×
27.09.2014
216.012.f846

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ КОНТРОЛЯ НАД ПРОЦЕССОМ ЛЕЧЕНИЯ ПОВРЕЖДЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002529395
Дата охранного документа
27.09.2014
Аннотация: 95 2+ 3+ 3+ 3+

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Изобретение относится к способу и устройству для контроля над процессом лечения повреждения.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Боль является обессиливающим эффектом вследствие любого повреждения. Также боль в суставах является причиной серьезной недееспособности, которая влияет на повседневную деятельность и производительность, в частности остеоартрит вносит вклад в болевые ощущения в суставах у большой части лиц пожилого возраста.

Для временного облегчения боли назначают лекарственную терапию, например крем с капсайцином, ацетаминофен, нестероидные противовоспалительные средства (НПВС), но с ними связаны серьезные побочные эффекты. Физиотерапия, такая как тепловые процедуры, массаж, иглоукалывание и мануальная терапия, могут облегчить боль в течение непродолжительного времени, однако обычно они дороги и требуют участия квалифицированного персонала.

В настоящее время в области физиотерапии достаточно популярны системы фототерапии. Однако в процессе фототерапии интенсивность/дозировку света можно корректировать только посредством периодического включения и выключения системы фототерапии вручную, что неудобно и неточно.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Цель данного изобретения состоит в том, чтобы предоставить способ для контроля над процессом лечения повреждения.

Изобретение относится к способу контроля над процессом лечения повреждения, и способ включает в себя следующие стадии:

мониторинг уровня оксида азота повреждения,

генерацию контролирующего сигнала посредством сравнения уровня оксида азота с предварительно определенным порогом, и

корректировку дозировки света для лечения повреждения в соответствии с контролирующим сигналом.

На основании способа по изобретению можно более точно и удобно корректировать дозировку лечения повреждения при минимальных побочных эффектах.

Изобретение также относится к устройству для реализации стадии способа, как указано выше.

Ниже приведено подробное объяснение и другие аспекты изобретения.

ОПИСАНИЕ ЧЕРТЕЖЕЙ

Указанные выше и другие аспекты и признаки настоящего изобретения лучше видны из следующего подробного описания, которое рассматривается в комбинации с прилагаемыми рисунками, на которых:

На фиг.1 представлена принципиальная схема, которая иллюстрирует вариант осуществления способа по изобретению;

На фиг.2 представлена принципиальная схема, которая иллюстрирует устройство согласно варианту осуществления изобретения;

На фиг.3 изображено устройство для лечения повреждения в соответствии с одним вариантом осуществления изобретения;

На фиг.4 изображено устройство для лечения повреждения в соответствии с другим вариантом осуществления изобретения.

Одинаковые номера позиций используются для обозначения одинаковых частей на всех фигурах.

ПОДРОБНОЕ ОПИСАНИЕ

На фиг.1 представлена принципиальная схема, иллюстрирующая вариант осуществления способа по изобретению. Способ контроля над процессом лечения повреждения содержит следующие стадии:

- мониторинг 11 уровня оксида азота повреждения,

- генерация 12 контролирующего сигнала посредством сравнения уровня оксида азота с предварительно определенным порогом, и

- корректировка 13 дозировки света для лечения повреждения в соответствии с контролирующим сигналом.

Свет для лечения повреждения может представлять собой монохроматический инфракрасный свет с длиной волны 890 нм. Когда свет попадает на поверхность повреждения, свет абсорбируется внутрь кровеносных сосудов и стимулирует образование оксида азота в месте повреждения посредством целебного пути cNOS (конститутивная изоформа синтазы оксида азота). Оксид азота образуется из аминокислоты, которую называют L-Аргинин под действием фермента синтазы оксида азота, причем этот фермент имеет различные изоформы. cNOS является ключевым регулятором гомеостаза (регуляция кровотока). При лечении cNOS снижается уровень оксида азота в месте повреждения. Также хорошо известно, что в случае поражения суставов остеоартритом при лечении cNOS снижается уровень оксида азота.

