×
20.09.2014
216.012.f468

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ НЕЙТРОННОЙ МОЩНОСТИ ЯДЕРНОГО РЕАКТОРА В АБСОЛЮТНЫХ ЕДИНИЦАХ

Вид РИД

Изобретение

№ охранного документа
0002528401
Дата охранного документа
20.09.2014
Аннотация: Изобретение относится к физике ядерных реакторов и может быть использовано для измерения F - нейтронной мощности реактора в абсолютных единицах, например, при пусках космических ядерных энергетических установок (КЯЭУ). Техническим результатом, на которое направлено изобретение, является увеличение максимальных значений F. В способе измерения нейтронной мощности ядерного реактора в абсолютных единицах F=V·γ, где V - значение мощности реактора в относительных единицах, γ - коэффициент пропорциональности, нейтронную мощность ядерного реактора в относительных единицах измеряют как среднюю скорость счета детектора нейтронов в стационарном критическом состоянии средствами измерения При этом коэффициент пропорциональности рассчитывают, используя значение автокорреляционной функции. В качестве средства измерения числа нейтронов используют ионизационную камеру для определения флуктуации числа нейтронов. Измеряют отдельно среднее значение тока ионизационной камеры и флуктуирующую составляющую тока ионизационной камеры непрерывно во времени с интервалом дискретности, рассчитывают автокорреляционную функцию флуктуирующего тока ионизационной камеры, после чего рассчитывают коэффициент пропорциональности. 2 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к физике ядерных реакторов и может быть использовано для измерения F - нейтронной мощности реактора в абсолютных единицах. Задачи измерений F реактора требуется решать при проектировании защиты от излучения, при определении радиационной стойкости корпусов реакторов ВВЭР. Эта задача решается при пусках космических ядерных энергетических установок (КЯЭУ). Пуск КЯЭУ проводят строго по времени с учетом результатов измерений F. Медленный или излишне быстрый выход КЯЭУ на номинальную мощность может быть губительным для нее. Задача в этом случае осложняется тем, что F реактора КЯЭУ должна измеряться в абсолютных единицах на всех этапах пуска КЯЭУ.

Принятые в тексте обозначения

F - нейтронная мощность реактора в абсолютных единицах [деления/секунда или ватт]

V - значение мощности реактора в относительных единицах [отсчеты/секунда или ампер]

γ - число, коэффициент пропорциональности [ватт/ампер или деления/(секунда - ампер)]

ε - эффективность детектора нейтронов [отсчет/деления].

t - время [секунда]

τ - время [секунда]

С - число отсчетов детектора [отсчет]

φхх(τ) - автокорреляционная функция чисел отсчетов детектора [отсчет2]

fxx(t) - автокорреляционная функция [ампер2]

I(t) - ток [ампер]

- значение среднего значения тока ионизационной камеры [ампер]

i(t) - флуктуирующие значения тока ионизационной камеры во времени [ампер]

Y - параметр, определяемый в процессе обработки экспериментальных данных [ампер/деления или ампер/(ватт·секунда)]

α - параметр, [1/секунда]

Dν=0.795 - табличная безразмерная величина

βeff - безразмерная величина

Δt - интервал дискретности измерений [секунда]

Задача измерений F решается в два этапа. На первом, относительно простом этапе, выбирается способ измерений мощности реактора в относительных единицах (скорость счета детекторов нейтронов, ток ионизационной камеры и т.п.). Важно, чтобы результат измерений мощности реактора в относительных единицах был пропорционален мощности реактора в абсолютных единицах. Этот коэффициент пропорциональности должен оставаться неизменным в заданном диапазоне изменений F, т.е. в этом диапазоне должно выполняться равенство:

F - значение нейтронной мощности реактора в абсолютных единицах (в ваттах или в делениях в секунду)

V - значение мощности реактора в относительных единицах (скорость счета детектора нейтронов, ток, протекающий через ионизационную камеру)

γ - коэффициент пропорциональности.

