×
27.09.2014
216.012.f882

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОВОГО ОБЪЕМНОГО РАСШИРЕНИЯ ЖИДКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002529455
Дата охранного документа
27.09.2014
Аннотация: Изобретение относится к области исследования свойств жидкости и может найти применение в нефтегазовой, химической промышленности и др. Для определения коэффициента объемного теплового расширения жидкости в ячейку калориметра помещают образец исследуемой жидкости и осуществляют ступенчатое повышение давления в ячейке с образцом исследуемой жидкости. После каждого повышения давления измеряют тепловой поток в ячейку и объем исследуемой жидкости и на основании результатов измерения теплового потока с учетом предварительно определенного эффективного объема ячейки определяют коэффициент объемного теплового расширения исследуемой жидкости. Технический результат - повышение точности определения коэффициента теплового объемного расширения жидкости. 7 з.п. ф-лы, 4 ил.

Изобретение относится к области исследования свойств жидкости и может найти применение в различных отраслях промышленности, таких, например, как нефтегазовая и химическая промышленность.

Коэффициент теплового объемного расширения (КТОР или α) - это физическая величина, характеризующая относительное изменение объема тела с увеличением температуры на один градус при постоянном давлении

,

где V - объем, T - температура, p - давление. КТОР имеет размерность обратной температуры.

КТОР - важный термодинамический параметр, характеризующий свойства жидкостей. Этот параметр часто необходим для описания моделей жидкостей, используемых, например, для моделирования свойств нефтегазовой залежи в нефтяной индустрии. КТОР для данной жидкости зависит от температуры и давления. В то же время измерения КТОР часто проводятся при атмосферном давлении и температуре, не соответствующей требуемой.

Для измерения КТОР используются различные методы: измерение плотности жидкости при различных температурах и давлениях с последующей интерпретацией результатов измерений (Calado, J.C.G.; Clancy, P. Heintz, A. Streett, W.B. Experimental and theoretical study of the equation of state of liquid ethylene. J. Chem. Eng. Data 1982, 27, 376-385), измерение скорости звука в жидкости (Davis, L.A.; Gordon, R.B. Compression of mercury at high pressure, J. Chem. Phys. 1967, 46 (7), 2650-2660). Недостатком данных методов является их малая точность.

Более точную информацию о КТОР можно получить благодаря измерениям с помощью дифференциального сканирующего калориметра (ДСК).

В патенте US 6869214 B2 описан метод измерения КТОР раствора жидкостей при помощи ДСК. Недостатком предложенного метода является то, что авторы никак не учитывают влияние теплового эффекта, связанного с расширением материала ячеек калориметра при проведении измерений КТОР, а также изменение эффективного объема ячейки калориметра при изменении давления в ходе проведения измерений КТОР, что снижает точность определения КТОР.

Технический результат, достигаемый при реализации данного изобретения, заключается в повышении точности измерений КТОР с помощью ДСК при различных давлениях и температурах за счет учета влияния изменения объема исследуемой жидкости в ячейке при повышении давления.

Для достижения указанного результата в соответствии с предлагаемым способом в ячейку калориметра помещают образец жидкости с известной объемной теплоемкостью, осуществляют ступенчатое повышение давления в ячейке с образцом жидкости и при каждом давлении измеряют теплоемкость образца жидкости и вычисляют эффективный объем ячейки. Затем в ячейку калориметра помещают образец исследуемой жидкости и осуществляют ступенчатое повышение давления в ячейке с образцом исследуемой жидкости посредством нагнетания исследуемой жидкости.

После каждого изменения давления измеряют тепловой поток в ячейку и на основании результатов измерения теплового потока с учетом КТОР материала ячейки и эффективного объема ячейки определяют коэффициент объемного теплового расширения исследуемой жидкости.

Предпочтительно после каждого повышения давления ячейку с образцом исследуемой жидкости выдерживают до стабилизации теплового потока.

Коэффициент α объемного теплового расширения исследуемой жидкости определяют как

,

где αc - коэффициент объемного теплового расширения материала ячейки калориметра,

δQ - тепловой эффект, определяемый после каждого повышения давления,

dP - пошаговое изменение давления в процессе каждого повышения давления,

V(p) - эффективный объем ячейки.

В качестве исследуемой жидкости могут быть использованы, например, нефть, вода, соляной раствор.