Таким образом, оксид азота, высвобождающийся из места повреждения, является обоснованным индикатором для объективной оценки боли от повреждения. Значительное облегчение боли достигают посредством вмешательства, основанного на оксиде азота, без нежелательных побочных эффектов путем увеличения циркуляции, снижения раздражения нервов и снижения воспаления в суставах. В физиологических условиях оксид азота вступает в реакцию с оксигемоглобином с образованием метгемоглобина с очень высокой скоростью, так что количество метгемоглобина в месте повреждения пропорционально количеству оксида азота.

Контролирующий сигнал обозначает повышение дозировки света (или интенсивности света), если уровень оксида азота выше, чем предварительно определенный порог; контролирующий сигнал обозначает снижение дозировки света, если уровень оксида азота ниже, чем предварительно определенный порог.

Стадия мониторинга 11 предназначена для:

- определения уровня метгемоглобина,

- вычисления уровня оксида азота в соответствии с пропорциональным отношением между уровнем метгемоглобина и уровнем оксида азота.

Оксид азота связывается с оксигемоглобином, когда растворяется в крови. Оксид азота и оксигемоглобин в крови превращаются в метгемоглобин. Наиболее важные реакции оксида азота протекают с участием железосодержащих гемопротеинов и, в частности, с участием оксигемоглобина, который превращается в метгемоглобин:

Hb(Fe2+)O2+NO→Hb(Fe3+)+NО3-, где Hb(Fe3+) представляет собой метгемоглобин.

У млекопитающих гемоглобин является количественно преобладающим гемосодержащим белком. Основная функция гемоглобина заключается в связывании, переносе и высвобождении молекулярного кислорода. Железо, связанное с гемоглобином, остается в двухвалентном состоянии (например, оксигемоглобин) во время связывания, переноса и высвобождения кислорода. Когда железо, связанное с гемоглобином, окисляется до трехвалентного иона, трехвалентный ион железа не может переносить кислород. Окисленный гемоглобин называют метгемоглобином.

В одном из вариантов осуществления уровень метгемоглобина можно определить посредством: во-первых, определения магнитного поля, образуемого вследствие перехода из Fе2+ в Fе3+, а затем получения уровня Fe3+ в соответствии с магнитным полем, и, наконец, вычисления уровня метгемоглобина в соответствии с уровнем Fe3+.

Измерение трехвалентного железа (Fe3+) позволяет опосредованно измерить метгемоглобин. Кроме того, метгемоглобин пропорционален оксиду азота, поэтому измерение трехвалентного железа позволяет измерить оксид азота в качестве индикатора корректировки дозировки света для лечения повреждения.

Известно, что железо находится в двух основных ионных состояниях, которые называют двухвалентный ион железа (Fe2+) и трехвалентный ион железа (Fe3+). Магнетизм возникает тогда, когда имеет место нарушение баланса в структурном расположении ионов. Двухвалентный ион железа обладает зарядом плюс два (+2); трехвалентный ион железа обладает зарядом плюс три (+3). Эти два иона обладают различными атомарными радиусами, поскольку больший заряд трехвалентных ионов железа ближе притягивает электроны, окружающие ион, что может привести к перемещению электронов от двухвалентных ионов железа к более положительно заряженным трехвалентным ионам железа и создать слабое магнитное поле. Предложенный вариант осуществления изобретения измеряет магнитное поле (также называемое плотностью магнитного потока, которую измеряют в Тесла - единице системы СИ).

В другом варианте осуществления уровень метгемоглобина можно определить посредством:

во-первых, освещения поверхности (ткани) рядом с повреждением. Поверхность можно освещать специальным источником обнаруживающего света для определения метгемоглобина, и специальный источник обнаруживающего света отличается от источника света для лечения повреждения.