На втором этапе измеряется одновременно мощность реактора в абсолютных и относительных единицах. По результатам этих измерений вычисляется значение γ. Далее для определения F в диапазоне пропорциональности достаточно измерить мощность в относительных единицах и умножить этот результат измерений на γ. Номинальная мощность реакторов обычно на много порядков больше уровня мощности, который может быть измерен экспериментально. В практической работе более всего ценятся результаты вычислений γ на уровнях мощности реактора, сравнимых с номинальным уровнем.

Предлагается измерять F статистическими методами. Известно несколько разновидностей статистических методов измерений F в критическом состоянии реактора. Различаются эти методы в деталях, все они основаны на изучении флуктуации числа нейтронов в реакторе. Характерным свойством флуктуации является уменьшение их амплитуд на уровнях средних значений чисел нейтронов по мере увеличения нейтронной мощности. Соответственно общим недостатком всех без исключения статистических методов являются относительно небольшие уровни мощности, на которых они могут быть реализованы. Известен способ измерений F - метод корреляционного анализа (МКА) - прототип. Известный американский специалист Р. Уриг в своей монографии «Статистические методы в физике ядерных реакторов» (Атомиздат. 1974. Москва) по поводу МКА на стр.55 пишет: «Следует отметить, что… фоновые величины зависят от … F2, в то время как амплитуда … зависит только от F. Следовательно, этот метод ограничивается очень низкими скоростями делений».

МКА основан на измерении вероятности зарегистрировать нейтрон в момент времени t+τ при условии, что ранее нейтрон был зарегистрирован в момент времени t. Эта вероятность называется автокорреляционной функцией φхх(τ) измерений чисел отсчетов детектора. Значения функции φхх(τ) рассчитываются по результатам измерений чисел отсчетов детектора по формуле:

где

Cm, Cm+n - числа отсчетов детектора за временной интервал Δt в момент времени t и t+τ соответственно,

t=k·Δt, k=1,2,3…

n=0,1,2,…

N- число отсчетов детектора (N>>n).

Исходя из характеристик цепной реакции деления ядер и свойств стационарного критического реактора без запаздывающих нейтронов можно записать соотношение, связывающее функцию φxx(τ) при τ>0 с параметрами такого реактора (Р. Уриг «Статистические методы в физике ядерных реакторов» (Атомиздат. 1974. Москва):

ε - эффективность экспериментального детектора

Dν - параметр Дайвена (константа, табличная величина), Dν=0.795 для U235,

βeff - эффективная доля запаздывающих нейтронов (величина, известная по результатам независимых экспериментов или вычисляемая по программам расчета параметров кинетики реакторов),

α - константа спада мгновенных нейтронов в критическом реакторе.

Формула численно описывает флуктуации потока нейтронов во временной области. Первое слагаемое этой формулы описывает вероятность случайных пар отсчетов нейтронов. Второе слагаемое описывает вероятность коррелированных пар отсчетов нейтронов, имеющих общее происхождение. Если реализовать измерения, непосредственно используя формулу (3) при обработке экспериментальных данных для определения мощности в абсолютных единицах, то существует предел по мощности, исчисляемый долями ватт, выше которого измерения станут невозможными. Действительно, в формуле (3) первое слагаемое (фоновая составляющая), пропорциональное (F·ε)2, начиная с указанного предела по мощности, становится во много раз больше второго слагаемого, пропорционального F·ε.

Характерной особенностью статистических методов измерений параметров реактора является требование достаточно высокой эффективности экспериментального детектора (ε~ ). При низкой эффективности детектора (ε<<10-4) вероятность коррелированных пар отсчетов становится много меньше случайных пар отсчетов. В этом случае не удается измерить какие-либо параметры реактора ни МКА, ни любым другим статистическим методом.

