×
27.09.2014
216.012.f7dc

Результат интеллектуальной деятельности: СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ РАБОТЫ ОСЕВОГО МНОГОСТУПЕНЧАТОГО КОМПРЕССОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к компрессоростроению и может быть использовано в теплоэнергетике, газоперекачивающих станциях, наземных и судовых транспортных средствах в стационарных газотурбинных установках, имеющих в своем составе осевой многоступенчатый компрессор. Способ повышения эффективности работы осевого многоступенчатого компрессора осуществляется путем впрыска воды. Воду в воздушный поток подают через калиброванные выпускные каналы, выполненные на поверхности лопаток направляющего аппарата. Впрыск воды проводят при температуре насыщения, соответствующей сумме локального давления в ступенях компрессора и перепада давления в указанных выпускных каналах. Впрыск воды начинают проводить в ступенях компрессора, где температура среды становится выше температуры насыщения воды при локальном давлении в ступенях компрессора. Достигается уменьшение потребляемой компрессором мощности за счет определения оптимальных места и параметров впрыскиваемой воды в проточную часть многоступенчатого компрессора. 1 з.п. ф-лы, 4 ил.

Изобретение относится к компрессоростроению и может быть использовано в теплоэнергетике, газоперекачивающих станциях, наземных и судовых транспортных средствах в стационарных газотурбинных установках (СГТУ), имеющих в своем составе осевой многоступенчатый компрессор.

Потребляемая компрессором мощность прямо пропорциональна расходу G, начальной температуре Т и теплоемкости Ср воздуха, зависит также от степени сжатия πК, показателя изоэнтропического сжатия k и изоэнтропического КПД ηИЗ.

Известны способы повышения эффективности работы осевого многоступенчатого компрессора путем впрыска воды для снижения температуры воздуха (Середа С.О., Гильмедов Ф.Ш., Сачкова Н.Г. Расчетные оценки изменения характеристик многоступенчатого осевого компрессора под влиянием испарения воды в его проточной части.// Теплоэнергетика. 2004. №1, с.60-65; Середа С.О., Гильмедов Ф.Ш., Мунтянов И.Г. Экспериментальное исследование впрыска воды во входной канал многоступенчатого компрессора на его характеристики.// Теплоэнергетика, 2004, №5, с.66-71). Хотя изменение основных характеристик (мощности, степени сжатия, КПД компрессора, удельного расхода топлива) СГТУ было неоднозначным, ожидалось, что полезная мощность газотурбинной установки будет расти. За счет снижения температуры среды (паровоздушной смеси) при определенных расходах воды, мощность на привод компрессора могла снижаться, это естественно приводило бы к увеличению полезной мощности СГТУ для совершения механической работы. Дополнительно снижение температуры на входе в компрессор должно вызвать увеличение плотности среды, что (аналогично влиянию температуры окружающей среды) приводит к росту общей мощности СГТУ.

В работе (Григорьяни P.P., Залкинд В.И., Зайгарник Ю.А., Иванов П.П., Мурахин С.А., Низовский В.Л. Особенности поведения жидкой фазы в высокооборотных компрессорах конверсионных газотурбинных установок, их влияние на характеристики и эффективность «влажного» сжатия.// Теплоэнергетика. 2007. №4, с.55-62) экспериментально установлено, что впрыскиваемая во входном сечении компрессора вода выпадает при сжатии в ступенях в осадок, которая, увлекаясь во вращательное движение в межлопаточных каналах компрессора и испытывая действие центробежных сил, образует слой жидкой пленки в радиальных зазорах рабочих лопаток компрессора.

Жидкая сплошная пленка имеет небольшую площадь поверхности раздела фаз. В этих условиях даже при благоприятных условиях (повышение температуры в процессе сжатия) дальнейшее испарение воды будет затруднено. За характерные времена пребывания паровоздушной смеси в тракте многоступенчатого компрессора полное испарение образовавшейся пленки воды не происходит. По этой причине системы впрыска воды в ступенях среднего и высокого давления (Ануров Ю.М., Пеганов А.Ю., Скворцов А.В., Беркович А.Л., Полищук В.Г. Расчетное исследование влияния впрыска воды на характеристики компрессора газотурбиной установки ГТ-009.// Теплоэнергетика. 2006. №12, с.13-24) заслуживают особого внимания.