Поверхность можно освещать одним источником света для лечения повреждения. Например, для освещения поверхности рядом с повреждением можно использовать источник света широкого диапазона, такой как блок ламп с высокой отражательной способностью Welch Allyn (позиция 7103-001).

Во-вторых, получения спектра света, отраженного от поверхности. Оксигемоглобин имеет спектры поглощения с пиками 542 нм и 580 нм, тогда как метгемоглобин имеет спектр поглощения с пиком 630 нм. Когда оксид азота высвобождается из связанной формы, чтобы диффундировать внутрь окружающего повреждения, происходит сдвиг пиков спектра поглощения с 630 нм на 542/580 нм. Отраженный от поверхности свет можно собрать с помощью волоконно-оптических кабелей и направить в микроспектрометр, чувствительный к свету в диапазоне длин волн (500-700 нм).

В-третьих, анализа соотношения между уровнем метгемоглобина и уровнем оксигемоглобина в соответствии со спектром.

И, наконец, вычисления уровня метгемоглобина на основании соотношения между уровнем метгемоглобина и уровнем оксигемоглобина.

В дополнительном варианте осуществления уровень метгемоглобина можно определить посредством блока мониторинга 21, который выполнен с возможностью:

во-первых, освещения поверхности рядом с повреждением. Поверхность можно освещать специальным источником света, который используют для определения метгемоглобина, и конкретный источник света, используемый для определения, отличается от источника света для лечения повреждения. Поверхность также можно освещать тем же источником света, который используют для лечения повреждения.

во-вторых, получения диапазона длин волн света, отраженного от поверхности.

в-третьих, определения тока для света, отраженного от поверхности, посредством преобразования света, отраженного от поверхности, в ток. Это можно осуществить посредством нескольких фотодиодов. Предварительно задано, что фотодиоды обладают чувствительностью к трем пикам 542 нм, 580 нм и 630 нм.

в-четвертых, анализа соотношения между уровнем метгемоглобина и уровнем оксигемоглобина в соответствии с током. Установлено, что оксигемоглобин имеет пики 542 нм и 580 нм, и интенсивность оксигемоглобина сравнивают с пиком метгемоглобина при 630 нм. Затем вычисляют соотношение пиков и сравнивают с предварительно определенной моделью.

И, наконец, вычисления уровня метгемоглобина на основании соотношения между уровнем метгемоглобина и уровнем оксигемоглобина.

На фиг.2 представлена принципиальная схема, иллюстрирующая устройство согласно варианту осуществления изобретения. Устройство для контроля над процессом лечения повреждения содержит:

блок мониторинга 21 для мониторинга уровня оксида азота повреждения,

блок генерации 22 для генерации контролирующего сигнала посредством сравнения уровня оксида азота с предварительно определенным порогом, и

блок корректировки 23 для корректировки дозировки света для лечения повреждения в соответствии с контролирующим сигналом.

Причем блок мониторинга выполнен с возможностью определения магнитного поля, получения уровня Fe3+, вычисления уровня метгемоглобина в соответствии с уровнем Fe3+.

Свет для лечения повреждения может представлять собой монохроматический инфракрасный свет с длиной волны 890 нм. Когда свет попадает на поверхность повреждения, свет абсорбируется кровью и стимулирует образование оксида азота в суставах через целебный путь cNOS.

Таким образом, оксид азота, высвобождаемый из повреждения, является обоснованным индикатором для объективной оценки боли повреждения. Значительное облегчение боли достигают посредством вмешательства, основанного на оксиде азота, без нежелательных побочных эффектов путем увеличения циркуляции, снижения раздражения нервов и снижения воспаления в суставах.

Контролирующий сигнал обозначает повышение дозировки, если уровень оксида азота выше, чем предварительно определенный порог; контролирующий сигнал обозначает снижение дозировки, если уровень оксида азота ниже, чем предварительно определенный порог.

