×
27.09.2014
216.012.f95c

Результат интеллектуальной деятельности: УСТРОЙСТВО ТРЕХМЕРНОГО СКАНИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ В БЛИЖНЕМ ПОЛЕ ЭЛЕКТРОННЫХ СРЕДСТВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, представляет собой устройство трехмерного сканирования электромагнитных излучений в ближнем поле электронных средств и может быть использовано для измерения напряженности электромагнитного поля при проведении испытаний, диагностики и тестирования электронных устройств и приборов на выполнение требований по электромагнитной совместимости в части помехоэмиссии. Устройство состоит из измерительного модуля, закрепленного над приборным столом на кронштейне с возможностью перемещения по высоте. Измерительный модуль состоит из массива датчиков поля, каждый из которых реализован на двух взаимно перпендикулярных индуктивностях поверхностного монтажа, выводы которых подсоединены к входам мультиплексоров строк и столбцов; с помощью мультиплексоров выбирается требуемый датчик поля. Таким образом, измерение поля в горизонтальной плоскости производится без применения механических перемещающих систем, а с помощью системы вертикального перемещения производятся измерения на различной высоте от испытуемого устройства. Техническим результатом является упрощение конструкции и ускорение процесса измерения при трехмерном сканировании излучаемого компонентами и проводниками печатной платы электронного устройства электромагнитного поля. 3 ил.
Основные результаты: Устройство трехмерного сканирования электромагнитных излучений в ближнем поле электронных средств состоит из измерительного модуля, состоящего из массива датчиков поля, подсоединенных к мультиплексорам, отличающееся тем, что датчик поля реализован на двух перпендикулярно расположенных друг относительно друга индуктивностях поверхностного монтажа, а сам измерительный модуль закреплен на кронштейне и размещен над приборным столом с возможностью перемещения по высоте.

Изобретение относится к технике радиоизмерений и может быть использовано для измерения напряженности электромагнитного поля при проведении испытаний, диагностики и тестирования электронных устройств и приборов на выполнение требований по электромагнитной совместимости в части помехоэмиссии.

В области измерения электромагнитных излучений появились требования к необходимой сертификации электронных средств на помехоэмиссию. Многие сертификационные испытания выполняются быстрее и точнее при помощи систем измерения электромагнитных излучений с компьютерным управлением. Однако для обеспечения эффективного и оптимального выполнения требований по электромагнитной совместимости, измерения электромагнитных полей начинаются с самых ранних стадий разработки изделия. При выполнении таких измерений необходимы простые в управлении, быстрые и недорогие устройства. Для комплексного анализа распределения электромагнитных полей необходим процесс визуализации результатов измерения, т.е. представление результатов в виде графиков или в виде цветовой карты распределения интенсивности электромагнитных излучений. Изображения могут быть сформированы не только в виде двумерных цветовых карт, но и в трехмерном виде.

Уровень техники

Известно устройство «Сканер электромагнитной совместимости RS-серии» корпорации Detectus, описанное в источниках [1,2]. Данное устройство состоит из корпуса, верхней частью которого является приборный стол, вдоль корпуса расположена система горизонтального перемещения по оси X, вертикальными стойками соединенная с горизонтальными направляющими рейками и горизонтальной системой перемещения по оси Y, образующие П-образную форму. На ней расположена вертикальная направляющая, имеющая П-образный профиль, в которой размещается вертикальная система перемещения по оси Z, соединенная с кронштейном крепления датчика поля и фотокамеры. Данные три системы перемещения позволяют механически перемещать датчик поля в трех направлениях, по осям XYZ соответственно. Датчик поля установлен на кронштейне и соединен кабелем с анализатором спектра, рядом с датчиком поля закреплена фотокамера.

Недостатком данной системы является громоздкость систем перемещения датчика поля, П-образная конструкция которого определяет максимальные размеры не только ширины, но и высоты испытуемого устройства, что не позволяет датчику переместиться по высоте ниже горизонтальной планки кронштейна. Таким образом, измерения могут проводиться только на определенной высоте от измеряемого устройства, не позволяя приблизиться датчику на максимально близкое расстояние к элементам устройства, а следовательно, не позволяет измерить ближнее электромагнитное поле с наибольшей чувствительностью и точностью. Датчик поля для измерения в каждой точке координатной сетки перемещается механическим путем, что замедляет процесс сканирования.