Известен способ повышения эффективности работы осевого многоступенчатого компрессора, реализуемый системой впрыска воды по патенту РФ на полезную модель №72514, МПК F04D 19/02, F04D 29/00, 20.04.2008.

Впрыск воды производят через систему струйных форсунок, вынесенных в поток, причем для обеспечения равномерного заполнения проходного сечения концентрацией капель воды по высоте лопаток предлагается угол впрыска менять в интервале от 110 до 180 град.

Известен способ повышения эффективности работы осевого многоступенчатого компрессора, реализуемый системой впрыска воды по патенту РФ на полезную модель №95764, МПК F04D 19/02, F04D 29/00, 10.07.2010.

Впрыск воды предлагается проводить через систему струйных форсунок, вынесенных в поток, установленных перпендикулярно потоку с шагом не более 100 мм.

Авторы известной система впрыска воды считают, что максимального испарения воды можно добиться при равномерном заполнении всего объема среды мелкодисперсными каплями, и дают оценочные рекомендации по выбору температуры (200…250°C) впрыскиваемой воды, при этом температура воды не увязана с местным давлением и температурой среды.

Общим недостатком известных способов повышения эффективности работы осевого многоступенчатого компрессора путем впрыска воды является то, что конструктивные элементы системы впрыска воды, расположенные в потоке, вызывают дополнительные гидравлические потери, а также являются источниками волновых потерь в лопаточных венцах следующих ступеней ниже по потоку.

Недостатком известных способов является также повышенное требование к степени очистки воды.

Известно диссертационное исследование (Скворцов А.В. Повышение параметров газотурбинных установок путем впрыска воды в проточную часть и оптимизации рабочего процесса в компрессоре. // Автореферат диссертации на соискание ученой степени кандидата технических наук. Санкт-Петербург. 2010), выполненное на хорошем научном уровне и основанное на расчете аэродинамики движения капель воды с учетом испарения.

Наиболее близким техническим решением к заявляемому изобретению является способ повышения эффективности работы осевого многоступенчатого компрессора путем впрыска воды по патенту РФ №2359160, МПК F04D 19/02, 20.06.2009, в котором для оптимизации расходов воды по ступеням (i-тая ступень) предложено экспериментальное определение изменения КПД компрессора ηi от расхода впрыскиваемой воды в ступенях Gi на предварительной стадии исследований, нахождение оптимальных значений ηi/Gi, затем, с учетом впрыска в предыдущих ступенях, определение расхода воды в последующих ступенях и в компрессоре в целом.

Недостатком известного способа повышения эффективности работы осевого многоступенчатого компрессора путем впрыска воды является то, что он не позволяет определить место и параметры впрыскиваемой воды, при которых следует организовать впрыск воды в проточную часть компрессора для снижения температуры воздуха и уменьшения потребляемой компрессором мощности.

Недостатком известного способа является также необходимость получения экспериментальных зависимостей оптимальных значений ηi/Gi, которые не являются обобщенными характеристиками для различного класса и типов компрессоров, а также трудоемкость и высокая стоимость экспериментальных исследований, при этом полученные характеристики смещаются при изменении условий работы СГТУ (температуры, давления, влажности окружающего воздуха).

Задачей, на решение которой направлена настоящее изобретение, является разработка способа повышения эффективности работы осевого многоступенчатого компрессора путем впрыска воды, обеспечивающего уменьшение потребляемой компрессором мощности, за счет определения оптимальных места и параметров впрыскиваемой воды в проточную часть многоступенчатого компрессора.

Технический результат достигается тем, что в способе повышения эффективности работы осевого многоступенчатого компрессора путем впрыска воды, согласно настоящему изобретению, воду в воздушный поток подают через калиброванные выпускные каналы, выполненные на поверхности лопаток направляющего аппарата, при этом впрыск воды проводят при температуре насыщения, соответствующей сумме локального давления в ступенях компрессора и перепада давления в указанных выпускных каналах, причем впрыск воды начинают проводить в ступенях компрессора, где температура среды становится выше температуры насыщения воды при локальном давлении в ступенях компрессора.

Воду в воздушный поток подают через калиброванные выпускные каналы, выполненные с возможностью обеспечения безотрывного течения воды и потока воздуха, причем количество выпускных каналов и размеры их проходных сечений выбираются из условия равномерного распределения концентрации воды по высоте лопаток.