Предлагается модернизированный метод корреляционного анализа (ММКА). Этот способ обеспечивает измерения мощности реактора до уровней, исчисляемых в киловаттах. При реализации ММКА флуктуации числа нейтронов I(t) представляются в виде суммы среднего значения функции I(t) и флуктуирующей составляющей . В этих случаях корреляционная функция рассчитывается по формуле:

im, im+n - переменные токи в момент времени T и T+t соответственно.

t=k·Δt, k=1,2,3…

n=0,1,2,…

N - число чисел отсчетов детектора (N>>n)

Техническим результатом, на которое направлено изобретение, является увеличение максимальных значений F, измеряемых следующим способом,

Способ измерения нейтронной мощности ядерного реактора в абсолютных единицах F=V·γ, где

V - значение мощности реактора в относительных единицах,

γ = коэффициент пропорциональности,

при этом нейтронную мощность ядерного реактора в относительных единицах измеряют как среднюю скорость счета детектора нейтронов в стационарном критическом состоянии средствами измерения, а коэффициент пропорциональности рассчитывают, используя значение автокорреляционной функции, при этом в качестве средства измерения числа нейтронов используют ионизационную камеру для определения флуктуации числа нейтронов , измеряя отдельно среднее значение тока ионизационной камеры и флуктуирующую составляющую тока ионизационной камеры i(t) непрерывно во времени с интервалом дискретности Δt, рассчитывают автокорреляционную функцию флуктуирующего тока ионизационной камеры по формуле

, где

im, im+n - переменные токи в момент времени T и T+t соответственно.

t=k·Δt, k=1,2,3…

n=0,1,2,…

N - число чисел отсчетов детектора (N>>n),

после чего рассчитывают коэффициент пропорциональности

γ=Y·ехр(-α·t), где

,

Dν - параметр Дайвена (константа, табличная величина), Dν=0.795 для U235,

βeff - эффективная доля запаздывающих нейтронов

α - константа спада мгновенных нейтронов в критическом реакторе.

При этом выбирают интервал дискретности Δt≈0.1/α.

Кроме того, число измерений i(t) во времени должно быть не менее десяти тысяч.

Таким образом, увеличение измеряемой мощности достигается за счет:

1) использования в эксперименте в качестве детектора нейтронов ионизационной камеры

2) отсечение на аппаратном уровне постоянной составляющей от I(t) - результата измерений флуктуации числа нейтронов

3) измерений среднего значения тока и отдельно i(t) - флуктуирующих значений тока ионизационной камеры во времени t с помощью усилителя У7-6 (или его аналога) с записью измеренных значений i(t) в оперативную память компьютера

4) расчета корреляционной функции fxx(t) по формуле (4) с использованием результатов измерений i(t)

5) преобразования формулы (3) к рабочему виду:

- среднее значение тока ионизационной камеры (результат измерений мощности реактора в относительных единицах)

α - параметр

Dν, βeff - параметры, величины которых известны из независимых экспериментов

6) использования измеренных значений для определения параметров Y и α методом наименьших квадратов с учетом вида формулы (5)

7) вычисления искомого значения коэффициента пропорциональности γ по формуле:

Предложенный способ измерений значения γ назван модернизированным методом корреляционного анализа, заключающимся в том, что включают экспериментальную установку для измерений значений и i(t) во времени непрерывно с интервалом дискретности Δt от начала до конца эксперимента. Экспериментальная установка состоит из детектора нейтронов (ионизационной камеры), электрометра для измерений среднего значения тока ионизационной камеры, усилителя типа У7-6 (или его аналога) для измерений флуктуирующих значений тока ионизационной камеры на уровне среднего значения тока, преобразователя сигнала с выхода усилителя У7-6 в цифровой код, компьютера с программой, обеспечивающей запись цифрового кода в оперативную память PC и внешние носители информации. Выводят реактор в стационарное критическое состояние на заданный уровень нейтронной мощности реактора. Уровень мощности реактора ограничен максимальным значением тока ионизационной камеры, записанным в ее паспорте. Включают компьютер. Вводят в оперативную память компьютера, сопряженного с экспериментальной аппаратурой, программу записи результатов измерений значения и i(t) во времени непрерывно с интервалом дискретности Δt. Указывают в программе значение Δt и число значений функции, которое планируется реализовать для достижения требуемой точности эксперимента. Обычно число значений функций i(t), записываемых в оперативную память компьютера, несколько десятков тысяч. Интервал Δt рекомендуется выбирать из расчета: Δt≈0.1/α. Примерное значение параметра α должно быть известно до опыта.

