состоит из микроконтроллера, управляемого с помощью программного обеспечения персонального компьютера. В памяти ПК сформирован массив, в который вносятся координаты измеряемой точки и ее измеренная электромагнитная эмиссия. Данные о координатах поступают от ПК в блок управления и синхронизации, микроконтроллер выдает команду мультиплексорам, которые в свою очередь переключают выходы на соответствующий датчик поля, сигнал с датчика поля поступает на измерительное устройство, где измеряется, и оцифрованное значение передается в ПК, заносится в ячейку памяти. В каждой точке координатной сетки производится перебор измеряемых частот в заданном диапазоне. Таким образом производится обращение к каждому датчику, и в итоге получаем массив координат с измеренными характеристиками поля в заданном диапазоне частот, что позволяет, используя цветовую шкалу, воспроизвести уровни электромагнитной эмиссии на дисплее. Для создания трехмерной картины распределения электромагнитной эмиссии необходимо с помощью блока вертикального перемещения 6 переместить измеритель на требуемый шаг и произвести заново измерение, таким образом, пошагово перемещая измерительный модуль, получим трехмерную картину распределения напряженности электромагнитных полей на различных частотах.

Реализация измерительного устройства схематически представлена на Фиг.2. Устройство состоит из приборного стола 9, на котором в процессе измерения размещается измеряемое устройство. На координатном столе закреплена стойка 10, в которой размещен винт 11, позволяющий перемещать измерительный модуль 12 по вертикали. Измерительный модуль сопряжен со стойкой и винтом с помощью кронштейна 13, винт вращается двигателем 15. Управление двигателем и выбор измерительных зондов, а также передача сигнала с датчика поля производится через разъем 14.

В качестве датчика поля могут быть использованы две индуктивности поверхностного монтажа поз.16, 17 (Фиг.3), расположенных перпендикулярно друг к другу, или диод с микрополосковыми линиями, расположенными перпендикулярно друг другу [7], что позволит обнаружить электромагнитные поля по X и по Y направлению. Индуктивности располагают на первом слое многослойной печатной платы, вторым слоем является слой заземления, предотвращающий наведение полей на третий слой, образованный проводниками соединяющих контакт горизонтально расположенной индуктивности с мультиплексором строк, четвертым слоем является слой заземления, экранирующий слой проводников третьего слоя от проводников пятого слоя, которые соединяют контакт вертикально расположенной индуктивности с мультиплексором столбцов. Шестой слой является слоем заземления, на последнем седьмом слое расположены мультиплексоры, дешифраторы и согласующие компоненты. Печатные проводники третьего слоя печатной платы требуется располагать перпендикулярно проводникам пятого слоя, а также уровнять волновое сопротивление каждого проводника третьего и пятого слоя согласующими элементами.

Таким образом, предлагаемое устройство трехмерного сканирования электромагнитных излучений в ближнем поле электронных средств может быть применено в качестве измерителя ближнего электромагнитного поля электронных средств, позволяющее создать картину распределения напряженности электромагнитных полей на различных частотах, а также трехмерную картину распределения напряженности электромагнитных полей, которая может быть использована для анализа электромагнитной совместимости измеряемого устройства, а также для определения излучающих компонентов ЭС. Что позволяет принять необходимые меры для улучшения электромагнитной обстановки электронного средства при ее разработке.

Литература

1. М.I. Montrose, Testing for EMC compliance approaches and techniques / Montrose M.I., Nakauchi E.M. USA: Institute of Electrical and Electronics Engineers, Inc. p.462, 2004, p.341-345.

2. URL: http://www.detectus.com/products_emc.html

3. URL: http://www.noiseken.com/uploads/photos0/148.pdf

4. URL: http://www.intrasoft-spb.ru/sistemy-ispytanii-elektronnogo-oborudova/izmeritelnyi-kompleks-dlya-pretsizionnog.php

5. URL: http://www.emscan.com/emxpert/index.cfm

6. Уильяме Т. ЭМС для разработчиков продукции / Т.Уильямс - М.: Издательский дом «Технологии», 2004 г., - 540 с., стр.163-164.

7. Патент США №4829238, МПК G01R 21/04; G01R 31/02, опубл. 1989.

8. Патент США №6268738, МПК G01R 31/28, опубл. 2001.