Известна «Система для прецизионного сканирования электромагнитных излучений EPS3000» фирмы Noiseken [3,4], состоящая из корпуса, часть верхней крышки корпуса выполнена из стекла, эта область является приборным столом, внутри корпуса расположены системы горизонтального перемещения датчика поля по осям XY и датчик поля. Сверху корпуса установлен кронштейн, на котором расположена фотокамера. На приборный стол для измерения помещается испытуемое устройство, датчик поля, находящийся снизу данного устройства, перемещается по заданной координатной сетке. Снятые характеристики поля передаются на обработку в анализатор спектра и в ПК. Плата управления двигателями установлена в ПК, фотокамера производит фотоснимок, который в ПК совмещается с картой распределения интенсивности электромагнитных излучений.

Недостатком данной системы является измерение напряженности электромагнитного поля с обратной стороны платы, т.е. с противоположной стороны от компонентов, что может препятствовать верному обнаружению излучающего компонента. Отсутствие возможности перемещения датчика по вертикали также является недостатком данного устройства, так как не позволяет проводить трехмерное сканирование электромагнитных излучений диагностируемого устройства. Датчик поля для измерения в каждой точке координатной сетки перемещается механическим путем, что замедляет процесс сканирования.

Из известных устройств наиболее близким является устройство «Сканер печатных плат» корпорации EMSCAN [1,5,6,7,8]. Устройство представляет собой корпус, верхняя часть которого является приборным столом, на котором устанавливается испытуемое устройство, внутри корпуса размещен массив датчиков поля, сконструированных в виде сетки на основе многослойной печатной платы, выход каждого из датчика подключен к мультиплексору столбцов и мультиплексору строк, производящих выбор определенного датчика. Выходы мультиплексоров подключаются к анализатору спектра, показания которого в свою очередь обрабатываются в ПК.

Недостатком данного устройства является отсутствие возможности измерения с изменением высоты от датчика поля до диагностируемого устройства, т.е. невозможность проведения трехмерного сканирования. Еще одним недостатком является измерение электромагнитного поля с обратной стороны от радиоэлементов печатной платы, вследствие чего усложняется задача определения излучающего элемента, а в некоторых случаях даже отсутствует возможность его определения.

Сущность изобретения

Решаемой технической задачей изобретения является увеличение скорости измерения при трехмерном сканировании электромагнитного поля излучаемого компонентами и проводниками печатной платы электронного устройства при одновременном упрощении конструкции.

Это достигается тем, что на печатной плате формируется массив датчиков поля, все датчики поля подсоединены к мультиплексорам, первые выводы всех датчиков подсоединены к входам мультиплексора строк, вторые выводы датчиков поля подсоединены к входам мультиплексора столбцов, таким образом при подаче управляющего сигнала на мультиплексоры производится выбор одного из датчиков, после чего анализатором спектра с него снимаются характеристики электромагнитного поля и измерения передаются на обработку в ПК. Соответственно, чтобы измерить поле в плоскости XY не требуется механических перемещающих систем, а измерение всей горизонтальной плоскости производится переключением входов мультиплексора и выбором нужного датчика поля, что позволяет значительно сократить время измерений. Измерительный модуль закреплен на кронштейне, который в свою очередь установлен на системе вертикального перемещения, позволяющей перемещать измерительный модуль по вертикали. Сигнал с датчиков поля измеряется анализатором спектра, данные о измерениях передаются в ПК, где заносятся в соответствующую ячейку на хранение с последующей обработкой. Программное обеспечение ПК формирует управляющий сигнал и передает в блок управления и синхронизации, который управляет мультиплексорами и вертикальной перемещающей системой.

