×
27.09.2014
216.012.f7c3

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения алюминия из металлургического глинозема. Способ включает плавление непрерывно поступающего глинозема в расплаве жидкого электрокорунда при плазменно-дуговом нагреве в реакторе под вакуумом, с последующим осаждением первичного алюминия и его рафинированием. Глинозем загружается в реактор дозатором в зону плазменной дуги и расплавляется при температуре 1300-1500°C со степенью вакуумирования 1,1-1,3·10-4 Па. Расплав электрокорунда переливается в электроосадительную камеру через разделительную диафрагму-перегородку, где под воздействием постоянного тока 150-200 А на поверхности расплава образуется алюминий, являющийся жидким катодом. Металл при достижении расчетного уровня 10-15 см направляют через сливное отверстие вакуумной печи в камеру для рафинирования, при этом в камере постоянно сохраняется необходимый объем металла. Обеспечивается упрощение способа получения алюминия и снижение материальных и энергетических затрат на его производство при высоких технико-экономических показателях процесса и экологичности. 1 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к цветной металлургии, в частности к получению алюминия из металлургического глинозема.

Известен промышленный способ Эру-Холла - электролиз криолит-глиноземных расплавов, по которому выпускается весь первичный алюминий [Минцис М.Я. Электрометаллургия алюминия / М.Я. Минцис, П.В. Поляков, Г.А. Сиразутдинов. Новосибирск: Наука. 2001. 368 с.]. Несмотря на долгий срок применения данной технологии, она имеет ряд недостатков: низкий энергетический КПД 40-50%; высокий расход электроэнергии (13-17 кВт·ч/кг Al); загрязнение окружающей среды; высокие материальные и трудозатраты.

Известен усовершенствованный способ получения алюминия по технологии Эру-Холла (патент US 6126799, опубл. 10.03.2000), в котором используют электролизеры с металлическим электродами, покрытыми керамическим оксидом, обладающим проводимостью по иону кислорода. При электролизе с таким анодом ионы кислорода проходят через оксидный слой и разряжаются на металлической основе. За исключением благородных металлов не было найдено ни одного индивидуального металла, пригодного для использования в качестве инертного анода, а основами для создания материала металлического инертного анода выбирались железоникелевый сплав (Fe-Ni) по патенту US 5006209 и алюминиевая бронза.

Основным недостатком металлических анодов является их быстрая растворимость в криолит-глиноземном расплаве и загрязнение первичного алюминия. Образующиеся на поверхности металлического электрода оксидные пленки, образующиеся в результате коррозии, повышают электрическое сопротивление на поверхности электрода. Сохранность слоя может быть обеспечена только при высокой активности ионов кислорода (O2-) в прианодном слое электролита, что особенно сложно осуществить при низких (700-900°C) температурах, когда растворимость глинозема низка и активность ионов кислорода резко изменяется. Снижение температуры электролита за счет дорогостоящих модифицирующих добавок, в свою очередь, необходимо для снижения растворимости оксидного слоя анода.

Известен усовершенствованный способ получения алюминия (патент US 3960678, опубл. 01.08.1976) с анодами с полупроводниковыми оксидами с электронной проводимостью и кислородом, выделяющимся прямо на поверхности оксида. Наибольшее распространение в этой группе получили аноды на основе ферритов никеля (NiFe2O4), разработанные компанией Alcoa, и оксида олова (SnO2), предложенные к испытаниям. Основным достоинством керамики является ее низкая растворимость в криолит-глиноземном расплаве.

Основным недостатком является низкий срок службы анодов, а промышленному внедрению керамики мешают низкая механическая прочность массивных образцов, особенно при высоких температурах, и сложность изготовления надежных токоподводящих контактов. Представляет большую опасность и возможность восстановления оксидов до металла растворенным алюминием в случае остановки.

Из альтернативных способов известны способы карботермического восстановления алюминия из его оксида, исследования, проведенные компаниями Alcan, Pechiney, Hydroaluminum. Наибольший прогресс в разработке карботермического способа (патент RU 2301842 C2, опубл. 27.06.2007) достигнут в результате совместных работ компаний Alcoa и Elcem. В печи карботермического восстановления, применяемой для получения алюминия, используют полую разделительную перегородку для подачи углеродного материала в протекающий под ней поток. Эта перегородка разделяет низкотемпературную реакционную зону, где проводят реагирование оксида алюминия с углеродом с образованием карбида алюминия, и высокотемпературную реакционную зону, где проводят реагирование карбида алюминия и оставшегося оксида алюминия с образованием алюминия и оксида углерода. Изобретение обеспечивает возможность подачи дополнительного углеродсодержащего материала в реактор и его равномерного распределения, возможность исключения локализованного перегрева ванны шлака и снижение уноса алюминия.

