×
20.09.2014
216.012.f468

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ НЕЙТРОННОЙ МОЩНОСТИ ЯДЕРНОГО РЕАКТОРА В АБСОЛЮТНЫХ ЕДИНИЦАХ

Вид РИД

Изобретение

№ охранного документа
0002528401
Дата охранного документа
20.09.2014
Аннотация: Изобретение относится к физике ядерных реакторов и может быть использовано для измерения F - нейтронной мощности реактора в абсолютных единицах, например, при пусках космических ядерных энергетических установок (КЯЭУ). Техническим результатом, на которое направлено изобретение, является увеличение максимальных значений F. В способе измерения нейтронной мощности ядерного реактора в абсолютных единицах F=V·γ, где V - значение мощности реактора в относительных единицах, γ - коэффициент пропорциональности, нейтронную мощность ядерного реактора в относительных единицах измеряют как среднюю скорость счета детектора нейтронов в стационарном критическом состоянии средствами измерения При этом коэффициент пропорциональности рассчитывают, используя значение автокорреляционной функции. В качестве средства измерения числа нейтронов используют ионизационную камеру для определения флуктуации числа нейтронов. Измеряют отдельно среднее значение тока ионизационной камеры и флуктуирующую составляющую тока ионизационной камеры непрерывно во времени с интервалом дискретности, рассчитывают автокорреляционную функцию флуктуирующего тока ионизационной камеры, после чего рассчитывают коэффициент пропорциональности. 2 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к физике ядерных реакторов и может быть использовано для измерения F - нейтронной мощности реактора в абсолютных единицах. Задачи измерений F реактора требуется решать при проектировании защиты от излучения, при определении радиационной стойкости корпусов реакторов ВВЭР. Эта задача решается при пусках космических ядерных энергетических установок (КЯЭУ). Пуск КЯЭУ проводят строго по времени с учетом результатов измерений F. Медленный или излишне быстрый выход КЯЭУ на номинальную мощность может быть губительным для нее. Задача в этом случае осложняется тем, что F реактора КЯЭУ должна измеряться в абсолютных единицах на всех этапах пуска КЯЭУ.

Принятые в тексте обозначения

F - нейтронная мощность реактора в абсолютных единицах [деления/секунда или ватт]

V - значение мощности реактора в относительных единицах [отсчеты/секунда или ампер]

γ - число, коэффициент пропорциональности [ватт/ампер или деления/(секунда - ампер)]

ε - эффективность детектора нейтронов [отсчет/деления].

t - время [секунда]

τ - время [секунда]

С - число отсчетов детектора [отсчет]

φхх(τ) - автокорреляционная функция чисел отсчетов детектора [отсчет2]

fxx(t) - автокорреляционная функция [ампер2]

I(t) - ток [ампер]

- значение среднего значения тока ионизационной камеры [ампер]

i(t) - флуктуирующие значения тока ионизационной камеры во времени [ампер]

Y - параметр, определяемый в процессе обработки экспериментальных данных [ампер/деления или ампер/(ватт·секунда)]

α - параметр, [1/секунда]

Dν=0.795 - табличная безразмерная величина

βeff - безразмерная величина

Δt - интервал дискретности измерений [секунда]

Задача измерений F решается в два этапа. На первом, относительно простом этапе, выбирается способ измерений мощности реактора в относительных единицах (скорость счета детекторов нейтронов, ток ионизационной камеры и т.п.). Важно, чтобы результат измерений мощности реактора в относительных единицах был пропорционален мощности реактора в абсолютных единицах. Этот коэффициент пропорциональности должен оставаться неизменным в заданном диапазоне изменений F, т.е. в этом диапазоне должно выполняться равенство:

F - значение нейтронной мощности реактора в абсолютных единицах (в ваттах или в делениях в секунду)

V - значение мощности реактора в относительных единицах (скорость счета детектора нейтронов, ток, протекающий через ионизационную камеру)

γ - коэффициент пропорциональности.