Сущность изобретения поясняется приведенными далее чертежами. На Фиг.1 представлена структурная схема сканирующего устройства, на Фиг.2 схематически представлена реализация измерительного устройства, на Фиг.3 представлен участок из измерительных датчиков. Предлагаемое устройство (Фиг.1) содержит измерительный модуль 1 на основе многослойной печатной платы, состоящий из массива датчиков поля 2, обращение к определенному датчику осуществляется с помощью двух мультиплексоров: мультиплексора строк 3 и мультиплексора столбцов 4, управляемых с блока управления и синхронизации 5. Сигнал от датчика через блок управления и синхронизации поступает на измерительное устройство 7, в качестве измерительного устройства может использоваться анализатор спектра или измерительный приемник. Блок управления и синхронизации состоит из микроконтроллера, управляемого с помощью программного обеспечения персонального компьютера. В памяти ПК сформирован массив, в который вносятся координаты измеряемой точки и ее измеренная электромагнитная эмиссия. Данные о координатах поступают от ПК в блок управления и синхронизации, микроконтроллер выдает команду мультиплексорам, которые в свою очередь переключают выходы на соответствующий датчик поля, сигнал с датчика поля поступает на измерительное устройство, где измеряется, и оцифрованное значение передается в ПК, заносится в ячейку памяти. В каждой точке координатной сетки производится перебор измеряемых частот в заданном диапазоне. Таким образом производится обращение к каждому датчику, и в итоге получаем массив координат с измеренными характеристиками поля в заданном диапазоне частот, что позволяет, используя цветовую шкалу, воспроизвести уровни электромагнитной эмиссии на дисплее. Для создания трехмерной картины распределения электромагнитной эмиссии необходимо с помощью блока вертикального перемещения 6 переместить измеритель на требуемый шаг и произвести заново измерение, таким образом, пошагово перемещая измерительный модуль, получим трехмерную картину распределения напряженности электромагнитных полей на различных частотах.

Реализация измерительного устройства схематически представлена на Фиг.2. Устройство состоит из приборного стола 9, на котором в процессе измерения размещается измеряемое устройство. На координатном столе закреплена стойка 10, в которой размещен винт 11, позволяющий перемещать измерительный модуль 12 по вертикали. Измерительный модуль сопряжен со стойкой и винтом с помощью кронштейна 13, винт вращается двигателем 15. Управление двигателем и выбор измерительных зондов, а также передача сигнала с датчика поля производится через разъем 14.

В качестве датчика поля могут быть использованы две индуктивности поверхностного монтажа поз.16, 17 (Фиг.3), расположенных перпендикулярно друг к другу, или диод с микрополосковыми линиями, расположенными перпендикулярно друг другу [7], что позволит обнаружить электромагнитные поля по X и по Y направлению. Индуктивности располагают на первом слое многослойной печатной платы, вторым слоем является слой заземления, предотвращающий наведение полей на третий слой, образованный проводниками соединяющих контакт горизонтально расположенной индуктивности с мультиплексором строк, четвертым слоем является слой заземления, экранирующий слой проводников третьего слоя от проводников пятого слоя, которые соединяют контакт вертикально расположенной индуктивности с мультиплексором столбцов. Шестой слой является слоем заземления, на последнем седьмом слое расположены мультиплексоры, дешифраторы и согласующие компоненты. Печатные проводники третьего слоя печатной платы требуется располагать перпендикулярно проводникам пятого слоя, а также уровнять волновое сопротивление каждого проводника третьего и пятого слоя согласующими элементами.

Таким образом, предлагаемое устройство трехмерного сканирования электромагнитных излучений в ближнем поле электронных средств может быть применено в качестве измерителя ближнего электромагнитного поля электронных средств, позволяющее создать картину распределения напряженности электромагнитных полей на различных частотах, а также трехмерную картину распределения напряженности электромагнитных полей, которая может быть использована для анализа электромагнитной совместимости измеряемого устройства, а также для определения излучающих компонентов ЭС. Что позволяет принять необходимые меры для улучшения электромагнитной обстановки электронного средства при ее разработке.

Литература

1. М.I. Montrose, Testing for EMC compliance approaches and techniques / Montrose M.I., Nakauchi E.M. USA: Institute of Electrical and Electronics Engineers, Inc. p.462, 2004, p.341-345.

