×
27.09.2014
216.012.f80c

Результат интеллектуальной деятельности: СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области ионно-лучевой вакуумной обработки материалов и может быть использовано в машиностроении для повышения эксплуатационных свойств деталей машин и механизмов. Способ включает обработку поверхности деталей из конструкционной стали потоком ионов меди и свинца с использованием катода-имплантера, изготовленного из монотектического сплава меди со свинцом, в который контактным легированием вводят 5-11% алюминия, а имплантацию осуществляют с дозой (4,5-6,5)·10 ион/см. Изобретение направлено на повышение коррозионной стойкости деталей из конструкционной стали, работающих в условиях трения с приложением внешней нагрузки к трущимся деталям в коррозионной среде. 4 ил., 1 табл.
Основные результаты: Способ ионной имплантации поверхностей деталей из конструкционной стали, включающий обработку поверхности деталей бомбардировкой потоком ионов меди и свинца при использовании катода имплантера из сплава меди со свинцом, отличающийся тем, что используют катод-имплантер, изготовленный из монотектического сплава меди с 36% свинца, в который контактным легированием введено 5-11% алюминия, а имплантацию осуществляют с дозой (4,5-6,5)·10 ион/см.

Предлагаемое изобретение относится к области ионно-лучевой вакуумной обработки материалов и может быть использовано в машиностроении для повышения эксплуатационных свойств деталей машин и механизмов.

Известен способ (заявка Франции 2476143, кл. С23С 14/48) ионно-лучевой обработки изделий, заключающийся в том, что в камеру, где располагаются изделия, напускают газ. Газ ионизируют и используют для обработки изделий. Ионы газа ускоряются за счет приложения переменной разности потенциала между изделиями и камерой. Технические возможности данного способа по созданию необходимой структуры и элементного состава в приповерхностном слое изделий ограничены тем, что при такой обработке в изделие имплантируют только ионы напускаемого газа. Создаваемые приповерхностные слои имеют сильные ограничения по значениям микротвердости из-за больших возникающих градиентов свойств между упрочненными слоями и матрицей. Следствием является возникновение высоких внутренних напряжений в приповерхностных слоях, приводящее к разрушению материала даже при слабых нагрузках.

Известен способ ионной имплантации, при котором поверхность обрабатываемой детали подвергается воздействию пучка ионов меди с дозой (1-5)·1017 ион/см2 (Овчинников В.В., Козлов Д.А., Якутина С.В. Исследование свойств поверхности стали 30ХГСН2А после имплантации ионами меди. / Машиностроение и инженерное образование. 2009. №2. С.7-13).

Недостатком данного способа является ограниченное увеличение коррозионной стойкости обработанной поверхности деталей. Увеличение дозы имплантирования ионов меди не приводит к росту коррозионной стойкости имплантированной поверхности.

Наиболее близким по технической сущности к заявляемому способу ионной имплантации является способ, при котором поверхность обрабатываемой детали подвергается воздействию пучка ионов меди и свинца с дозой (1-5)·1017 ион/см2, который получают за счет использования в качестве материала катода имплантера монотектического сплава меди с 36% свинца (Овчинников В.В., Якутина С.В., Козлов Д.А., Немов А.С. Свойства и состав поверхности стали 30ХГСН2А в зависимости от дозы облучения ионами меди и свинца. // Известия МГИУ. 2010. №3. С.15-20). Применение монотектического сплава меди со свинцом позволяет значительно повысить глубину проникновения имплантируемых ионов, что способствует росту усталостных свойств стали.

Существенным недостатком прототипа является повышение коэффициента трения скольжения при введении ионов свинца в поверхностный слой стали. Кроме того, детали отличаются невысокой коррозионной стойкостью в условиях трения с приложением внешней нагрузки к трущимся деталям и в условиях коррозионной среды, например морского климата.

Заявляемый способ ионной имплантации поверхностей деталей из конструкционной стали обеспечивает повышение коррозионной стойкости деталей из конструкционной стали в условиях трения с приложением внешней нагрузки к трущимся деталям и в условиях коррозионной среды.

Технический результат, на достижение которого направлен заявляемый способ, обеспечивается тем, что имплантацию осуществляют при использовании в качестве катода из монотектического сплава меди с 36% свинца, в который контактным легированием вводят 5-11% алюминия, причем дозу имплантации задают в пределах (4,5-6,5)·1017 ион/см2.