Таким образом, технический результат достигается тем, что впрыск воды следует проводить в направляющих аппаратах ступеней компрессора (на выходе из ступней), где температура Tj среды становится выше температуры Тнj насыщения воды при локальном давлении рj в ступенях компрессора, при этом воду необходимо подать при температуре насыщения, соответствующей давлению подачи с учетом перепада давления в форсуночных элементах (рводы=pj+Δpф, где pj - локальное давление воздуха в ступенях, Δрф - перепад давления на форсуночных элементах), причем форсуночные элементы выполнены на поверхности лопаток направляющего аппарата в виде калиброванных выпускных каналов.

Сущность изобретения поясняется чертежами, где:

на фиг.1 изображена лопатка направляющего аппарата осевого многоступенчатого компрессора с калиброванными выпускными каналами системы впрыска воды, реализующей предлагаемый способ;

на фиг.2 представлена зависимость основных параметров воздуха: температуры, давления и температуры насыщенных паров на выходе из ступеней компрессора;

на фиг.3 показаны оптимальные значения расходов воды в ступенях компрессора;

на фиг.4 показан прирост полезной мощности ГТУ за счет снижения потребной мощности на привод компрессора.

Пример конкретного выполнения

Настоящее изобретение восполняет имеющиеся пробелы с выбором характерных параметров (давления и температуры) осевого многоступенчатого компрессора и подаваемого хладоагента в компрессор. В качестве хладоагента рассматривается вода, хотя подача газообразных веществ не должна отбрасываться из поля зрения. Теоретически возможна подача газообразных горючих компонентов при условии исключения воспламенения смеси в тракте компрессора в последующем использовании газообразного хладоагента в процессе сгорания в камере.

На чертеже (фиг.1) цифрами обозначены:

1 - лопатка направляющего аппарата осевого многоступенчатого компрессора,

2 - полость лопатки направляющего аппарата,

3 - выпускные каналы на поверхности лопатки направляющего аппарата.

Способ повышения эффективности работы осевого многоступенчатого компрессора может быть реализован системой впрыска воды, имеющей калиброванные выпускные каналы 3.

Воду в воздушный поток подают через калиброванные выпускные каналы 3, которые являются форсуночными элементами, выполненными на поверхности лопаток 1 направляющего аппарата осевого многоступенчатого компрессора.

Воду в воздушный поток подают через калиброванные выпускные каналы 3, выполненные с возможностью обеспечения безотрывного течения воды и потока воздуха.

Количество калиброванных выпускных каналов 3 и размеры их проходных сечений выбираются из условия равномерного распределения концентрации воды по высоте лопаток.

Впрыск воды проводят при температуре насыщения, соответствующей сумме локального давления и перепада давления в калиброванных выпускных каналах 3 (рводы=pj+Δpф, где pj - локальное давление воздуха в ступенях, Δрф - перепад давления на форсуночных элементах, роль которых выполняют калиброванные выпускные каналы 3), причем впрыск воды начинают проводить в ступенях компрессора, где температура Tj среды становится выше температуры Тнj. насыщения воды при локальном давлении рj в ступенях компрессора.

Впрыск воды осуществляется следующим образом.

Подачу перегретой воды необходимо проводить через полости 2, выполненные по длине лопаток 1 направляющего аппарата осевого многоступенчатого компрессора.

Направление калиброванных выпускных каналов 3 должно быть выполнено максимально прижатыми к поверхностям лопаток (касательными к поверхностям), чтобы обеспечить безотрывное течение вдуваемых паров воды и основного потока воздуха.

При этих условиях за счет снижения коэффициента трения обеспечиваются минимальные гидравлические потери.

Количество калиброванных выпускных каналов 3 и размеры их проходных сечений выбираются из условия равномерного распределения концентрации воды по высоте лопаток 1. Перегретая вода на выходе из калиброванных выпускных каналов 3 к поверхности лопаток 1 мгновенно испаряется, равномерное перемешивание паров воды с основным потоком происходит на малых расстояниях в турбулентном потоке.