Блок мониторинга 21, предназначенный для получения информации, обозначенной как IF на фиг.2, и для мониторинга уровня оксида азота в соответствии с полученной информацией. Информация может содержать информацию о магнитном поле, спектральную информацию и т.д. Блок корректировки 23, предназначенный для того, чтобы выдавать скорректированную дозировку света, обозначен AD на фиг.2.

Блок мониторинга 21 предназначен для:

определения уровня метгемоглобина и

вычисления уровня оксида азота в соответствии с пропорциональным отношением между уровнем метгемоглобина и уровнем оксида азота.

А также блок мониторинга выполнен с возможностью освещения поверхности, получения спектра, анализа соотношения в соответствии со спектром, вычисления уровня метгемоглобина на основании соотношения между уровнем метгемоглобина и уровнем оксигемоглобина.

При физиологических условиях оксид азота вступает в реакцию с оксигемоглобином, образуя метгемоглобин с очень высокой скоростью, и поэтому метгемоглобин пропорционален оксиду азота.

Оксид азота связывается с оксигемоглобином при растворении в крови. Оксид азота и оксигемоглобин в крови превращаются в метгемоглобин. Наиболее важные реакции оксида азота протекают с участием железосодержащих гемопротеинов и, в частности, с участием оксигемоглобина, который превращается в метгемоглобин:

Hb(Fe2+)O2+NO→Нb(Fе3+)+NО3-, где Hb(Fe3+) представляет собой метгемоглобин.

У млекопитающих гемоглобин является количественно преобладающим гемосодержащим белком. Основная функция гемоглобина заключается в связывании, переносе и высвобождении молекулярного кислорода. Железо, связанное с гемоглобином, остается в двухвалентном состоянии (например, оксигемоглобин) во время связывания, переноса и высвобождения кислорода. Когда железо, связанное с гемоглобином, окисляется до трехвалентного иона, трехвалентный ион железа не может переносить кислород. Окисленный гемоглобин называют метгемоглобином.

В одном из вариантов осуществления блок мониторинга 21 может определять уровень метгемоглобина посредством: определения магнитного поля, образуемого вследствие перехода из Fe2+ в Fe3+, a затем получения уровня Fe3+ в соответствии с магнитным полем, и, наконец, вычисления уровня метгемоглобина в соответствии с уровнем Fe3+.

Измерение трехвалентного железа (Fe3+) позволяет опосредованно измерить метгемоглобин. Кроме того, метгемоглобин пропорционален оксиду азота, поэтому измерение трехвалентного железа позволяет измерить оксид азота в качестве индикатора корректировки дозировки света для лечения повреждения.

Известно, что железо находится в двух основных ионных состояниях, которые называют двухвалентный ион железа (Fe2+) и трехвалентный ион железа (Fe3+). Магнетизм возникает тогда, когда имеет место нарушение баланса в структурном расположении ионов. Двухвалентный ион железа обладает зарядом плюс два (+2); трехвалентный ион железа обладает зарядом плюс три (+3). Эти два иона обладают различными атомарными радиусами, поскольку больший заряд трехвалентных ионов железа ближе притягивает электроны, окружающие ион, что может привести к перемещению электронов от двухвалентных ионов железа к более положительно заряженным трехвалентным ионам железа и создать слабое магнитное поле. Предложенный вариант осуществления изобретения измеряет магнитное поле (также называемое плотностью магнитного потока, которую измеряют в Тесла - единице системы СИ).