Основными недостатками, связанными с процессом карботермического способа, являются незначительный выбор материалов, стойких к воздействию жидкого оксикарбидного расплава и газов при температуре до 2100°C, трудности эффективного регулирования и поддержания высокой рабочей температуры, невозможность обеспечения чистоты металла из-за примесей в нефтяном коксе и неполная декарбонизация полученного алюминия.

Известен хлоридный способ производства алюминия (патент US 3893899, опубл. 07.08.1975). В нем в качестве сырья используется AlCl3, растворенный в расплавленных хлоридах щелочных металлов. Проведение процесса возможно при низких температурах электролиза (~700°C). Преимуществами такого способа являются высокие плотности тока, т.к. в расплаве присутствует только один вид анионов, способных окисляться на аноде, отсутствие окисления хлором угольных анодов, что делает их нерасходуемыми.

К недостаткам способа относят необходимость в производстве и транспортировке чистого обезвоженного AlCl3. Содержание оксидов и гидроксидов должно быть низким, чтобы избежать окисления графитовых электродов и накопления шлама оксихлоридов, которые малорастворимы в хлоридном электролите. Высокие парциальные давления паров различных компонентов электролита, поэтому требуется очистка хлора, выделяемого при электролизе, от паров электролита и возврат уловленных хлоридов в электролизер. Наиболее эффективная попытка внедрения процесса была сделана компанией Alcoa. Несмотря на высокую производительность (около 13 т Al/сут) для одного электролизера и низкий удельный расход электроэнергии (около 9 кВт·ч/кг Al, без учета расхода энергии на процесс хлорирования), метод имеет несколько сложных технических проблем, которые до сих пор исключают его коммерческое применение.

Известно альтернативное получение алюминия из его сульфида (патент NL 20080202939, опубл. 28.08.2008). Безводный высокочистый сульфид алюминия получают из глинозема, далее электролитическим способом разлагают на алюминий и серу в многополярной ванне. При выходе по току в 90% удельный расход электроэнергии составит всего 5,24 кВт·ч/кг Al.

Главным недостатком является необходимость в производстве и создании отдельно технологического передела для получения очень чистого Al2S3, это делает технологию промышленно нереализуемой, также существует сложность самого агрегата.

Известен способ получения алюминия электролизом расплава (патент RU 2415973 C2, опубл. 10.04.2011). Способ включает электролиз расплава KF-NaF-AlF3 с добавками Al2O3 при температуре электролита 700-900°C и поддержание криолитового отношения (KF+NaF)/AlF3 от 1,1 до 1,9. Электролиз ведут при анодной плотности тока не более 1,0 А/см2 и катодной плотности тока не более 0,9 А/см2. Обеспечивается увеличение производительности с одновременным снижением удельного расхода электроэнергии и удешевлением известного способа электролитического получения алюминия и низкая скорость коррозии электродных материалов, в частности инертных анодов. Температура электролиза при их использовании не превышает 150°C, что снижает требования к материалам электролизера, корректировке состава электролита, уменьшает экологическую нагрузку на окружающую среду.

Недостатком способа является высокая стоимость электролита, невозможность прямого использования в качестве сырья глинозема, низкие плотности тока снижают экономическую конкурентоспособность процесса. Участвующие в процессе электролиза ионы калия существенно снижают значение выхода по току.

Известен принятый в качестве прототипа способ извлечения металлов из металлосодержащих катализаторов на основе оксидов алюминия или кремния в плазменных печах (патент RU 2075526, опубл. 20.03.1997), включающий переработку путем плавления катализаторов в смеси с известковыми флюсами и(или) глиноземом с использованием плазменно-дугового нагрева при температуре 1600-1650°C подачей углеродсодержащего восстановителя и железа с последующей продувкой полученного расплава нейтральным газом.