В качестве примера рассмотрим изменение указанных параметров (давления и температуры) среды (воздуха) в тракте многоступенчатого компрессора ГТУ ГТЭ-150, полученные расчетным путем в одномерном приближении (фиг.2). Начальные параметры воздуха в расчетах приняты стандартными, соответствующими ISO 2314 (ГОСТ 20440): Т0=288,15 К и р0=0,101325 МПа. Напомним основные параметры ГТУ ГТЭ-150: расход воздуха Gв=630 кг/с, степень сжатия в компрессоре πК=13.

Как видно из графиков на фиг.2, выполнение условия (впрыск воды начинают проводить в ступенях компрессора, где температура Tj среды становится выше температуры Тнj насыщения воды при локальном давлении воздуха в ступенях компрессора) для данного компрессора появляется только после седьмой ступени (p7=0,314 МПа; Т7=443,09 и Тн7=408,15 К).

Если впрыск выполнить раньше по тракту имеется большая опасность выпадения впрыскиваемой воды (паров) в осадок с появлением описанных выше нежелательных явлений.

Для седьмой ступени разность ΔТ=Тjнj очень мала, количество впрыскиваемой воды для охлаждения воздуха будет небольшое.

Как будет показано ниже, начало впрыска в седьмой ступени соответствует оптимальным параметрам процесса.

Расход впрыскиваемой воды целесообразно определить вариантными расчетами по следующей последовательности:

1) рассчитываем массовые доли воды и воздуха gвозд=Gвозд/Gсм, где расход смеси равен ; 2) определяем температуру влажного воздуха, где теплоемкость воздуха принимается при локальной температуре воздуха. Теплоемкости воды, воздуха и теплоту фазового перехода i”-i' (здесь i” и i' - удельные энтальпии сухого насыщенного пара и кипящей воды) находим по табулированным значениям (Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара. Справочник ГСССД Р-776-98. М:, Издательство МЭИ, 1999) при давлении подачи воды, теплоемкость смеси .

Вариантные расчеты по пп.1) и 2) выполняют до достижения равенства Тсмнj, разумеется, можно при этом использовать графоаналитический подход.

Для седьмой ступени условие Тсмнj достигается при .

На температуру пароводяной смеси основное влияние оказывает теплота испарения воды, влияние температуры впрыскиваемой воды незначительно. В то же время процессы испарения интенсифицируются при подаче в воздушную среду перегретой воды.

Эти факторы явились определяющими при выборе параметров воды В расчетах давление подачи воды перед калиброванными выпускными каналами выбиралось с учетом перепада давления: рводы=pj+Δрф, где pj - локальное давление воздуха в ступенях, Δрф - перепад давления на форсуночных элементах, роль которых выполняют калиброванные выпускные каналы 3, принимался постоянным и равным 0,2 МПа. Температура воды принята равной температуре насыщения при данном давлении.

Чтобы оценить эффект термодинамического цикла от впрыска воды, необходимо рассчитать возможный выигрыш или проигрыш в мощности, а также изменение удельных параметров ГТУ.

Вопрос этот не однозначный, в зависимости от количества впрыскиваемой воды в некоторых случаях может наблюдаться рост потребной мощности на привод компрессора. Это возникает в случаях, когда снижение температуры среды не компенсируется ростом расхода рабочего тела компрессора за счет испарившейся воды.

В расчетах весьма желательно учитывать изменение термодинамических свойств среды - паровоздушной смеси, они могут быть определены в приближении идеальности смеси и компонентов рабочей среды. При изменении термодинамических свойств неизбежно некоторое изменение энергетических показателей процессов сжатия в ступенях (КПД - ηиз.ст, степени сжатия - πст и др.).

Эти вопросы в настоящее время изучены недостаточно полно, поэтому авторами приняты некоторые допущения о процессах сжатия в ступенях. Принято, что степень сжатия πст и изоэнтропический коэффициент сжатия в ступенях ηиз.ст при впрыске воды остаются неизменными.

Расчет термодинамических параметров паровоздушной смеси проводился в следующей последовательности: 1) рассчитывалась газовая постоянная Rсм=gводRвод+gвоздRвозд; 2) теплоемкость при постоянном объеме Cν cм=Cp cм-R; 3) показатель изоэнтропических процессов сжатия k=Cремνсм; 4) температура пароводяной смеси на выходе из ступени . Затем оценивалась эффективность процесса впрыска воды в ступени по снижению потребной мощности на сжатие , где ; . Снижение потребной мощности на сжатие в ступени составило ΔL=1624,61 кВт.