2. URL: http://www.detectus.com/products_emc.html

3. URL: http://www.noiseken.com/uploads/photos0/148.pdf

4. URL: http://www.intrasoft-spb.ru/sistemy-ispytanii-elektronnogo-oborudova/izmeritelnyi-kompleks-dlya-pretsizionnog.php

5. URL: http://www.emscan.com/emxpert/index.cfm

6. Уильяме Т. ЭМС для разработчиков продукции / Т.Уильямс - М.: Издательский дом «Технологии», 2004 г., - 540 с., стр.163-164.

7. Патент США №4829238, МПК G01R 21/04; G01R 31/02, опубл. 1989.

8. Патент США №6268738, МПК G01R 31/28, опубл. 2001.

Устройство трехмерного сканирования электромагнитных излучений в ближнем поле электронных средств состоит из измерительного модуля, состоящего из массива датчиков поля, подсоединенных к мультиплексорам, отличающееся тем, что датчик поля реализован на двух перпендикулярно расположенных друг относительно друга индуктивностях поверхностного монтажа, а сам измерительный модуль закреплен на кронштейне и размещен над приборным столом с возможностью перемещения по высоте.
УСТРОЙСТВО ТРЕХМЕРНОГО СКАНИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ В БЛИЖНЕМ ПОЛЕ ЭЛЕКТРОННЫХ СРЕДСТВ
УСТРОЙСТВО ТРЕХМЕРНОГО СКАНИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ В БЛИЖНЕМ ПОЛЕ ЭЛЕКТРОННЫХ СРЕДСТВ
УСТРОЙСТВО ТРЕХМЕРНОГО СКАНИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ В БЛИЖНЕМ ПОЛЕ ЭЛЕКТРОННЫХ СРЕДСТВ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 241.
10.07.2015
№216.013.5d46

Кольцевая камера жидкостного ракетного двигателя

Изобретение относится к области ракетного двигателестроения при создании жидкостных ракетных двигателей, работающих на криогенных компонентах, преимущественно кислороде и водороде. Кольцевая камера жидкостного ракетного двигателя содержит кольцевую смесительную головку, регенеративно...
Тип: Изобретение
Номер охранного документа: 0002555419
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d49

Жидкостный ракетный двигатель

Изобретение относится к области ракетной техники, а именно к двигателестроению, и может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). ЖРД содержит камеру со смесительной головкой, турбонасосный агрегат, газогенератор, агрегаты питания и регулирования. Камера...
Тип: Изобретение
Номер охранного документа: 0002555422
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d7f

Способ испытания конструкционного материала на пластичность

Изобретение относится к области механических испытаний конструкционных материалов и может быть использовано при определении механических характеристик листовых материалов в условиях плоской деформации. Способ испытания конструкционного материала на пластичность заключается в том, что гладкий...
Тип: Изобретение
Номер охранного документа: 0002555476
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5e00

Статор ветроэлектроагрегата

Изобретение относится к области ветроэнергетики, а именно к ветроэлектрогенераторам. Cтатор ветроэлектроагрегата содержит катушки, торцевой и радиальный магнитопроводы, источник возбуждения. Торцевой магнитопровод выполнен в виде ферромагнитной траверсы крепления ветроколес. Преимуществом...
Тип: Изобретение
Номер охранного документа: 0002555605
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6041

Способ электрохимической обработки отверстий форсунки

Изобретение относится к электрохимической обработке и может быть использовано при электрохимической доводке форсунок из токопроводящих материалов, преимущественно форсунок для жидкостных ракетных двигателей. Способ включает подачу токопроводящей жидкости через полый инструмент-катод и...
Тип: Изобретение
Номер охранного документа: 0002556182
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6042

Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов. Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой,...
Тип: Изобретение
Номер охранного документа: 0002556183
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6137

Некогерентный цифровой демодулятор "в целом" кодированных сигналов с фазовой манипуляцией

Изобретение относится к области радиотехники и может быть использовано в устройствах приема цифровых информационных сигналов для цифровой демодуляции кодированных двоичных сигналов с фазовой манипуляцией (ФМ). Технический результат заключается в обеспечении высокоскоростной цифровой демодуляции...
Тип: Изобретение
Номер охранного документа: 0002556429
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.613a

Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в создании способа многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов....
Тип: Изобретение
Номер охранного документа: 0002556432
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6400