Устройство трехмерного сканирования электромагнитных излучений в ближнем поле электронных средств состоит из измерительного модуля, состоящего из массива датчиков поля, подсоединенных к мультиплексорам, отличающееся тем, что датчик поля реализован на двух перпендикулярно расположенных друг относительно друга индуктивностях поверхностного монтажа, а сам измерительный модуль закреплен на кронштейне и размещен над приборным столом с возможностью перемещения по высоте.
УСТРОЙСТВО ТРЕХМЕРНОГО СКАНИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ В БЛИЖНЕМ ПОЛЕ ЭЛЕКТРОННЫХ СРЕДСТВ
УСТРОЙСТВО ТРЕХМЕРНОГО СКАНИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ В БЛИЖНЕМ ПОЛЕ ЭЛЕКТРОННЫХ СРЕДСТВ
УСТРОЙСТВО ТРЕХМЕРНОГО СКАНИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ В БЛИЖНЕМ ПОЛЕ ЭЛЕКТРОННЫХ СРЕДСТВ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 241.
10.01.2015
№216.013.1812

Способ подачи пара в конденсационную камеру

Изобретение относится к очистке воздуха. При очистке газового потока средство для вдувания пара выполняют состоящим как минимум из двух цилиндров, которые располагают соосно один внутри другого с радиальным зазором, образуя при этом внутренние кольцевые каналы. Каждый цилиндр состоит из двух...
Тип: Изобретение
Номер охранного документа: 0002537590
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1847

Способ повышения эффективности теплообменного элемента

Изобретение относится к теплообменным аппаратам и может быть использовано в энергетике и смежных с ней отраслях промышленности. Способ заключается в интенсификации теплообмена путем выполнения периодических кольцевых выступов на внутренней поверхности теплообменного элемента. Теплообменный...
Тип: Изобретение
Номер охранного документа: 0002537643
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1849

Ветродвигатель

Изобретение относится к области ветроэнергетики, в частности к ветроэлектрогенераторным установкам. Ветродвигатель содержит направляющий элемент и два лопастных ротора с вертикальными валами и лопастями, размещенными с образованием между внутренними лопастями зоны перекрытия. В него...
Тип: Изобретение
Номер охранного документа: 0002537645
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.184c

Ветроколесо электрогенератора сегментного типа

Изобретение относится к ветроэнергетике, а именно к ветроколесам ветросиловых и ветроэлектроэнергетических установок с горизонтальной осью вращения, преимущественно предназначенным для работы с электрогенераторами сегментного типа. У ветроколеса электрогенератора сегментного типа, содержащего...
Тип: Изобретение
Номер охранного документа: 0002537648
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1855

Ветроколесо ветроэлектрогенератора

Изобретение относится к ветроэнергетике, а именно к ветроколесам ветросиловых и ветроэлектроэнергетических установок с горизонтальной осью вращения, преимущественно предназначенным для работы с электрогенераторами сегментного типа. У ветроколеса, содержащего ступицу, спицы, обод, выполненные в...
Тип: Изобретение
Номер охранного документа: 0002537657
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.187e

Статор генератора

Изобретение относится к области электротехники и ветроэнергетики, а именно к ветроэлектрогенераторам с вертикальной осью вращения. В предлагаемом статоре генератора, содержащем источники возбуждения, магнитопроводы, рабочую катушку и основания с крепежными элементами, согласно изобретению,...
Тип: Изобретение
Номер охранного документа: 0002537698
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.18db

Статор

Изобретение относится к электротехнике, ветроэнергетике, а именно к ветроэлектрогенераторам с вертикальной осью вращения. Технический результат состоит в повышении эффективности, которая обусловлена тем, что используются не только радиальные, но и торцевые зазоры. Статор содержит источники...
Тип: Изобретение
Номер охранного документа: 0002537791
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1901

Конденсационная камера

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Конденсационная камера для очистки газового потока содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного газового потока,...
Тип: Изобретение
Номер охранного документа: 0002537829
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19f0

Способ определения силы резания

Изобретение относится к измерительной технике и касается, в частности, определения силы, необходимой для обработки резанием металлов и сплавов. Сущность: стандартную экспериментальную кривую упрочнения перестраивают в координаты «напряжение (σ) - истинная относительная деформация (ε)»,...
Тип: Изобретение
Номер охранного документа: 0002538068
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b74

Устройство для прошивки глубоких отверстий в металлических заготовках и способ с его применением