Подробнее сущность заявляемого способа поясняется чертежами:

- на фиг.1 представлена схема процесса контактного легирования монотектического сплава меди со свинцом алюминием;

- на фиг.2 показана микроструктура сплава медь-свинец-алюминий, полученного методом контактного легирования (×100);

- на фиг.3 приведена температурная зависимость скорости контактного легирования медно-свинцовой монотектики алюминием;

- на фиг.4 - язва коррозионного поражения на поверхности образца после выдержки в камере соляного тумана.

Выполнение совместной имплантации ионами с большой массой (свинец) в сочетании с ионами (медь), близкими по массе к основе мишени (железо), позволяет создавать большое количество радиационных дефектов, по которым ионы меди проникают вглубь мишени. С помощью метода вторичной масс-спектрометрии установлено, что при одновременной имплантации ионов меди и свинца при дозе 1,5·1017 ион/см2 глубина проникновения ионов меди в обрабатываемую сталь в 4 раза превышает глубину проникновения ионов меди при облучении ими стали при одинаковой дозе.

Максимальное значение глубины проникновения ионов в матрицу (стали 30ХГСН2А) достигается при использовании в качестве материала катода имплантера монотектического сплава меди со свинцом с содержанием свинца 36%. Особенностью монотектического сплава меди со свинцом является то, что компоненты сплава являются несмешивающимися. Относительная простота получения сплавов меди со свинцом в наиболее практически важном интервале концентраций объясняется особенностями диаграммы равновесия этой системы: невысоким куполом расслоения в жидком состоянии и значительным содержанием свинца в монотектической точке.

Для введения алюминия в монотектический сплав использовался метод контактного легирования. Для получения монотектического сплава меди со свинцом, легированного алюминием, образец сплава помещают в расплав алюминия при температуре 873°К и выдерживают в расплаве 5-7 минут (фиг.1). За счет изменения времени выдержки регулируют количество алюминия, поступающего в монотектический сплав меди со свинцом.

В ходе миграции алюминия в объем монотектического сплава образуются уникальные структуры, получение которых методами сплавления или спекания принципиально невозможно. На фиг.2 показан типичный фрагмент микроструктуры сплава медь-свинец-алюминий, полученного контактным легированием литой медно-свинцовой монотектики из расплава алюминия при температуре 548°С.

Основной особенностью рассматриваемой микроструктуры является концентрическое расположение свинца, алюминия и меди, фактически не взаимодействующих друг с другом при данной температуре и выступающих в виде чистых элементов с присущими им индивидуальными свойствами. На фиг.3 приведена температурная зависимость скорости контактного легирования медно-свинцовой монотектики алюминием. Контактное легирование монотектики алюминием проводили в интервале 548-600°С (548°С - температура эвтектического превращения в системе Al-Cu), скорость миграции алюминия при этом достигла 3 мм/мин.

Из полученного сплава был изготовлен катод имплантера, который был использован для имплантирования образцов из стали 30ХГСН2А. Для сравнения проводилась имплантация образцов монотектическим сплавом меди со свинцом.

Исследования содержания алюминия в монотектическом сплаве, подвергнутого контактному легированию, показали, что оно зависит от условий легирования - температуры и времени выдержки. Установлено, что контактное легирование позволяет обеспечить максимальное насыщение монотектического сплава алюминием до концентрации 13%. При этом концентрация свинца остается неизменной, а концентрация меди снижается.

Проведение имплантации поверхностей деталей из 30ХГСН2А монотектическим сплавом меди и свинца, содержащим в своем составе менее 5% алюминия, не приводит к увеличению коррозионной стойкости по сравнению с деталями, облученными монотектическим сплавом.

При использовании в качестве материала катода имплантера монотектического сплава меди со свинцом, содержащим более 11% алюминия, не наблюдается увеличения коррозионной стойкости имплантированных деталей по сравнению с меньшими его концентрациями.

Поэтому оптимальным следует признать содержание алюминия в монотектическом сплаве меди со свинцом в диапазоне 5-11%.