На втором этапе измеряется одновременно мощность реактора в абсолютных и относительных единицах. По результатам этих измерений вычисляется значение γ. Далее для определения F в диапазоне пропорциональности достаточно измерить мощность в относительных единицах и умножить этот результат измерений на γ. Номинальная мощность реакторов обычно на много порядков больше уровня мощности, который может быть измерен экспериментально. В практической работе более всего ценятся результаты вычислений γ на уровнях мощности реактора, сравнимых с номинальным уровнем.

Предлагается измерять F статистическими методами. Известно несколько разновидностей статистических методов измерений F в критическом состоянии реактора. Различаются эти методы в деталях, все они основаны на изучении флуктуации числа нейтронов в реакторе. Характерным свойством флуктуации является уменьшение их амплитуд на уровнях средних значений чисел нейтронов по мере увеличения нейтронной мощности. Соответственно общим недостатком всех без исключения статистических методов являются относительно небольшие уровни мощности, на которых они могут быть реализованы. Известен способ измерений F - метод корреляционного анализа (МКА) - прототип. Известный американский специалист Р. Уриг в своей монографии «Статистические методы в физике ядерных реакторов» (Атомиздат. 1974. Москва) по поводу МКА на стр.55 пишет: «Следует отметить, что… фоновые величины зависят от … F2, в то время как амплитуда … зависит только от F. Следовательно, этот метод ограничивается очень низкими скоростями делений».

МКА основан на измерении вероятности зарегистрировать нейтрон в момент времени t+τ при условии, что ранее нейтрон был зарегистрирован в момент времени t. Эта вероятность называется автокорреляционной функцией φхх(τ) измерений чисел отсчетов детектора. Значения функции φхх(τ) рассчитываются по результатам измерений чисел отсчетов детектора по формуле:

где

Cm, Cm+n - числа отсчетов детектора за временной интервал Δt в момент времени t и t+τ соответственно,

t=k·Δt, k=1,2,3…

n=0,1,2,…

N- число отсчетов детектора (N>>n).

Исходя из характеристик цепной реакции деления ядер и свойств стационарного критического реактора без запаздывающих нейтронов можно записать соотношение, связывающее функцию φxx(τ) при τ>0 с параметрами такого реактора (Р. Уриг «Статистические методы в физике ядерных реакторов» (Атомиздат. 1974. Москва):

ε - эффективность экспериментального детектора

Dν - параметр Дайвена (константа, табличная величина), Dν=0.795 для U235,

βeff - эффективная доля запаздывающих нейтронов (величина, известная по результатам независимых экспериментов или вычисляемая по программам расчета параметров кинетики реакторов),

α - константа спада мгновенных нейтронов в критическом реакторе.

Формула численно описывает флуктуации потока нейтронов во временной области. Первое слагаемое этой формулы описывает вероятность случайных пар отсчетов нейтронов. Второе слагаемое описывает вероятность коррелированных пар отсчетов нейтронов, имеющих общее происхождение. Если реализовать измерения, непосредственно используя формулу (3) при обработке экспериментальных данных для определения мощности в абсолютных единицах, то существует предел по мощности, исчисляемый долями ватт, выше которого измерения станут невозможными. Действительно, в формуле (3) первое слагаемое (фоновая составляющая), пропорциональное (F·ε)2, начиная с указанного предела по мощности, становится во много раз больше второго слагаемого, пропорционального F·ε.

Характерной особенностью статистических методов измерений параметров реактора является требование достаточно высокой эффективности экспериментального детектора (ε~ ). При низкой эффективности детектора (ε<<10-4) вероятность коррелированных пар отсчетов становится много меньше случайных пар отсчетов. В этом случае не удается измерить какие-либо параметры реактора ни МКА, ни любым другим статистическим методом.