В подтверждение возможности реализации измерений ММКА значения γ проведена серия экспериментов на реакторе. Измерено значение γ на трех уровнях нейтронной мощности ~ 50 ватт, ~ 100 ватт и ~ 500 ватт.

На чертеже в полулогарифмическом масштабе приведены результаты вычислений значений функций по данным измерений токов i(t) ионизационной камеры КНК-56 на трех уровнях мощности критсборки. Значения функций помечены точками, совокупность этих данных обработана методом наименьших квадратов с учетом вида формулы (5). Пунктирной линией обозначена кривая, имеющая следующие параметры в результате обработки данных:

α=-(654±1)с-1, Y=exp(-24.80±0.01). По этому значению Y рассчитана искомая величина γ=0.772·107 ватт/ампер. Результаты измерений средних значений токов ионизационной камеры КНК-56 на трех уровнях мощности критсборки и коэффициент γ использованы для расчета F. Результаты расчета значений F и соответствующие значения приведены в таблице.

n 1 2 3
n (мкА) 6.76±0.1 13.3±0.1 66.9±0.1
Fn (ватт) 52.2±1 102.7±1 516.8±1

Результаты экспериментов, приведенные в таблице, подтверждают возможность измерений мощности реактора F предложенным способом. ММКА по сравнению с известным МКА не имеет ограничений по причине все возрастающих значений фоновых величин по сравнению с информативными величинами ввиду отсутствия фоновых величин. Более того, целесообразно проводить измерения ММКА по возможности на максимально больших уровнях мощности реактора F. При измерениях токов ионизационных камер неизбежно присутствуют помехи, уровень которых не зависит от величины мощности реактора F. С увеличением мощности реактора F увеличиваются средние значения токов и i(t), соответственно уменьшается влияние помех на результат эксперимента.


СПОСОБ ИЗМЕРЕНИЯ НЕЙТРОННОЙ МОЩНОСТИ ЯДЕРНОГО РЕАКТОРА В АБСОЛЮТНЫХ ЕДИНИЦАХ
СПОСОБ ИЗМЕРЕНИЯ НЕЙТРОННОЙ МОЩНОСТИ ЯДЕРНОГО РЕАКТОРА В АБСОЛЮТНЫХ ЕДИНИЦАХ
СПОСОБ ИЗМЕРЕНИЯ НЕЙТРОННОЙ МОЩНОСТИ ЯДЕРНОГО РЕАКТОРА В АБСОЛЮТНЫХ ЕДИНИЦАХ
СПОСОБ ИЗМЕРЕНИЯ НЕЙТРОННОЙ МОЩНОСТИ ЯДЕРНОГО РЕАКТОРА В АБСОЛЮТНЫХ ЕДИНИЦАХ
Источник поступления информации: Роспатент

Показаны записи 221-230 из 259.
27.07.2019
№219.017.b9f4

Вакуумная камера термоядерного реактора

Изобретение относится к конструкции вакуумной камеры (ВК) и бланкета, которые являются элементами термоядерного реактора (ТЯР) или демонстрационного термоядерного источника нейтронов (ДЕМО-ТИН). Вакуумная камера термоядерного реактора состоит из корпуса, образованного внутренней и внешней...
Тип: Изобретение
Номер охранного документа: 0002695632
Дата охранного документа: 25.07.2019
17.08.2019
№219.017.c11b

Способ получения спин-поляризованных носителей заряда в графене

Использование: для получения спин-поляризованных носителей заряда в графене. Сущность изобретения заключается в том, что методом молекулярно-лучевой эпитаксии на поверхности предварительно сформированной структуры монослой графена/подложка формируют субмонослой европия со структурой Eu....
Тип: Изобретение
Номер охранного документа: 0002697517
Дата охранного документа: 15.08.2019
01.09.2019
№219.017.c4f7