При дозе имплантации менее 4,5·1017 ион/см2 не отмечается существенного увеличения коррозионной стойкости имплантированной стали 30ХГСН2А. Дислокационная картина имеет хаотический характер со слабо выраженным формированием дислокационных жгутов.

Увеличение дозы имплантирования свыше 6,5·1017 ион/см2 существенно не сказывается на коррозионной стойкости поверхностного слоя детали из стали 30ХГСН2А при значительном увеличении времени обработки стали. При этом дислокационная структура имплантированного слоя представляет собой субграницу, сформировавшуюся за счет слияния отдельных дислокационных фрагментов.

Использование имплантирования ионами монотектического сплава меди со свинцом, дополнительно легированным 5-11% алюминия, при дозе имплантирования (4,5-6,5)·1017 ион/см2 позволяет обеспечить устойчивое повышение коррозионной стойкости поверхностного слоя стали 30ХГСН2А.

Предлагаемый способ осуществляют следующим образом. Вакуумную камеру, в которой расположен источник ионов, откачивают до давления 1·10-3 Па. Производят ионную очистку изделия с помощью ионного источника. При этом энергия ионов не превышает 10-15 кэВ. Затем повышают энергию ионов до 40 кэВ, одновременно имплантируют ионы меди, свинца и алюминия с дозой (4,5-6,5)-1017 ион/см2, осуществляя формирование поверхностного слоя.

Испытания на стойкость против общей коррозии выполнялись в соответствии с ГОСТ Р52763-2007. Условия испытаний и состав раствора выбираются по ГОСТ Р51201-2007.

Испытания имплантированных и контрольных образцов проводились в нейтральном соляном тумане. Для приготовления испытательного раствора применялась дистиллированная вода и хлористый натрий.

Исследование проводилось на образцах толщиной 1 мм и размером 50×80 мм, которые перед испытаниями взвешивались с точностью до 1 мг. На одну из сторон образца наклеивалась защитная пленка для предотвращения коррозии.

После испытаний, которые длятся 96 часов, защитную пленку удаляли. Продукты коррозии с поверхности образцов удаляли путем погружения образца в раствор соляной кислоты с плотностью 1,18 г/мл с добавлением 3,5 г гексаметилтрамина до 1 л. Затем образцы промывали в воде и подвергали сушке. После этого методом взвешивания определяли потерю массы образца в расчете на 1 м2 поверхности.

Скорость коррозии по данному методу определяют по скорости убыли массы образца (ГОСТ 9.908-85).

Основные результаты исследований коррозионных свойств имплантированных образцов представлены в таблице.

Имплантация монотектического сплава меди со свинцом, дополнительно легированного алюминием, в сталь позволяет существенно снизить скорость коррозии и заметно повысить коррозионную стойкость (таблица) образцов стали 30ХГСН2А после имплантации.

Испытания также показали, что для всех образцов характерен одинаковый механизм развития коррозии, который начинается с отдельных коррозионных поражений (фиг.4), которые затем распространяются на всю поверхность испытуемого образца.

Коррозионные свойства стали 30ХГСН2А после имплантации
Состояние образцов Режим имплантирования Скорость коррозии
Содержание элементов в материале катода имплантера, масс.% Доза имплантации (флюенс), в камере соляного тумана, г/м2·ч в кислом растворе, см/мин
Cu Pb Al
Исходное состояние - - - 0,0022 0,76
Имплантирование монотектическим сплавом меди со свинцом 64 36 6·1017 0,0068 0,38
Монотектический сплав меди со свинцом, контактно легированный алюминием 60 36 4 6·1017 0,0049 0,27
59 36 5 6·1017 0,0022 0,25
58 36 6 6·1017 0,0018 0,21
53 36 11 6·1017 0,0014 0,16
51 36 13 6·1017 0,0014 0,15
55 36 9 3,5·1017 0,0027 0,31
55 36 9 4,5·1017 0,0017 0,25
55 36 9 5,5·1017 0,0016 0,22
55 36 9 6,5·1017 0,0013 0,16
55 36 9 7,2·1017 0,0013 0,15

Таким образом, проведенные коррозионные испытания подтвердили, что имплантация стали 30ХГСН2А ионами монотектического сплава с дополнительным легированием алюминием повышает коррозионную стойкость образцов стали 30ХГСН2А при испытаниях в соленом тумане и растворе кислоты.