Изобретение поясняется чертежами, где на фиг.1 приведена схема типичного дифференциально-сканирующего калориметра, на фиг.2 - профиль температуры образца и теплового потока, на фиг.3 - изменение теплового потока и тепловой эффект, получаемый при ступенчатом изменении давления, на фиг.4 - коэффициент теплового объемного расширения Декана при фиксированной температуре и различных давлениях.

Типичный дифференциально-сканирующий калориметр (см. фиг.1) оборудован двумя ячейками, в одну из которых - ячейку 1 - помещают исследуемый образец. Другая ячейка 2 является ячейкой сравнения и может, в зависимости от эксперимента, либо оставаться пустой, либо также заполняться. Ячейки теплоизолированы друг от друга, находятся при контролируемой температуре, которая может изменяться с помощью нагревателя 3 калориметра. Измерение разницы температур между каждой из ячеек и камерой калориметра осуществляется, как правило, с помощью термопар 4 и 5. Правильная калибровка калориметра позволяет рассчитать разницу тепловых потоков между ячейками калориметра и камерой калориметра. Суммирование разницы тепловых потоков по времени позволяет определить разницу количества тепла, выделившегося или поглотившегося в каждой из ячеек. ДСК способны работать при различных температурах (диапазон зависит от модели калориметра), при этом некоторые ДСК могут быть оборудованы ячейками, позволяющими проводить измерения при повышенных давлениях. Для проведения измерений, описанных в данном изобретении, необходимо совместить ДСК с системой, способной создавать контролируемое давление в ячейках калориметра. В качестве такой системы могут быть использованы насосы различного типа, совмещенные с датчиками давления и подсоединенные к ячейкам калориметра посредством трубных соединений.

В соответствии с предлагаемым способом определения КТОР перед исследованием образца проводят калибровку с целью определить, как изменится объем исследуемой жидкости в ячейке при изменении давления. Образец жидкости с известными характеристиками, такой, например, как н-Гексан (S.L. Randzio, J.-P.E. Grolier and J.R. Quint, J. Thermal Anal., 38 (1992) 1959), помещают в ячейку 1 калориметра, после чего в ячейке 1 создают давление. При созданном давлении проводят измерения теплоемкости образца. После чего давление изменяют и проводят повторное измерение теплоемкости (см, например, "Experimental evaluation of procedures for heat capacity measurement by differential scanning calorimetry" Ramakumar K., Saxena M., Deb S. Journal of Thermal Analysis and Calorimetry, V.66, Iss. 2, 2001, pp.387-397). При каждом давлении измеренное значение теплоемкости - Cref сравнивают с табличными данными по удельной теплоемкости для данной жидкости при данном давлении , после чего для каждого давления вычисляют эффективный объем ячейки (представляющий собой эффективный объем жидкости в ячейке) .

При измерении теплоемкости при каждом значении давления для повышения точности предпочтительно использовать метод, при котором температура образца меняется ступенчато, т.е. имеются два изотермических участка до повышения температуры и после повышения температуры, причем второй участок достаточно длительный и обеспечивает стабилизацию теплового потока (см. фиг.2). Площадь между кривой теплового потока на фиг.2 и базовой линией соответствует измеряемому тепловому эффекту.

После калибровки ячейку 1 калориметра очищают, затем помещают в нее образец исследуемой жидкости. После стабилизации теплового потока (обычно около 2 часов) с помощью нагнетания исследуемой жидкости в ячейку производят ступенчатое изменение давление в ячейке. При этом после каждого изменения давления ожидают стабилизации теплового потока (здесь и далее под термином «стабилизация теплового потока» понимается установление стационарного теплового режима, при котором не происходит поглощение или выделение тепла в ячейке, и который характеризуется нулевым или базовым тепловым потоком).

Для каждого шага по давлению суммирование теплового потока (за вычетом базовой линии; базовая линия - это уровень сигнала при отсутствии воздействия - повышения давления) позволяет оценить тепловой эффект δQ - как площадь под кривой теплового потока (см. фиг.3). В соответствие с (S. Verdier, S.I. Andersen "Determination of Isobaric Thermal Expansivity of Organic Compounds from 0.1 to 30 MPa at 30°C with an Isothermal Pressure Scanning Microcalorimeter") измеряемый тепловой эффект связан с КТОР α исследуемой жидкости, КТОР αc материала ячейки, температурой T в ячейке, эффективным объемом V(p) ячейки (т.е. объемом жидкости в ячейке), а также шагом изменения давления dP следующим образом:

,

Тело с известными объемом и КТОР может быть выполнено, например, из металла. При этом для повышения точности желательно подбирать данное тело так, чтобы его КТОР был близок к КТОР исследуемого образца. Результатом подобных измерений для каждой из исследованных температур является профиль изменения КТОР в зависимости от давления (см., например, фиг.4).