Изобретение относится к электроэрозионной, электрохимической и эрозионно-химической прошивке глубоких отверстий в металлических заготовках. Устройство содержит подключенные к источнику тока электрод-инструмент и съемную втулку из эрозионностойкого материала, размещенную внутри...
Тип: Изобретение
Номер охранного документа: 0002538456
Дата охранного документа: 10.01.2015
Показаны записи 51-60 из 285.
10.07.2014
№216.012.dc30

Способ выравнивания температурного поля в газотурбинных устройствах

Способ может быть использован в энергетике, а именно в газоперекачивающих агрегатах материальных газопроводов, автономных электростанциях и других энергоустановках, содержащих газотурбинный привод, работающий на природном газе. В данном способе топливо к отдельным горелкам подается с...
Тип: Изобретение
Номер охранного документа: 0002522146
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc33

Электропривод вентилятора градирни

Изобретение относится к области теплоэнергетики и направлено на осуществление плавного регулирования скорости вращения вентилятора градирни с одновременным изменением углов наклона лопастей для повышения надежности и увеличения срока службы электропривода вентилятора принудительного охлаждения....
Тип: Изобретение
Номер охранного документа: 0002522149
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc38

Тракт охлаждения теплообменного аппарата

Изобретение относится к области теплотехники и может быть использовано в криогенной технике для испарения газообразных сред, находящихся в жидком состоянии, в ракетно-космической технике и в народном хозяйстве, например, для газификации сжиженных газов и их смесей. Тракт охлаждения...
Тип: Изобретение
Номер охранного документа: 0002522154
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dcfb

Ветроколесо ветроэлектрогенератора

Изобретение относится к ветроэнергетике, а именно к ветроколесам ветросиловых и ветроэлектроэнергетических установок с горизонтальной осью вращения, преимущественно предназначенным для работы с электрогенераторами сегментного типа. Ветроколесо содержит ступицу, соединенную с основной монолитной...
Тип: Изобретение
Номер охранного документа: 0002522349
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.dd78

Мобильный агрегат

Изобретение относится к транспортным средствам типа самоходного шасси, предназначенным для различных работ с присоединяемыми навесными машинами. Мобильный агрегат содержит раму, моторно-силовое отделение, кабину, переднеуправляемые колеса и балансирную тележку с промежуточным балансиром. Рама...
Тип: Изобретение
Номер охранного документа: 0002522482
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de8d

Теплообменный элемент

Изобретение относится к теплообменным аппаратам и может быть использовано в энергетике и смежных с ней отраслях промышленности. Теплообменный элемент представляет собой спиралевидную гибкую трубу с периодически расположенными на ее внутренней поверхности турбулизаторами, предпочтительно, в виде...
Тип: Изобретение
Номер охранного документа: 0002522759
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dfad

Устройство для обнаружения отказов в шаговом электроприводе

Изобретение относится к области электротехники и может быть использовано в системах с шаговым электроприводом на базе двигателей с различным числом фаз, работающих в режимах реверсивной поочередной и парной коммутации, стоянки под током и обесточенной стоянки, с автоматическим определением...
Тип: Изобретение
Номер охранного документа: 0002523047
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dfae

Устройство для обнаружения отказов в шаговом электроприводе

Изобретение относится к области электротехники и может быть использовано в системах с шаговым электроприводом на базе трехфазных, четырехфазных и шестифазных шаговых двигателей. Техническим результатом является расширение функциональных возможностей за счет обеспечения известных режимов...
Тип: Изобретение
Номер охранного документа: 0002523048
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e12e

Ветроэлектрогенератор сегментного типа

Изобретение относится к области электротехники и ветроэнергетики и может быть использовано в устройствах для выработки электроэнергии. Указанный технический результат достигается тем, что в предлагаемом ветроэлектрогенераторе сегментного типа, содержащем вал, зубчатый ротор и модульный...
Тип: Изобретение
Номер охранного документа: 0002523432
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e12f

Электрогенератор

Изобретение относится к электрическим машинам, а именно к синхронным генераторам индукторного типа, применяемым, например, в автотракторном оборудовании. Изобретение направлено на обеспечение возможности использования классического статора с ферромагнитным ротором в варианте индукторной машины....
Тип: Изобретение
Номер охранного документа: 0002523433
Дата охранного документа: 20.07.2014
+ добавить свой РИД