Параметры потока и термодинамические свойства среды следующей, восьмой ступени, определялись по изложенному выше методу. Единственным отличием явилось то, что параметры пароводяной смеси определялись с учетом впрыска воды в предыдущей седьмой ступени.

Расход воды равняется 5,7 кг/с, что, как будет показано ниже, существенно меньше по сравнению с расходом воды в отсутствии впрыска в предыдущей ступени.

Работа сжатия в ступени без впрыска, но с учетом параметров предыдущей ступени, выполненных с учетом впрыска, равнялась бы , с учетом впрыска в ступени . Следовательно, на сжатие при впрыске воды, в количестве, обеспечивающем равенство Тсмнj, затрачивается работа на 3924,21 кВт меньше.

Оптимальное количество воды для впрыска на девятой ступени равно 5,0 кг/с, соответственно количество работы ; и снижение работы в ступени составляет ΔL=4687,64 кВт.

Таким образом, подачу воды необходимо организовать в направляющих аппаратах ступеней осевого многоступенчатого компрессора. При обеспечении оптимальных параметров подаваемой воды (впрыск воды начинают проводить в ступенях компрессора, где температура Tj среды становится выше температуры Тнj насыщения воды при локальном давлении рj в ступенях компрессора) расход от ступени к ступени снижается (фиг.3), выигрыш за счет снижения потребного количества работы в ступенях компрессора возрастает (фиг.4). Темп изменения ΔL снижается несмотря на прирост эффективности процессов впрыска воды от ступени к ступени. Снижение потребной мощности компрессора представляет рост полезной мощности ГТУ.

Если подачу воды в ступени начать с восьмой ступени, расход воды составил бы 14,9 кг/с, снижение потребной мощности на сжатие в ступени равнялось ΔL=3668,93 кВт, что существенно ниже выигрыша при оптимальной организации процесса впрыска воды в ступенях многоступенчатого компрессора.

К тому же при начале впрыска воды с восьмой ступени расход воды увеличивается почти в 2 раза, что может оказаться неприемлемым для нормальной работы ГТУ.

Использование настоящего изобретения позволит уменьшить потребляемую компрессором мощность за счет определения оптимальных места (в лопатках направляющего аппарата ступеней осевого многоступенчатого компрессора) и параметров впрыскиваемой воды в проточную часть осевого многоступенчатого компрессора (впрыск воды проводят при температуре насыщения, соответствующей сумме локального давления и перепада давления в калиброванных выпускных каналах: рводы=pj+Δрф, где pj - локальное давление воздуха в ступенях, Δрф - перепад давления на форсуночных элементах, роль которых выполняют калиброванные выпускные каналы, впрыск воды начинают проводить в ступенях компрессора, где температура Tj среды становится выше температуры Тнj насыщения воды при локальном давлении pj в ступенях компрессора).


СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ РАБОТЫ ОСЕВОГО МНОГОСТУПЕНЧАТОГО КОМПРЕССОРА
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ РАБОТЫ ОСЕВОГО МНОГОСТУПЕНЧАТОГО КОМПРЕССОРА
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ РАБОТЫ ОСЕВОГО МНОГОСТУПЕНЧАТОГО КОМПРЕССОРА
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ РАБОТЫ ОСЕВОГО МНОГОСТУПЕНЧАТОГО КОМПРЕССОРА
Источник поступления информации: Роспатент

Показаны записи 141-150 из 164.
10.04.2016
№216.015.2e8a

Способ розжига топки котла

Изобретение относится к области энергомашиностроения и может быть использовано при автоматическом розжиге топки котлов тепловых электростанций, работающих на газообразном топливе. Способ розжига топки котла импульсным лазерным разрядом включает нагрев и воспламенение газообразного топлива путем...
Тип: Изобретение
Номер охранного документа: 0002580241
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f56

Способ изготовления оптического модуля светодиодного светильника

Изобретение относится к области светотехнического приборостроения и может быть использовано в осветительных приборах. Технический результат, заключающийся в расширении области применения, достигается тем, что в способе изготовления оптического модуля светодиодного светильника, по которому...
Тип: Изобретение
Номер охранного документа: 0002580178
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3029