Способ количественного определения массы углеродных наноструктур в образцах

Изобретение относится к области экологии и материаловедения, а именно нанотехнологии, и может быть использовано для количественного определения углеродных наноструктур (УН), в частности углеродных нанотрубок, в твердых и жидких образцах и различных средах. Для этого в исследуемом образце с...
Тип: Изобретение
Номер охранного документа: 0002698718
Дата охранного документа: 29.08.2019
06.09.2019
№219.017.c7f6

Модульный ядерный реактор на быстрых нейтронах малой мощности с жидкометаллическим теплоносителем и активная зона реактора (варианты)

Изобретение относится к модульному ядерному реактору малой мощности на быстрых нейтронах с жидкометаллическим теплоносителем. Реактор содержит корпус с крышкой, с расположенными внутри него активной зоной, теплообменниками промежуточного контура, циркуляционными насосами с напорным коллектором,...
Тип: Изобретение
Номер охранного документа: 0002699229
Дата охранного документа: 04.09.2019
03.10.2019
№219.017.d1c4

Способ аттестации вычислителя реактивности

Изобретение относится к средству определения быстродействия и точности вычислителя реактивности. Сигнал плотности потока нейтронов аттестованной по реактивности математической модели ядерного реактора вводят в формирователь сигнала детектора, в котором сигнал плотности потока нейтронов...
Тип: Изобретение
Номер охранного документа: 0002701725
Дата охранного документа: 01.10.2019
04.10.2019
№219.017.d1fb

Способ получения косметического гидрогеля с экстрактом пигментов микроводоросли

Изобретение относится к области косметической промышленности. Предложен способ получения косметического гидрогеля с экстрактом пигментов микроводоросли, в соответствии с которым: экстрагируют ацетоном пигменты микроводоросли; отгоняют ацетон; добавляют к полученному осадку смесь...
Тип: Изобретение
Номер охранного документа: 0002701859
Дата охранного документа: 02.10.2019
10.10.2019
№219.017.d476

Сверхпроводниковый дискретный счетный компонент

Использование: для создания счетного компонента в наноразмерных цифровых устройствах в различных областях науки и техники. Сущность изобретения заключается в том, что сверхпроводниковый дискретный счетный компонент, характеризующийся дискретным набором равновесных состояний, содержит...
Тип: Изобретение
Номер охранного документа: 0002702402
Дата охранного документа: 08.10.2019
12.10.2019
№219.017.d479

Способ изотопного восстановления регенерированного урана

Изобретение относится замыканию ядерного топливного цикла и может быть использовано для возврата урана, выделенного из отработавшего ядерного топлива (ОЯТ), в топливный цикл как легководных реакторов, так и других типов реакторов, работающих на обогащенном уране. Способ изотопного...
Тип: Изобретение
Номер охранного документа: 0002702620
Дата охранного документа: 09.10.2019
22.10.2019
№219.017.d8f3

Способ получения органомодифицированного гидроксиапатита

Изобретение может быть использовано при создании биоразлагаемых материалов. Способ получения органомодифицированного гидроксиапатита путем прививки молочной кислоты включает модификацию гидроксиапатита в растворе этилового спирта и молочной кислоты с использованием ультразвуковой диспергации....
Тип: Изобретение
Номер охранного документа: 0002703645
Дата охранного документа: 21.10.2019
26.10.2019
№219.017.dac7

Способ получения органомодифицированного монтмориллонита (ммт)

Изобретение относится к способу модификации неорганического алюмосиликатного наполнителя, монтмориллонита (глины) ММТ с помощью органических водорастворимых биоразлагаемых модификаторов и может быть использован при создании композитов с улучшенными характеристиками (высокой степенью прививки и...
Тип: Изобретение
Номер охранного документа: 0002704190
Дата охранного документа: 24.10.2019
Показаны записи 141-150 из 150.
19.01.2018
№218.015.ff8f