Предлагается модернизированный метод корреляционного анализа (ММКА). Этот способ обеспечивает измерения мощности реактора до уровней, исчисляемых в киловаттах. При реализации ММКА флуктуации числа нейтронов I(t) представляются в виде суммы среднего значения функции I(t) и флуктуирующей составляющей . В этих случаях корреляционная функция рассчитывается по формуле:

im, im+n - переменные токи в момент времени T и T+t соответственно.

t=k·Δt, k=1,2,3…

n=0,1,2,…

N - число чисел отсчетов детектора (N>>n)

Техническим результатом, на которое направлено изобретение, является увеличение максимальных значений F, измеряемых следующим способом,

Способ измерения нейтронной мощности ядерного реактора в абсолютных единицах F=V·γ, где

V - значение мощности реактора в относительных единицах,

γ = коэффициент пропорциональности,

при этом нейтронную мощность ядерного реактора в относительных единицах измеряют как среднюю скорость счета детектора нейтронов в стационарном критическом состоянии средствами измерения, а коэффициент пропорциональности рассчитывают, используя значение автокорреляционной функции, при этом в качестве средства измерения числа нейтронов используют ионизационную камеру для определения флуктуации числа нейтронов , измеряя отдельно среднее значение тока ионизационной камеры и флуктуирующую составляющую тока ионизационной камеры i(t) непрерывно во времени с интервалом дискретности Δt, рассчитывают автокорреляционную функцию флуктуирующего тока ионизационной камеры по формуле

, где

im, im+n - переменные токи в момент времени T и T+t соответственно.

t=k·Δt, k=1,2,3…

n=0,1,2,…

N - число чисел отсчетов детектора (N>>n),

после чего рассчитывают коэффициент пропорциональности

γ=Y·ехр(-α·t), где

,

Dν - параметр Дайвена (константа, табличная величина), Dν=0.795 для U235,

βeff - эффективная доля запаздывающих нейтронов

α - константа спада мгновенных нейтронов в критическом реакторе.

При этом выбирают интервал дискретности Δt≈0.1/α.

Кроме того, число измерений i(t) во времени должно быть не менее десяти тысяч.

Таким образом, увеличение измеряемой мощности достигается за счет:

1) использования в эксперименте в качестве детектора нейтронов ионизационной камеры

2) отсечение на аппаратном уровне постоянной составляющей от I(t) - результата измерений флуктуации числа нейтронов

3) измерений среднего значения тока и отдельно i(t) - флуктуирующих значений тока ионизационной камеры во времени t с помощью усилителя У7-6 (или его аналога) с записью измеренных значений i(t) в оперативную память компьютера

4) расчета корреляционной функции fxx(t) по формуле (4) с использованием результатов измерений i(t)

5) преобразования формулы (3) к рабочему виду:

- среднее значение тока ионизационной камеры (результат измерений мощности реактора в относительных единицах)

α - параметр

Dν, βeff - параметры, величины которых известны из независимых экспериментов

6) использования измеренных значений для определения параметров Y и α методом наименьших квадратов с учетом вида формулы (5)

7) вычисления искомого значения коэффициента пропорциональности γ по формуле:

Предложенный способ измерений значения γ назван модернизированным методом корреляционного анализа, заключающимся в том, что включают экспериментальную установку для измерений значений и i(t) во времени непрерывно с интервалом дискретности Δt от начала до конца эксперимента. Экспериментальная установка состоит из детектора нейтронов (ионизационной камеры), электрометра для измерений среднего значения тока ионизационной камеры, усилителя типа У7-6 (или его аналога) для измерений флуктуирующих значений тока ионизационной камеры на уровне среднего значения тока, преобразователя сигнала с выхода усилителя У7-6 в цифровой код, компьютера с программой, обеспечивающей запись цифрового кода в оперативную память PC и внешние носители информации. Выводят реактор в стационарное критическое состояние на заданный уровень нейтронной мощности реактора. Уровень мощности реактора ограничен максимальным значением тока ионизационной камеры, записанным в ее паспорте. Включают компьютер. Вводят в оперативную память компьютера, сопряженного с экспериментальной аппаратурой, программу записи результатов измерений значения и i(t) во времени непрерывно с интервалом дискретности Δt. Указывают в программе значение Δt и число значений функции, которое планируется реализовать для достижения требуемой точности эксперимента. Обычно число значений функций i(t), записываемых в оперативную память компьютера, несколько десятков тысяч. Интервал Δt рекомендуется выбирать из расчета: Δt≈0.1/α. Примерное значение параметра α должно быть известно до опыта.