В другом варианте осуществления блок мониторинга 21 может быть предназначен для определения уровня метгемоглобина посредством:

освещения поверхности (ткани) рядом с повреждением. Поверхность можно освещать специальным источником, который используют для определения метгемоглобина, и конкретный источник света для определения отличается от источника света для лечения повреждения. Поверхность также можно освещать тем же источником света, который используют для лечения повреждения. Например, для освещения поверхности рядом с повреждением можно использовать источник света широкого диапазона, такой как блок ламп с высокой отражательной способностью Welch Allyn (позиция 7103-001);

получения спектра света, отраженного от поверхности. Оксигемоглобин имеет спектры поглощения с пиками 542 нм и 580 нм, тогда как метгемоглобин имеет спектр поглощения с пиком 630 нм. Когда оксид азота высвобождается из связанной формы, чтобы диффундировать внутрь окружающего повреждения, происходит сдвиг пиков спектра поглощения с 630 нм на 542/580 нм. Отраженный от поверхности свет можно собрать с помощью волоконно-оптических кабелей и направить в микроспектрометр, чувствительный к свету в диапазоне длин волн (500-700 нм);

анализа соотношения между уровнем метгемоглобина и уровнем оксигемоглобина в соответствии со спектром;

вычисления уровня метгемоглобина на основании соотношения между уровнем метгемоглобина и уровнем оксигемоглобина;

В дополнительном варианте осуществления блок мониторинга 21 может быть дополнительно предназначен для определения метгемоглобина посредством:

освещения поверхности рядом с повреждением. Поверхность можно освещать специальным источником света, который используют для определения метгемоглобина, и конкретный источник света, используемый для определения, отличается от источника света для лечения повреждения. Поверхность также можно освещать тем же источником света, который используют для лечения повреждения;

получения диапазона длин волн света, отраженного от поверхности;

определения тока для света, отраженного от поверхности, посредством преобразования света, отраженного от поверхности, в ток. Это можно осуществить посредством нескольких фотодиодов. Предварительно задано, что фотодиоды обладают чувствительностью к трем пикам 542 нм, 580 нм и 630 нм;

анализа соотношения между уровнем метгемоглобина и уровнем оксигемоглобина в соответствии с током. Установлено, что оксигемоглобин имеет пики 542 нм и 580 нм, и интенсивность оксигемоглобина сравнивают с пиком метгемоглобина при 630 нм. Затем вычисляют соотношение пиков и сравнивают с предварительно определенной моделью:

вычисления уровня метгемоглобина на основании соотношения между уровнем метгемоглобина и уровнем оксигемоглобина.

На фиг.3 представлено устройство для лечения повреждения в соответствии с одним вариантом осуществления изобретения. Терапевтическое устройство 30 содержит несколько источников света 31 и устройство 20 (не показано на фиг.3). Устройство 20 содержит блок мониторинга 21, блок генерации 22 и блок корректировки 23. В одном из вариантов осуществления изобретения блок мониторинга 21 также может содержать несколько датчиков 32, расположенных вместе с несколькими источниками света 31.

Источник света 31 может представлять собой СД (светоиспускающий диод) для испускания света на повреждение в терапевтических целях. Блок мониторинга 21 используют для мониторинга уровня оксида азота повреждения с тем, чтобы корректировать дозировку света. Блок корректировки 23 предназначен для корректировки дозировки света для терапии посредством корректировки общей интенсивности света, например посредством включения/выключения одного или нескольких источников света, корректировки интенсивности одного или нескольких источников света или корректировки интенсивностей всех источников света, в соответствии с контролирующим сигналом от блока генерации 22.

Датчики 32 используют для сбора информации о повреждении для блока мониторинга 21.

Источники света 31 и датчики 32 расположены на основании (не обозначено). Основание обладает гибкостью, чтобы его можно было скорректировать для любой части тела. Пациент может использовать устройство для лечения повреждения 30 дома или на работе и без вмешательства эксперта. Устройство 20 может содержать один или несколько ЦП (центральный процессор) и/или управляющих контуров, с тем, чтобы корректировать дозировку света, испускаемого источниками света 31. Источники света 31 питаются от гальванического или других элементов.