Недостатком способа извлечения является разрушение электродов при высоких температурах электродуговой плавки. Взаимодействие угольной пыли и осколков с жидким металлом ведет к возникновению обратных термических реакций с образованием карбидов. Процесс энергоемкий и экономически невыгодный, требует применения дорогостоящих огнеупорных материалов для футеровки. Для извлечения металла требуется полный слив печи и временная остановка процесса.

Техническим результатом предлагаемого способа является упрощение существующего способа получения алюминия и снижение материальных и энергетических затрат на его производство при высоких технико-экономических показателях процесса и экологичности процесса.

Технический результат достигается тем, что алюминий получают путем плавления непрерывно поступающего глинозема в расплаве жидкого электрокорунда при плазменно-дуговом нагреве в реакторе в интервале температур 1300-1500°C со степенью вакуумирования 1,1-1,3·10-4 Па, с последующим осаждением первичного алюминия на поверхности электрокорунда в электроосадительной камере путем пропускания через расплав постоянного тока 150-200 А и его рафинированием. При этом жидкий алюминий осаждают и собирают на поверхности электрокорунда при температуре 850-900°C.

Сущность заявляемого способа пояснена на фиг.1.

В реакционном пространстве высокотемпературной печи с углеродной системой нагрева и теплоизоляции, которая имеет двойной водоохлаждаемый корпус 1, создается вакуум до давления остаточных защитных газов 100-150 Па с помощью одновременной работы диффузионного вакуумного насоса 3 и форвакуумного насоса 4. Глинозем загружается на поверхность расплава при помощи дозатора 2. Затем проводится равномерный нагрев глинозема до получения расплава белого электрокорунда. Для нагрева и плавления порций глинозема используется плазменная дуга плазмотрона 5 на постоянном токе «прямой полярности». Необходимым условием стабильности электрической дуги является наличие источника питания, обладающего специальными характеристиками. Образовавшийся расплав заполняет электроосадительную камеру 6, перетекая за диафрагму-перегородку 7. Первичный алюминий осаждают на поверхности электрокорунда путем пропускания через расплав постоянного тока 150-200 А посредством углеграфитовых анода 8 и катода 9. Жидкий алюминий 10 находится на поверхности расплава, выполняя функцию катода, при достижении расчетного уровня через литниковую систему посредством верхнего слива 11 направляется в рафинировочную камеру 12 на очистку.

Наиболее рациональным с точки зрения перерабатываемого объекта методом извлечения металлического алюминия из оксида алюминия является плазменно-дуговой нагрев. При этом в заявляемых условиях глинозем представляет собой расплав белого электрокорунда. Температура плавления глинозема при степени вакуумирования - 1,1-1,3·10-4 Па снижается до 1300-1500°C. Полученный расплав электрокорунда перетекает по принципу сообщающегося сосуда в электроосадительную камеру через разделительную диафрагму-перегородку. При прохождении электрического тока через расплав на поверхности раздела в камере происходит электрохимическое восстановление ионов с образованием алюминия.

В межэлектродном зазоре глинозем представляет собой расплав, состоящий из оксида алюминия в аморфном состоянии, с развитой внутренней поверхности которого адсорбируются анионы O2- и катионы Al3+ на электродах. Сверху на поверхности катода идет реакция восстановления алюминия Al3+-3e=Al, а на аноде образуется молекулярный кислород O2--2e=O2, который транспортируется вверх по поверхности катода.

Жидкий металл находится на поверхности расплава с температурой 850-900°C, поскольку имеет плотность 2,30-2,35 г/см3, а плотность расплава белого электрокорунда составляет 3,70-3,95 г/см3. Алюминий перетекает через сливное отверстие в рафинировочную камеру по мере увеличения уровня.

Пример реализации технического решения

В реакционное пространство вакуумной электропечи загрузили 100 кг глинозема марки Г00. В результате переработки получено 52,7 кг жидкого алюминия марки А5, что соответствует удельному расходному коэффициенту глинозема 1895 кг/т Al по реакции разложения. Как следует из анализа полученных результатов, наилучшие показатели достигаются при поддержании температуры расплава на уровне 1430-1450°C, со скоростью подачи глинозема на поверхность расплава в зоне плавления 5 кг/сек.