В подтверждение возможности реализации измерений ММКА значения γ проведена серия экспериментов на реакторе. Измерено значение γ на трех уровнях нейтронной мощности ~ 50 ватт, ~ 100 ватт и ~ 500 ватт.

На чертеже в полулогарифмическом масштабе приведены результаты вычислений значений функций по данным измерений токов i(t) ионизационной камеры КНК-56 на трех уровнях мощности критсборки. Значения функций помечены точками, совокупность этих данных обработана методом наименьших квадратов с учетом вида формулы (5). Пунктирной линией обозначена кривая, имеющая следующие параметры в результате обработки данных:

α=-(654±1)с-1, Y=exp(-24.80±0.01). По этому значению Y рассчитана искомая величина γ=0.772·107 ватт/ампер. Результаты измерений средних значений токов ионизационной камеры КНК-56 на трех уровнях мощности критсборки и коэффициент γ использованы для расчета F. Результаты расчета значений F и соответствующие значения приведены в таблице.

n 1 2 3
n (мкА) 6.76±0.1 13.3±0.1 66.9±0.1
Fn (ватт) 52.2±1 102.7±1 516.8±1

Результаты экспериментов, приведенные в таблице, подтверждают возможность измерений мощности реактора F предложенным способом. ММКА по сравнению с известным МКА не имеет ограничений по причине все возрастающих значений фоновых величин по сравнению с информативными величинами ввиду отсутствия фоновых величин. Более того, целесообразно проводить измерения ММКА по возможности на максимально больших уровнях мощности реактора F. При измерениях токов ионизационных камер неизбежно присутствуют помехи, уровень которых не зависит от величины мощности реактора F. С увеличением мощности реактора F увеличиваются средние значения токов и i(t), соответственно уменьшается влияние помех на результат эксперимента.


СПОСОБ ИЗМЕРЕНИЯ НЕЙТРОННОЙ МОЩНОСТИ ЯДЕРНОГО РЕАКТОРА В АБСОЛЮТНЫХ ЕДИНИЦАХ
СПОСОБ ИЗМЕРЕНИЯ НЕЙТРОННОЙ МОЩНОСТИ ЯДЕРНОГО РЕАКТОРА В АБСОЛЮТНЫХ ЕДИНИЦАХ
СПОСОБ ИЗМЕРЕНИЯ НЕЙТРОННОЙ МОЩНОСТИ ЯДЕРНОГО РЕАКТОРА В АБСОЛЮТНЫХ ЕДИНИЦАХ
СПОСОБ ИЗМЕРЕНИЯ НЕЙТРОННОЙ МОЩНОСТИ ЯДЕРНОГО РЕАКТОРА В АБСОЛЮТНЫХ ЕДИНИЦАХ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 259.
10.12.2013
№216.012.8a5f

Способ продления ресурса графитового ядерного канального реактора

Изобретение относится преимущественно к канальным реакторам АЭС типа РБМК с графитовой кладкой активной зоны. Способ включает снижение температуры облучения графита путем уменьшения аксиальной неравномерности термического сопротивления газового зазора технологического канала графитового...
Тип: Изобретение
Номер охранного документа: 0002501105
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8e1c

Способ измерения электронной температуры термоядерной плазмы

Изобретение относится к физике высокотемпературной плазмы и может найти применение в управляемом термоядерном синтезе. Сущность изобретения заключается в том, что способ измерения электронной температуры термоядерной плазмы, включающий операции, заключающиеся в том, что поток рентгеновских...
Тип: Изобретение
Номер охранного документа: 0002502063
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.920f

Способ формирования монокристаллических нанопроводников в матрице из собственного оксида

Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологии, микроэлектронике для создания сверхминиатюрных приборов, интегральных схем и запоминающих устройств. Изобретение направлено на обеспечение формирование монокристаллических...
Тип: Изобретение
Номер охранного документа: 0002503084
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.947f

Способ переработки нефти и/или нефтяных остатков

Изобретение относится к нефтехимической и химической промышленности. Изобретение касается способа переработки нефти и/или нефтяных остатков, включающего плазмохимический пиролиз гомогенизированной смеси, представляющей собой гомогенно диспергированную в углеводородном сырье трехфазную систему,...
Тип: Изобретение
Номер охранного документа: 0002503709
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.9758

Способ плазменно-каталитической переработки твердых бытовых отходов

Изобретение относится к способу переработки твердых бытовых отходов, включающему плазмохимический пиролиз гомогенизированной смеси, представляющей собой гомогенно диспергированную в сырье трехфазную систему, состоящую из высоко дисперсных частиц катализатора, метановодородной фракции,...
Тип: Изобретение
Номер охранного документа: 0002504443
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.98aa

Способ диагностики предрасположенности пациента к наследственной макулодистрофии штаргардта

Изобретение относится к области биотехнологии и медицины. Предложен способ диагностики предрасположенности пациента к наследственной макулодистрофии Штаргардта. Фибробласты кожи, взятые у пациента, культивируют и обрабатывают вирусными конструкциями, несущими гены Oct4, Sox2 и Klf4 под...
Тип: Изобретение
Номер охранного документа: 0002504781
Дата охранного документа: 20.01.2014
20.02.2014
№216.012.a3ac

Способ измерения эффективности стержней регулирования реакторной установки

Изобретение относится к физике ядерных реакторов и может быть использовано для измерения эффективности одного или групп стержней регулирования реакторных установок (РУ) в случаях, когда по условиям эксплуатации РУ необходимо обеспечить метрологическую аттестацию этих измерений в режимах...
Тип: Изобретение
Номер охранного документа: 0002507615
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a5e0

Способ получения коллоидов металлов

Изобретение относится к получению коллоидов металлов электроконденсационным методом. Может использоваться для создания каталитических систем, модификации волокнистых и пленочных материалов, например, для изготовления экранов защиты от электромагнитного излучения. В жидкую фазу вводят по меньшей...
Тип: Изобретение
Номер охранного документа: 0002508179
Дата охранного документа: 27.02.2014
10.03.2014
№216.012.a9af

Рекомбинантная плазмида phistevtsib0821, трансформированный ею штамм escherichia coli rosetta(de3)/phistevtsib0821 и способ получения рекомбинантной пролидазы tsib_0821

Изобретение относится к области биотехнологии и генной инженерии и представляет собой рекомбинантную плазмиду pHisTevTSIB0821 для экспрессии в клетках Escherichia coli пролидазы TSIB_0821 из археи Thermococcus sibiricus. Заявленная плазмида включает NdeI/SalI-фрагмент плазмиды pET-22b(+)...
Тип: Изобретение
Номер охранного документа: 0002509154
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ab68

Способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей (варианты)

Изобретение относится к области химии и биотехнологии. Способ непрерывного выделения и концентрирования водорода из биосингаза, состоящего из пяти и более компонентов, включающий подачу биосингаза из реактора (пиролизного реактора или биореактора) с помощью компрессора в мембранный модуль для...
Тип: Изобретение
Номер охранного документа: 0002509595
Дата охранного документа: 20.03.2014
Показаны записи 31-40 из 150.
10.12.2013
№216.012.8a5f

Способ продления ресурса графитового ядерного канального реактора

Изобретение относится преимущественно к канальным реакторам АЭС типа РБМК с графитовой кладкой активной зоны. Способ включает снижение температуры облучения графита путем уменьшения аксиальной неравномерности термического сопротивления газового зазора технологического канала графитового...
Тип: Изобретение
Номер охранного документа: 0002501105
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8e1c