Ротор вертикальный

Изобретение относится к области энергетики и может быть использовано в ветроэлектрогенераторах с вертикальной осью вращения. Изобретение направлено на повышение эффективности за счет упрощения конструкции. Сущность изобретения достигается тем, что у ротора вертикального, который содержит...
Тип: Изобретение
Номер охранного документа: 0002557147
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.6426

Способ электрохимической обработки отверстий форсунки

Изобретение относится к электрохимической обработке и может быть использовано для электрохимической доводки форсунок из токопроводящих материалов, преимущественно, для жидкостных ракетных двигателей. Способ включает подачу токопроводящей жидкости через полый инструмент-катод и обрабатываемые...
Тип: Изобретение
Номер охранного документа: 0002557185
Дата охранного документа: 20.07.2015
Показаны записи 91-100 из 285.
10.01.2015
№216.013.175d

Инструмент и способ калибровки отверстий малого сечения в форсунках

Изобретение относится к калибровке отверстий малого сечения в форсунках. Предложен инструмент в виде токопроводящей проволоки с нанесенными нетокопроводящими износостойкими твердыми узкими поясками, наружный диаметр которых уменьшается по длине проволоки пропорционально толщине наносимого...
Тип: Изобретение
Номер охранного документа: 0002537409
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175e

Электрод-инструмент для прошивки отверстий

Изобретение относится к области машиностроения и может быть использовано при прошивке отверстий преимущественно малого диаметра в металлических заготовках. Электрод-инструмент содержит металлическую рабочую часть с рабочим и технологическим торцами, выполненную с возможностью подачи в зону...
Тип: Изобретение
Номер охранного документа: 0002537410
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175f

Способ упрочнения каналов детали

Изобретение относится к области машиностроения и может быть использовано для отделочно-упрочняющей обработки внутренних поверхностей каналов детали. Обеспечивают вибрацию с частотой 20-30 Гц корпуса контейнера, содержащего токопроводящие стальные шарики для возвратно-поступательного движения...
Тип: Изобретение
Номер охранного документа: 0002537411
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.177a

Способ удаления диэлектрических покрытий с металлической основы

Изобретение относится к области машиностроения и может быть использовано при удалении диэлектрических покрытий с металлических изделий путем их обработки вращаемым непрофилированным электродом-щеткой. В способе электрод-щетку с ворсом в виде радиальных проволок перед обработкой устанавливают с...
Тип: Изобретение
Номер охранного документа: 0002537438
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.17b4

Устройство для очистки воздуха

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Техническим результатом является создание блока осушки с адсорбером, конструкция которого позволит исключить попадание капельной влаги на зерна адсорбента....
Тип: Изобретение
Номер охранного документа: 0002537496
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1807

Способ вырубки

Изобретение относится к разделительным операциям обработки металлов давлением и может быть использовано для вырубки тонкого материала. Заготовку укладывают на торец установленного в жесткой обойме на плите основания из мягкого металла. Осуществляют прижим припуска заготовки, осадку и вырубку...
Тип: Изобретение
Номер охранного документа: 0002537579
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.180d

Способ очистки воздуха и устройство для его реализации

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Техническим результатом является создание блока осушки с адсорбером, конструкция которого позволит исключить попадание капельной влаги на зерна адсорбента....
Тип: Изобретение
Номер охранного документа: 0002537585
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.180e

Конденсационная камера

Изобретение относится к очистке воздуха. Конденсационная камера для установки очистки газового потока содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного газового потока и выходной канал для выхода очищенного газового потока, средство для вдувания пара,...
Тип: Изобретение
Номер охранного документа: 0002537586
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.180f

Способ подачи пара в конденсационную камеру

Изобретение относится к очистке воздуха. При осуществлении способа пар подают в конденсационную камеру, состоящую из нескольких последовательно расположенных конденсационных секций, каждая из которых содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного...
Тип: Изобретение
Номер охранного документа: 0002537587
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1810

Установка для очистки воздуха

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Установка для очистки воздуха содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного газового потока. Установка также...
Тип: Изобретение
Номер охранного документа: 0002537588
Дата охранного документа: 10.01.2015
+ добавить свой РИД