На фиг.4 представлено устройство для лечения повреждения в соответствии с другим вариантом осуществления изобретения. На фиг.4 (А) показана компоновка СД и супермагниторезистивные датчики в устройстве; на фиг.4 (В) показано измерение магнитного поля каждым супермагниторезистивным датчиком; на фиг.4 (С) показана комбинация магнитных полей от всех супермагниторезистивных датчиков.

Терапевтическое устройство 30 содержит несколько источников света 31 и устройство 20 (не показано на фиг.3). Устройство 20 содержит блок мониторинга 21, блок генерации 22 и блок корректировки 23. В одном из вариантов осуществления изобретения блок мониторинга 21 также может содержать несколько датчиков 32, расположенных вместе с несколькими источниками света 31.

Датчики 32 представляют собой супермагниторезистивные (GMR) датчики для определения магнитного поля. Супермагниторезистивные датчики более чувствительны, чем датчики Холла. Датчики 32 состоят из массивов три на три. Аналоговый мультиплексор (не показан на фиг.4) можно использовать для выбора сигналов от девяти датчиков 32 для дальнейшего формирования, усиления и аналогово-цифрового преобразования сигнала.

Источники света 31 могут испускать свет в инфракрасном диапазоне приблизительно около 890 нм.

Перед лечением повреждения устройство 20 вычисляет исходное магнитное поле (Bin); после начала лечения, чтобы осуществлять мониторинг уровня оксида азота, устройство 20 периодически вычисляет магнитное поле (Bcur), и Bcur выше Вin.

где i принимает значения от 1 до n, i обозначает число супермагниторезистивных датчиков.

Следует отметить, что указанные выше варианты осуществления иллюстрируют, а не ограничивают настоящее изобретение, и что специалисты в данной области смогут разработать альтернативные варианты осуществления, не выходя за рамки объема прилагаемой формулы изобретения. В формуле изобретения любые ссылки, помещенные в скобки, не следует рассматривать в качестве ограничения формулы изобретения. Слово «содержит» не исключает присутствия элементов или стадий, не перечисленных в пункте формулы изобретения или в описании. Присутствие элемента в единственном числе не исключает присутствия нескольких таких элементов. Настоящее изобретение можно реализовать посредством аппаратного блока, содержащего несколько отдельных элементов, и блока запрограммированного компьютера. В пунктах формулы, относящихся к устройству перечисляющих несколько блоков, несколько этих блоков можно воплотить в одном и том же элементе аппаратного или программного обеспечения. Использование слов «первый», «второй», «третий» и так далее не обозначает какой-либо порядок. Эти слова следует интерпретировать как названия.


СПОСОБ И УСТРОЙСТВО ДЛЯ КОНТРОЛЯ НАД ПРОЦЕССОМ ЛЕЧЕНИЯ ПОВРЕЖДЕНИЯ
СПОСОБ И УСТРОЙСТВО ДЛЯ КОНТРОЛЯ НАД ПРОЦЕССОМ ЛЕЧЕНИЯ ПОВРЕЖДЕНИЯ
СПОСОБ И УСТРОЙСТВО ДЛЯ КОНТРОЛЯ НАД ПРОЦЕССОМ ЛЕЧЕНИЯ ПОВРЕЖДЕНИЯ
СПОСОБ И УСТРОЙСТВО ДЛЯ КОНТРОЛЯ НАД ПРОЦЕССОМ ЛЕЧЕНИЯ ПОВРЕЖДЕНИЯ
СПОСОБ И УСТРОЙСТВО ДЛЯ КОНТРОЛЯ НАД ПРОЦЕССОМ ЛЕЧЕНИЯ ПОВРЕЖДЕНИЯ
СПОСОБ И УСТРОЙСТВО ДЛЯ КОНТРОЛЯ НАД ПРОЦЕССОМ ЛЕЧЕНИЯ ПОВРЕЖДЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 411-420 из 1 329.
20.08.2014
№216.012.eb4b