Заявляемый способ успешно позволяет решить проблему комплексной экономичной переработки металлургического глинозема с целью извлечения алюминия, снизить расход материалов и электроэнергии, обеспечить экологические требования, предъявляемые процессу.


СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЯ
Источник поступления информации: Роспатент

Показаны записи 111-120 из 172.
10.06.2015
№216.013.558a

Способ распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций

Изобретение относится к вооружению и может быть использовано в системах распознавания калибра стреляющего артиллерийского орудия по параметрам спектральных составляющих прецессий и нутаций. Проводят экспериментальные стрельбы, исследуют записи отражения от снарядов для каждого калибра...
Тип: Изобретение
Номер охранного документа: 0002553419
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.57f3

Однобарабанный привод ленточного контейнера

Однобарабанный привод ленточного конвейера содержит связанный с приводом огибаемый конвейерной лентой (1) приводной барабан (2) с отклоняющим барабаном (3) или прижимным барабаном (5). Над отклоняющим или прижимным барабаном размещен дополнительный барабан (4) с возможностью опирания на него...
Тип: Изобретение
Номер охранного документа: 0002554045
Дата охранного документа: 20.06.2015
10.08.2015
№216.013.6e50

Трибометр

Изобретение относится к испытательным и обкаточным стендам. Трибометр состоит из предметного стола, ограничивающей рамки, заполняемой пробой насыпного груза, навески и тягового органа для предметного стола с прибором для определения его тягового усилия. Ограничивающая рамка с помощью опорных...
Тип: Изобретение
Номер охранного документа: 0002559798
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f0e

Устройство для бурения горных пород

Изобретение относится к горной промышленности и может быть использовано для бурения глубоких скважин в рыхлых, слабосвязных и средне-твердых горных породах, а также для посадки свай при строительстве. Устройство для бурения горных пород, включающее долото, механизм ударного действия, элемент...
Тип: Изобретение
Номер охранного документа: 0002560000
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f16

Способ крепления горных выработок на удароопасных пластах

Изобретение относится к горной промышленности и предназначено для разработки удароопасных пластов. Техническим результатом изобретения является повышение и обеспечение устойчивости выработки, пройденной по пласту, опасному по горным ударам, с целью минимизации последствий разрушения в случае...
Тип: Изобретение
Номер охранного документа: 0002560008
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f1b

Погрузочная машина

Изобретение относится к горной промышленности и может быть использовано для погрузки горной массы при проходке горных выработок и на очистных работах. Техническим результатом является повышение производительности погрузочной машины за счет увеличения площади захвата насыпного груза, размещенной...
Тип: Изобретение
Номер охранного документа: 0002560013
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f59

Конусная вибрационная дробилка

Изобретение относится к строительной и горной технике, а именно к средствам для дробления полезных ископаемых. Конусная дробилка содержит корпус с дебалансными вибраторами и коническим кольцом, дробящий конус, размещенный внутри корпуса и смонтированный на станине. На стойках станины установлен...
Тип: Изобретение
Номер охранного документа: 0002560075
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f81

Волновой пьезодвигатель

Изобретение относится к электротехнике и может быть использовано для приводов вращения малогабаритных устройств. Технический результат состоит в повышении вращающего момента, к.п.д. и долговечности, уменьшении потерь на трение. Волновой пьезодвигатель содержит биморфное пьезоэлетрическое кольцо...
Тип: Изобретение
Номер охранного документа: 0002560115
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f8f

Способ укладки подводного трубопровода

Изобретение относится к строительству трубопроводов. В заявленном способе выполняют монтаж трубопровода и устанавливают заглушки по его концам. Трубопровод оснащают понтонами и размещают в створе подводного перехода. При этом понтоны соединены между собой гибкими трубами, а первый понтон...
Тип: Изобретение
Номер охранного документа: 0002560129
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70aa

Способ обескремнивания алюминатных растворов

Изобретение относится к производству глинозема, в частности к обескремниванию алюминатных растворов в производстве глинозема из высококремнистого алюминиевого сырья. Способ обескремнивания алюминатных растворов заключается в получении алюмо-кальциевого компонента, двухстадийном обескремнивании...
Тип: Изобретение
Номер охранного документа: 0002560412
Дата охранного документа: 20.08.2015
Показаны записи 111-120 из 230.
27.12.2014
№216.013.156c

Комплекс для перегрузки древесных опилок с наземного склада в транспортное средство