Способ ионной имплантации поверхностей деталей из конструкционной стали, включающий обработку поверхности деталей бомбардировкой потоком ионов меди и свинца при использовании катода имплантера из сплава меди со свинцом, отличающийся тем, что используют катод-имплантер, изготовленный из монотектического сплава меди с 36% свинца, в который контактным легированием введено 5-11% алюминия, а имплантацию осуществляют с дозой (4,5-6,5)·10 ион/см.
СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ
СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ
СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ
СПОСОБ ИОННОЙ ИМПЛАНТАЦИИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 28.
27.12.2014
№216.013.1494

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии плотно спеченных керамических материалов конструкционного назначения и может быть использовано для изготовления изделий, сочетающих высокие показатели прочности с повышенными термомеханическими свойствами и элементы ударопрочной защиты. Для изготовления...
Тип: Изобретение
Номер охранного документа: 0002536692
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.152b

Способ ионной имплантации поверхностей деталей из титанового сплава

Изобретение относится к области ионно-лучевой вакуумной обработки материалов и может быть использовано в машиностроении для повышения эксплуатационных свойств деталей машин и механизмов. Способ включает имплантацию ионов меди и кобальта в поверхность изделий из титановых сплавов, при этом...
Тип: Изобретение
Номер охранного документа: 0002536843
Дата охранного документа: 27.12.2014
20.02.2015
№216.013.29c9

Антифрикционный сплав на основе алюминия и способ его получения

Изобретение относится к антифрикционным сплавам на основе алюминия и способам их получения. Сплав содержит компоненты в следующем соотношении, мас.%: свинец 20-40, цинк 5-15, алюминий - остальное. Способ получения сплава включает приготовление гетерофазного сплава на основе алюминия с 20-50...
Тип: Изобретение
Номер охранного документа: 0002542154
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2c67

Способ контроля "слепой зоны" боковых зеркал движущегося впереди автомобиля и устройство для его осуществления

Группа изобретений относится к наблюдательным устройствам транспортных средств, а именно к способу контроля «слепой зоны» боковых зеркал движущегося впереди автомобиля. Согласно первому варианту способ включает определение наличия движущегося впереди по соседней полосе в попутном направлении...
Тип: Изобретение
Номер охранного документа: 0002542835
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.328f

Двигатель внутреннего сгорания с искровым зажиганием и способ его работы

Изобретение относится к области машиностроения и может быть использовано в двигателях внутреннего сгорания, в частности при осуществлении рабочего процесса. Техническим результатом является повышение эффективности сгорания при снижении в продуктах сгорания вредных веществ. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002544418
Дата охранного документа: 20.03.2015
27.03.2015
№216.013.35da

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии керамических материалов конструкционного назначения и может быть использовано для изготовления пористых изделий для высокотемпературной теплоизоляции или теплозащиты, носителей катализаторов и фильтров очистки жидких и газовых сред. Для получения...
Тип: Изобретение
Номер охранного документа: 0002545270
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.389e

Способ получения композиционного материала alo-al

Изобретение относится к керметам, а именно к получению композиционного материала AlO-Al. Сплав Al-Mg с содержанием магния 15-25 мас.% обрабатывают водным раствором едкого натра до образования в маточном растворе осадка в виде гранул. Осадок отделяют от маточного раствора и отмывают водой до...
Тип: Изобретение
Номер охранного документа: 0002545982
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3fec

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии конструкционной керамики и может быть использовано для изготовления износостойких изделий, используемых в качестве подшипников, нитеводителей, водителей для проволоки, шаровых клапанов в устройствах для перекачки суспензий, а также в качестве деталей...
Тип: Изобретение
Номер охранного документа: 0002547852
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.42a8

Устройство предохранения кривошипных прессов от перегрузок по силе на ползуне

Изобретение относится к машиностроению и может быть использовано в конструкциях кривошипных прессов и других кузнечно-прессовых машин с возвратно-поступательным движением рабочего звена, подвергающихся перегрузкам. В силовой контур, образованный станиной пресса, его исполнительным механизмом,...
Тип: Изобретение
Номер охранного документа: 0002548562
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43c2