Электролизер и каскад электролизеров

Изобретение относится к электролизеру, содержащему корпус с электролитом с размещенными в нем электролизной ячейкой с анодом, катодом и мембраной, разделяющей объем электролизной ячейки на анодное и катодное пространства, анодный контур циркуляции электролита, включающий емкость с электролитом...
Тип: Изобретение
Номер охранного документа: 0002629561
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.028f

Способ переработки углеродсодержащего сырья в реакторе с расплавом металла

Изобретение относится к технологии комплексной переработки различных видов углеводородсодержащего сырья в расплаве металлов с получением в качестве промежуточного продукта смеси водорода и монооксида углерода (синтез-газа). Способ заключается в процессе газификации, где получают поток...
Тип: Изобретение
Номер охранного документа: 0002630118
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.0e65

Бланкет термоядерного реактора

Изобретение конструкции бланкета термоядерного реактора. Заявленный бланкет состоит из по крайней мере из одного вертикального металлического модуля, нижняя часть которого заполнена кипящим раствором сырьевого материала и соединена патрубком с устройством для извлечения из раствора целевых...
Тип: Изобретение
Номер охранного документа: 0002633373
Дата охранного документа: 12.10.2017
19.01.2018
№218.016.0ebe

Устройство крепления

Изобретение относится к области механики и может быть использовано для крепления объектов. Техническим результатом заявленного изобретения является повышение надежности удержания объектов на штатных местах при приложении к ним сил без использования крепежных устройств в виде резьбовых...
Тип: Изобретение
Номер охранного документа: 0002633229
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.0ee2

Структура полупроводник-на-изоляторе и способ ее изготовления

Изобретение относится к твердотельной электронике. Структура полупроводник-на-изоляторе содержит изолятор, расположенный на нем поверхностный слой полупроводника и сформированный в изоляторе имплантацией ионов легкого газа и последующего высокотемпературного отжига дефектный термостабильный...
Тип: Изобретение
Номер охранного документа: 0002633437
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0f90

Устройство для измерения характеристик спектральных линий плазмы в реакторе-токамаке

Изобретение относится к устройству для измерения спектральных характеристик плазмы реактора-токамака. Устройство содержит измерительный объем с расположенными в нем катодами и анодом тлеющего разряда, размещенный в стенке вакуумной камеры реактора-токамака, соединенный диагностическим каналом с...
Тип: Изобретение
Номер охранного документа: 0002633517
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.0ffd

Бланкет термоядерного реактора с естественной циркуляцией

Изобретение относится к конструкции бланкета термоядерного реактора. В заявленном устройстве предусмотрено наличие по крайней мере одного вертикального металлического модуля с раствором сырьевого материала, соединенного патрубками, расположенными в верхней и нижней части, с контуром...
Тип: Изобретение
Номер охранного документа: 0002633419
Дата охранного документа: 16.10.2017
13.02.2018
№218.016.264e

Тепловой узел установки для выращивания галоидных кристаллов методом горизонтальной направленной кристаллизации

Изобретение относится к области техники, связанной с выращиванием кристаллов из расплавов методом горизонтально направленной кристаллизации (ГНК), которые широко используются в качестве сцинтилляторов для детекторов ионизирующего излучения, лазерных кристаллов и элементов оптических приборов,...
Тип: Изобретение
Номер охранного документа: 0002643980
Дата охранного документа: 06.02.2018
17.02.2018
№218.016.2aa3

Устройство для стационарной генерации ионного пучка

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642852
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3482

Способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей для проведения реакции переэтерификации

Изобретение относится к области биохимии. Предложен способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей. Способ включает наращивание биомассы дрожжей Yarrowia lipolytica ВКПМ Y-3600, отделение биомассы, лиофильную сушку биомассы, приготовление суспензии...
Тип: Изобретение
Номер охранного документа: 0002646104
Дата охранного документа: 01.03.2018
+ добавить свой РИД