Сигнатурное цифровое сглаживающее устройство

Изобретение относится к автоматике и вычислительной технике и может быть использовано в цифровых системах и устройствах для сглаживания стационарных и медленно меняющихся случайных процессов. Техническим результатом является существенное упрощение устройства и повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002580452
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3151

Способ изготовления светодиода

Изобретение относится к светодиодным источникам света и может быть использовано в оптико-механическом, оптико-электронном и голографическом приборостроении, когда осветительную часть прибора необходимо оснащать источником с повышенной концентрацией светового потока. Согласно изобретению в...
Тип: Изобретение
Номер охранного документа: 0002580215
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.316d

Устройство и способ испытания изделий на случайные вибрации

Изобретение относится к области испытаний изделий на случайную вибрацию и может быть использовано при определении вибронадежности машин, приборов и аппаратуры. Устройство содержит цепи формирования, каждая из которых включает первый генератор шума (ГШ), подключенный к его выходу первый фильтр...
Тип: Изобретение
Номер охранного документа: 0002580182
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31c3

Способ изготовления фильтра интерференционного

Способ изготовления фильтра интерференционного включает в себя оптическое соединение между собой N цилиндрических оптических элементов с образованием многокомпонентного интерференционного фильтра. На боковую поверхность каждого оптического элемента наносят интерференционное покрытие, на входной...
Тип: Изобретение
Номер охранного документа: 0002580179
Дата охранного документа: 10.04.2016
20.08.2016
№216.015.4e61

Установка для подземной газификации топлива

Изобретение относится к устройствам для выработки тепловой и электрической энергии по месту их генерации путем преобразования твердых углеводородных топлив в газообразное топливо за счет осуществления внутрипластовой подземной огневой газификации. Установка содержит газовую турбину,...
Тип: Изобретение
Номер охранного документа: 0002595126
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.67e6

Теплообменная труба

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. В теплообменной трубе со скругленными выемками на наружной поверхности и соответствующими им скругленными выступами высотой h на внутренней поверхности, которые нанесены с шагом S, скругленные...
Тип: Изобретение
Номер охранного документа: 0002591376
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.73d8

Способ бесконтактной дистанционной диагностики состояния высоковольтных изоляторов

Изобретение относится к электроизмерительной технике и может быть использовано для бесконтактного дистанционного контроля рабочего состояния опорных высоковольтных изоляторов. Технический результат: обеспечение возможности определения момента возникновения преддефектного состояния за счет...
Тип: Изобретение
Номер охранного документа: 0002597962
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.82fe

Способ получения брикетов

Изобретение раскрывает способ получения брикетов, включающий обезвоживание шлама и последующее его прессование при давлении 30-35 МПа, характеризующийся тем, что используют высушенный замазученный карбонатный шлам химводоочистки тепловых электрических станций с влажностью не более 4%,...
Тип: Изобретение
Номер охранного документа: 0002601316
Дата охранного документа: 10.11.2016
Показаны записи 141-150 из 179.
27.11.2015
№216.013.93db

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС). В способе работы тепловой электрической станции, по которому отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, конденсируется на поверхности...
Тип: Изобретение
Номер охранного документа: 0002569470
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.95e5

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции с первой паровой турбиной с охладителем масла в станции используют конденсационную установку, имеющую конденсатор второй паровой турбины и систему маслоснабжения ее подшипников с маслоохладителем,...
Тип: Изобретение
Номер охранного документа: 0002569993
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.95e6

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость,...
Тип: Изобретение
Номер охранного документа: 0002569994
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.966f

Способ работы тепловой электрической станции

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Проводят утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и системы маслоснабжения подшипников...
Тип: Изобретение
Номер охранного документа: 0002570131
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9670

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной...
Тип: Изобретение
Номер охранного документа: 0002570132
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9671

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной...
Тип: Изобретение
Номер охранного документа: 0002570133
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9996

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость,...
Тип: Изобретение
Номер охранного документа: 0002570943
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.99a8

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость,...
Тип: Изобретение
Номер охранного документа: 0002570961
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9adf

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из паровой турбины в паровое пространство конденсатора, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и...
Тип: Изобретение
Номер охранного документа: 0002571272
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9ae2

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из паровой турбины в паровое пространство конденсатора, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и...
Тип: Изобретение
Номер охранного документа: 0002571275
Дата охранного документа: 20.12.2015
+ добавить свой РИД