Способ штамповки поковок колес

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении крупногабаритных колес, в частности железнодорожных, крановых и шахтных колес. После осадки заготовки производят ее разгонку сферическим пуансоном. Затем осуществляют штамповку с кручением...
Тип: Изобретение
Номер охранного документа: 0002548844
Дата охранного документа: 20.04.2015
Показаны записи 11-20 из 35.
27.12.2014
№216.013.1494

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии плотно спеченных керамических материалов конструкционного назначения и может быть использовано для изготовления изделий, сочетающих высокие показатели прочности с повышенными термомеханическими свойствами и элементы ударопрочной защиты. Для изготовления...
Тип: Изобретение
Номер охранного документа: 0002536692
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.152b

Способ ионной имплантации поверхностей деталей из титанового сплава

Изобретение относится к области ионно-лучевой вакуумной обработки материалов и может быть использовано в машиностроении для повышения эксплуатационных свойств деталей машин и механизмов. Способ включает имплантацию ионов меди и кобальта в поверхность изделий из титановых сплавов, при этом...
Тип: Изобретение
Номер охранного документа: 0002536843
Дата охранного документа: 27.12.2014
20.02.2015
№216.013.29c9

Антифрикционный сплав на основе алюминия и способ его получения

Изобретение относится к антифрикционным сплавам на основе алюминия и способам их получения. Сплав содержит компоненты в следующем соотношении, мас.%: свинец 20-40, цинк 5-15, алюминий - остальное. Способ получения сплава включает приготовление гетерофазного сплава на основе алюминия с 20-50...
Тип: Изобретение
Номер охранного документа: 0002542154
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2c67

Способ контроля "слепой зоны" боковых зеркал движущегося впереди автомобиля и устройство для его осуществления

Группа изобретений относится к наблюдательным устройствам транспортных средств, а именно к способу контроля «слепой зоны» боковых зеркал движущегося впереди автомобиля. Согласно первому варианту способ включает определение наличия движущегося впереди по соседней полосе в попутном направлении...
Тип: Изобретение
Номер охранного документа: 0002542835
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.328f

Двигатель внутреннего сгорания с искровым зажиганием и способ его работы

Изобретение относится к области машиностроения и может быть использовано в двигателях внутреннего сгорания, в частности при осуществлении рабочего процесса. Техническим результатом является повышение эффективности сгорания при снижении в продуктах сгорания вредных веществ. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002544418
Дата охранного документа: 20.03.2015
27.03.2015
№216.013.35da

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии керамических материалов конструкционного назначения и может быть использовано для изготовления пористых изделий для высокотемпературной теплоизоляции или теплозащиты, носителей катализаторов и фильтров очистки жидких и газовых сред. Для получения...
Тип: Изобретение
Номер охранного документа: 0002545270
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.389e

Способ получения композиционного материала alo-al

Изобретение относится к керметам, а именно к получению композиционного материала AlO-Al. Сплав Al-Mg с содержанием магния 15-25 мас.% обрабатывают водным раствором едкого натра до образования в маточном растворе осадка в виде гранул. Осадок отделяют от маточного раствора и отмывают водой до...
Тип: Изобретение
Номер охранного документа: 0002545982
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3fec

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии конструкционной керамики и может быть использовано для изготовления износостойких изделий, используемых в качестве подшипников, нитеводителей, водителей для проволоки, шаровых клапанов в устройствах для перекачки суспензий, а также в качестве деталей...
Тип: Изобретение
Номер охранного документа: 0002547852
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.42a8

Устройство предохранения кривошипных прессов от перегрузок по силе на ползуне

Изобретение относится к машиностроению и может быть использовано в конструкциях кривошипных прессов и других кузнечно-прессовых машин с возвратно-поступательным движением рабочего звена, подвергающихся перегрузкам. В силовой контур, образованный станиной пресса, его исполнительным механизмом,...
Тип: Изобретение
Номер охранного документа: 0002548562
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43c2

Способ штамповки поковок колес

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении крупногабаритных колес, в частности железнодорожных, крановых и шахтных колес. После осадки заготовки производят ее разгонку сферическим пуансоном. Затем осуществляют штамповку с кручением...
Тип: Изобретение
Номер охранного документа: 0002548844
Дата охранного документа: 20.04.2015
+ добавить свой РИД