Способ измерения электронной температуры термоядерной плазмы

Изобретение относится к физике высокотемпературной плазмы и может найти применение в управляемом термоядерном синтезе. Сущность изобретения заключается в том, что способ измерения электронной температуры термоядерной плазмы, включающий операции, заключающиеся в том, что поток рентгеновских...
Тип: Изобретение
Номер охранного документа: 0002502063
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.920f

Способ формирования монокристаллических нанопроводников в матрице из собственного оксида

Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологии, микроэлектронике для создания сверхминиатюрных приборов, интегральных схем и запоминающих устройств. Изобретение направлено на обеспечение формирование монокристаллических...
Тип: Изобретение
Номер охранного документа: 0002503084
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.947f

Способ переработки нефти и/или нефтяных остатков

Изобретение относится к нефтехимической и химической промышленности. Изобретение касается способа переработки нефти и/или нефтяных остатков, включающего плазмохимический пиролиз гомогенизированной смеси, представляющей собой гомогенно диспергированную в углеводородном сырье трехфазную систему,...
Тип: Изобретение
Номер охранного документа: 0002503709
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.9758

Способ плазменно-каталитической переработки твердых бытовых отходов

Изобретение относится к способу переработки твердых бытовых отходов, включающему плазмохимический пиролиз гомогенизированной смеси, представляющей собой гомогенно диспергированную в сырье трехфазную систему, состоящую из высоко дисперсных частиц катализатора, метановодородной фракции,...
Тип: Изобретение
Номер охранного документа: 0002504443
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.98aa

Способ диагностики предрасположенности пациента к наследственной макулодистрофии штаргардта

Изобретение относится к области биотехнологии и медицины. Предложен способ диагностики предрасположенности пациента к наследственной макулодистрофии Штаргардта. Фибробласты кожи, взятые у пациента, культивируют и обрабатывают вирусными конструкциями, несущими гены Oct4, Sox2 и Klf4 под...
Тип: Изобретение
Номер охранного документа: 0002504781
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.9901

Топливный элемент и батарея топливных элементов

Топливный элемент и батарея топливных элементов относятся к области химических источников тока с прямым преобразованием химической энергии окисления водорода кислородом воздуха в электрическую энергию. Топливный элемент содержит полимерную мембрану, водородный газодиффузионный коллектор,...
Тип: Изобретение
Номер охранного документа: 0002504868
Дата охранного документа: 20.01.2014
20.02.2014
№216.012.a3ac

Способ измерения эффективности стержней регулирования реакторной установки

Изобретение относится к физике ядерных реакторов и может быть использовано для измерения эффективности одного или групп стержней регулирования реакторных установок (РУ) в случаях, когда по условиям эксплуатации РУ необходимо обеспечить метрологическую аттестацию этих измерений в режимах...
Тип: Изобретение
Номер охранного документа: 0002507615
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a5e0

Способ получения коллоидов металлов

Изобретение относится к получению коллоидов металлов электроконденсационным методом. Может использоваться для создания каталитических систем, модификации волокнистых и пленочных материалов, например, для изготовления экранов защиты от электромагнитного излучения. В жидкую фазу вводят по меньшей...
Тип: Изобретение
Номер охранного документа: 0002508179
Дата охранного документа: 27.02.2014
10.03.2014
№216.012.a9af

Рекомбинантная плазмида phistevtsib0821, трансформированный ею штамм escherichia coli rosetta(de3)/phistevtsib0821 и способ получения рекомбинантной пролидазы tsib_0821

Изобретение относится к области биотехнологии и генной инженерии и представляет собой рекомбинантную плазмиду pHisTevTSIB0821 для экспрессии в клетках Escherichia coli пролидазы TSIB_0821 из археи Thermococcus sibiricus. Заявленная плазмида включает NdeI/SalI-фрагмент плазмиды pET-22b(+)...
Тип: Изобретение
Номер охранного документа: 0002509154
Дата охранного документа: 10.03.2014
+ добавить свой РИД