В качестве жидкостей могут быть использованы любые жидкости, в частности нефть, вода или соляной раствор.


СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОВОГО ОБЪЕМНОГО РАСШИРЕНИЯ ЖИДКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОВОГО ОБЪЕМНОГО РАСШИРЕНИЯ ЖИДКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОВОГО ОБЪЕМНОГО РАСШИРЕНИЯ ЖИДКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОВОГО ОБЪЕМНОГО РАСШИРЕНИЯ ЖИДКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОВОГО ОБЪЕМНОГО РАСШИРЕНИЯ ЖИДКОСТИ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 112.
26.08.2017
№217.015.d8c2

Способ определения обводненности нефтеводяной смеси, добываемой из нефтяной скважины

Изобретение относится к способам определения состава водонефтяной смеси в скважине и, в частности, к способам, использующим измерение параметров потока добываемого флюида в трубке Вентури, через которую в основной ствол скважины обеспечивают поступление нефтеводяной смеси, добываемой из...
Тип: Изобретение
Номер охранного документа: 0002623389
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e341

Способ определения механических свойств материала

Изобретение относится к способам определения механических свойств материалов, а именно модуля Юнга и коэффициента Пуассона. Инструмент, имеющий по меньшей мере один датчик колебаний и по меньшей мере один выступ, приводят в контакт с материалом и вдавливают по меньшей мере один выступ...
Тип: Изобретение
Номер охранного документа: 0002626067
Дата охранного документа: 21.07.2017
29.12.2017
№217.015.f265

Способ определения механических свойств породы пласта-коллектора

Изобретение относится к области исследования свойств горных пород. При этом осуществляют отбор по меньшей мере одного образца породы пласта-коллектора и на отобранном образце породы определяют плотность, пористость и компонентный состав породы. Но основе полученных значений создают...
Тип: Изобретение
Номер охранного документа: 0002636821
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.fe1a

Способ предотвращения формирования пробкового режима течения газожидкостной смеси в непрямолинейной скважине или трубопроводе

Для предотвращения формирования пробкового режима течения газожидкостной смеси в непрямолинейной скважине или трубопроводе выявляют по меньшей мере одно место наиболее вероятного формирования жидких пробок в скважине или трубопроводе методом математического моделирования на основе ожидаемых...
Тип: Изобретение
Номер охранного документа: 0002638236
Дата охранного документа: 12.12.2017
04.04.2018
№218.016.338a

Способ определения профиля притока флюида в многопластовой скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока добываемого флюида в многопластовых скважинах с несколькими интервалами перфорации. Технический результат заключается в повышении точности определения профиля притока...
Тип: Изобретение
Номер охранного документа: 0002645692
Дата охранного документа: 27.02.2018
29.05.2018
№218.016.5830

Оптоволоконный датчик для скважинных сейсмических исследований

Изобретение относится к области геофизики и может быть использовано при проведении скважинных сейсморазведочных работ. Оптоволоконный датчик для скважинной сейсморазведки содержит оптоволоконный кабель, опускаемый в скважину, и по меньшей мере одну группу резонаторов, расположенную на...
Тип: Изобретение
Номер охранного документа: 0002654973
Дата охранного документа: 23.05.2018
09.06.2018
№218.016.5a3c

Способ гидроразрыва углеводородного пласта

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для повышения производительности как вновь вводимых, так и действующих добывающих и нагнетательных скважин. Для осуществления гидроразрыва пласта в пробуренную в пласте скважину закачивают жидкость гидроразрыва...
Тип: Изобретение
Номер охранного документа: 0002655513
Дата охранного документа: 28.05.2018
11.06.2018
№218.016.611c

Состав для обработки скважины

Изобретение относится к гидравлическому разрыву подземного пласта. Состав для обработки скважины содержит: низковязкую несущую жидкость, имеющую вязкость менее чем 50 мПа⋅с при скорости сдвига 170 с и температуре 25°С; диспергированный в несущей жидкости проппант и диспергированное в несущей...
Тип: Изобретение
Номер охранного документа: 0002657065
Дата охранного документа: 08.06.2018
28.06.2018
№218.016.6859