Комплекс для перегрузки древесных опилок с наземного склада в транспортное средство состоит из П-образной в поперечном сечении рамы с вертикальными опорами и верхней поперечиной при опирании вертикальных опор на поверхность наземного грунта с помощью двух пар пневмоколес с приводами их...
Тип: Изобретение
Номер охранного документа: 0002536908
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.16e2

Нефтехранилище

Нефтехранилище содержит корпус с замкнутой в горизонтальной плоскости боковой вертикальной стенкой, плоским днищем, загрузочный и разгрузочный трубопроводы. Внутри корпуса нефтехранилища размещен плавучий на нефти плоский стальной лист минимальной толщины, полностью перекрывающий поперечное...
Тип: Изобретение
Номер охранного документа: 0002537282
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.196d

Способ стыковки рельсов железнодорожных путей и устройство для его реализации

При стыковке рельсов осуществляют фиксацию каждой пары стыкуемых рельсов от их смещения по вертикали друг относительно друга путем размещения с внутренней стороны каждой пары смежных стыкуемых рельсов между их головками и основаниями и с перекрытием смежных рельсов продольных балок. Эти балки...
Тип: Изобретение
Номер охранного документа: 0002537937
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.196e

Шахтная канатно-скреперная установка

Изобретение относится к транспортным машинам периодического действия, предназначенным для транспортирования от забоя добытой горной массы. Шахтная канатно-скреперная установка содержит скрепер ящичного типа, соединенные с ним головной и хвостовой тяговые канаты, скреперную лебедку и...
Тип: Изобретение
Номер охранного документа: 0002537938
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.196f

Перегрузочное устройство для сыпучих грузов

Перегрузочное устройство содержит боковые стенки (1, 2) и наклонное днище, выполненное в виде замкнутой на верхнем (3) и нижнем (4) барабанах прорезиненной однопрокладочной ленты (5) с арамидной основой. Верхняя ветвь ленты (5) опирается на цилиндрические ролики (6), состоящие из двух...
Тип: Изобретение
Номер охранного документа: 0002537939
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1970

Винтовой спуск для сыпучих грузов

Винтовой спуск содержит закрепленный на вертикальной стойке (1) круглого поперечного сечения винтовой желоб с наклонной образующей винтовой поверхности, формирующей поперечное сечение желоба. Наклонная образующая выполнена с прогибом вниз при ее нормальной ориентации к вертикальной стойке и при...
Тип: Изобретение
Номер охранного документа: 0002537940
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b86

Промежуточный линейный привод ленточного конвейера

Привод содержит замкнутую приводную ленту (4), верхняя ветвь которой размещена под грузонесущей ветвью конвейерной ленты (1) и опирается на ее желобчатые роликоопоры (5). Ширина ленты привода больше, чем ширина конвейерной ленты. Над боковыми наклонными роликами (6) роликоопор по длине...
Тип: Изобретение
Номер охранного документа: 0002538474
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.228a

Ковшовый элеватор с двухканатным тяговым органом

Ковшовый элеватор имеет двухканатный тяговый орган, содержащий замкнутые на верхнем приводном шкиве и нижнем натяжном шкиве два стальных проволочных каната (1, 2) с закрепленными на них ковшами (3). Крепление каждого ковша к канатам обеспечивается за счет огибания каждым канатом на полный угол...
Тип: Изобретение
Номер охранного документа: 0002540295
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.22c0

Способ получения органического удобрения

Способ получения органического удобрения заключается во внесении в компостосодержащий субстрат дождевого червя Eisenia foetida. Данный субстрат получают путем смешивания куриного помета с отработанной подстилочной соломой в соотношении 2:1 по объему с последующим включением полученной смеси в...
Тип: Изобретение
Номер охранного документа: 0002540349
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.23de

Способ получения гидрокарбоалюминатов щелочноземельных металлов из природного магнийсодержащего сырья

Изобретение относится к цветной металлургии и может быть использовано для синтеза активных добавок и для глубокой очистки алюминатных растворов глиноземного производства от органических примесей и кремнезема. Способ получения гидрокарбоалюминатов щелочноземельных металлов включает температурную...
Тип: Изобретение
Номер охранного документа: 0002540635
Дата охранного документа: 10.02.2015
+ добавить свой РИД