Универсальный полупроводниковый прибор, модуль и способ функционирования

Изобретение относится к светотехнике, в частности к устройствам управления. Технический результат - создание универсального малогабаритного прибора с высокой избирательностью по свету и теплу. Предлагается прибор, имеющий, по меньшей мере, два штырьковых вывода. Прибор содержит...
Тип: Изобретение
Номер охранного документа: 0002526043
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.eb4e

Источник света со светодиодами, световодом и отражателем

Изобретение относится к светодиодному источнику света, выполненному с возможностью переоснащения светильника, в котором используется источник света с нитью накаливания. Технический результат заключается в повышении эффективности освещения. Источник света содержит световод, в который вводится...
Тип: Изобретение
Номер охранного документа: 0002526046
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ebe6

Возбуждение магнитных шариков с использованием обратной связи для биосенсора на основе нпво

Изобретение предусматривает способ управления возбуждением маркерных частиц в биосенсорном устройстве, в частности биосенсорном устройстве, использующем нарушенное полное внутреннее отражение. При приложении к маркерным частицам заранее заданной силы возбуждения и определении воздействия...
Тип: Изобретение
Номер охранного документа: 0002526198
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ebf0

Способы для выбора и управления устройствами

Изобретение относится к выбору и управлению устройствами на основе технологии беспроводной связи. Технический результат - уменьшение сложности, задержки и потребления энергии при выборе для беспроводных устройств, которые являются особенно применимыми для беспроводных систем освещения. Для...
Тип: Изобретение
Номер охранного документа: 0002526208
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ec97

Устройство для подключения источника питания к светильнику

Изобретение относится к электротехнике. Устройство (1) для подключения источника (2) питания к светодиодному светильнику (3) содержит первую часть для приема первого сигнала тока и первого сигнала напряжения от источника (2) питания и вторую часть для подачи второго сигнала напряжения и второго...
Тип: Изобретение
Номер охранного документа: 0002526375
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ecd1

Имитирующий сосание молокоотсос на основе активирующихся гидрогелей

Группа изобретений относится к медицинской технике. Воронка для размещения груди, входящая в состав молокоотсоса, содержит расширяемый слой, выполненный из гидрогеля, способного расширяться в результате активации или деактивации активирующего элемента, выполненного с возможностью вызывать...
Тип: Изобретение
Номер охранного документа: 0002526433
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ed4c

Автоматическое создание ориентиров для замены сердечного клапана

Изобретение относится к способу автоматического создания ориентиров для замены сердечного клапана и к устройству обследования для автоматического создания ориентиров для замены сердечного клапана. Устройство обследования для автоматического создания ориентиров для замены сердечного клапана...
Тип: Изобретение
Номер охранного документа: 0002526567
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.edc6

Варочное устройство для приготовления кофе

Изобретение относится к варочному устройству, предназначенному для использования в аппарате для приготовления напитков, который приспособлен к приготовлению напитка на основе взаимодействия экстракта напитка и экстрагирующей жидкости. Недостатком варочных устройств является то, что большое...
Тип: Изобретение
Номер охранного документа: 0002526689
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ee3e

Люминесцентный преобразователь для усиленного люминофором источника света, содержащий органические и неорганические люминофоры

Изобретение относится к люминесцентному преобразователю (10, 12) для усиленного люминофором источника (100, 102, 104) света. Люминесцентный преобразователь содержит первый люминесцентный материал (20), выполненный с возможностью поглощения по меньшей мере части возбуждающего света (hv0),...
Тип: Изобретение
Номер охранного документа: 0002526809
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ee62

Световой модуль, система освещения и способ встраивания данных в излученный свет

Изобретение относится к технике связи и может использоваться в оптических системах связи. Технический результат состоит в обеспечении внедрения данных в излучаемый свет и повышении эффективности передачи данных. Для этого предложен световой модуль, содержащий по меньшей мере два первичных...
Тип: Изобретение
Номер охранного документа: 0002526845
Дата охранного документа: 27.08.2014
+ добавить свой РИД