Способ определения профиля теплопроводности горных пород в скважине

Изобретение относится к геофизическим исследованиям скважин и может найти применение для определения тепловых свойств пластов горных пород, окружающих скважины. Технический результат заключается в обеспечении возможности одновременного определения теплопроводности пород и радиуса скважины,...
Тип: Изобретение
Номер охранного документа: 0002658856
Дата охранного документа: 25.06.2018
29.06.2018
№218.016.6910

Способ определения характеристик потока жидкости в скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин и предназначено, в частности, для определения характеристик потока жидкости в скважине. Технический результат - обеспечение возможности измерений характеристик потока жидкости в течение долгого времени с...
Тип: Изобретение
Номер охранного документа: 0002659106
Дата охранного документа: 28.06.2018
Показаны записи 71-78 из 78.
25.08.2017
№217.015.b387

Способ разработки нефтеносного пласта

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке месторождений вторичным методом. Способ разработки нефтеносного пласта содержит бурение и чередование через один ряд, размещая на первом расстоянии друг от друга, рядов горизонтальных эксплуатационных...
Тип: Изобретение
Номер охранного документа: 0002613713
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.bf76

Устройство для моделирования щелевого протока жидкости

Изобретение относится к материалам и технологиям, применяемым при обработке подземных пластов, в частности к инструментальным методам и устройствам, подходящим для моделирования прохождения жидкостей для обработки скважины через трещину, образованную в подземном пласте. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002617178
Дата охранного документа: 21.04.2017
26.08.2017
№217.015.d8c2

Способ определения обводненности нефтеводяной смеси, добываемой из нефтяной скважины

Изобретение относится к способам определения состава водонефтяной смеси в скважине и, в частности, к способам, использующим измерение параметров потока добываемого флюида в трубке Вентури, через которую в основной ствол скважины обеспечивают поступление нефтеводяной смеси, добываемой из...
Тип: Изобретение
Номер охранного документа: 0002623389
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e341

Способ определения механических свойств материала

Изобретение относится к способам определения механических свойств материалов, а именно модуля Юнга и коэффициента Пуассона. Инструмент, имеющий по меньшей мере один датчик колебаний и по меньшей мере один выступ, приводят в контакт с материалом и вдавливают по меньшей мере один выступ...
Тип: Изобретение
Номер охранного документа: 0002626067
Дата охранного документа: 21.07.2017
29.12.2017
№217.015.f265

Способ определения механических свойств породы пласта-коллектора

Изобретение относится к области исследования свойств горных пород. При этом осуществляют отбор по меньшей мере одного образца породы пласта-коллектора и на отобранном образце породы определяют плотность, пористость и компонентный состав породы. Но основе полученных значений создают...
Тип: Изобретение
Номер охранного документа: 0002636821
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.fe1a

Способ предотвращения формирования пробкового режима течения газожидкостной смеси в непрямолинейной скважине или трубопроводе

Для предотвращения формирования пробкового режима течения газожидкостной смеси в непрямолинейной скважине или трубопроводе выявляют по меньшей мере одно место наиболее вероятного формирования жидких пробок в скважине или трубопроводе методом математического моделирования на основе ожидаемых...
Тип: Изобретение
Номер охранного документа: 0002638236
Дата охранного документа: 12.12.2017
04.04.2018
№218.016.338a

Способ определения профиля притока флюида в многопластовой скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока добываемого флюида в многопластовых скважинах с несколькими интервалами перфорации. Технический результат заключается в повышении точности определения профиля притока...
Тип: Изобретение
Номер охранного документа: 0002645692
Дата охранного документа: 27.02.2018
26.10.2018
№218.016.969a

Способ определения равновесной смачиваемости поверхности раздела пустотного пространства и твердой фазы образца горной породы

Изобретение относится к области изучения свойств смачивания. Для определения равновесной смачиваемости поверхности раздела пустотного пространства и твердой фазы образца горной породы получают трехмерное изображение внутренней структуры образца. На полученном изображении внутренней структуры...
Тип: Изобретение
Номер охранного документа: 0002670716
Дата охранного документа: 24.10.2018
+ добавить свой РИД