×
10.09.2014
216.012.f3f3

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА

Вид РИД

Изобретение

№ охранного документа
0002528274
Дата охранного документа
10.09.2014
Аннотация: Изобретение относится к области электроизмерительной техники и может использоваться при измерениях пассивных и активных комплексных электрических величин. Способ состоит в том, что амплитуду А и начальный фазовый сдвиг φ вектора гармонического сигнала S(t) с известным периодом Т, действующего совместно с сигналами субгармонических помех P(t)=Asin(2πt/T+φ), где , значения периодов T которых тоже известны и кратны Т, определяют по соотношениям: A=[(p')+(p”)] и φ=arctg(p'/p”), где p', p” - проекции вектора сигнала S(t) на два ортогональных вектора опорных сигналов, а значения их измеряют путем частотозависимой дискретизации суммарного сигнала суммирования его дискретных отсчетов, производимых с помощью мгновенных импульсов, действующих в моменты времени, образующие соответственно для р' и для р” множества и , где ΔТ=(2k±1)T/4, a k=0,1,2,…, которые формируют согласно условию: или , где t - произвольный начальный момент отсчета времени, Н - наименьшее общее кратное множества чисел {r}, , n=0,1,2,…, а значения проекций р' и р” получают по соотношениям: , , где K=1/H. Технический результат заключается в повышении точности измерения в реальном времени вектора гармонического сигнала с известным периодом, действующего совместно с сигналами субгармонических помех, значения периодов которых тоже известны.
Основные результаты: Способ измерения вектора гармонического сигнала S(t)=Asin(2πt/T+φ) с известным периодом T, действующего совместно с сигналами гармонических помех P(t)=Asin(2πt/T+φ), где , значения периодов T которых тоже известны, согласно которому амплитуду А и начальный фазовый сдвиг φ сигнала S(t) определяют, например, по соотношениям А=[(р')+(р”)] и φ=arctg(p'/р”), где р', р” - проекции вектора сигнала S(t) на два ортогональных вектора опорных сигналов, а значения этих проекций измеряют путем частотозависимой дискретизации суммарного сигнала и суммирования его дискретных отсчетов, производимых с помощью мгновенных импульсов, действующих в моменты времени, образующие соответственно для р' и для р” множества и , где ΔТ=(2k±1)T/4, а k=0,1,2,…, отличающийся тем, что при T, кратных Т, когда T/Т=r, где r=2,3,…, множества и моментов времени и дискретных отсчетов сигнала σ(t) формируют согласно условию: или t, или , где t - произвольный начальный момент отсчета времени, Н - наименьшее общее кратное множества чисел {r}, , n=0,1,2,…, а значения проекций p' и p” получают по соотношениям: , , где К=1/Н.

Изобретение относится к области электроизмерительной техники и может быть использовано в средствах измерений пассивных и активных комплексных электрических величин, например, в мостах и компенсаторах переменного тока или в измерителях (анализаторах) параметров электрических цепей, а также в векторных вольтметрах и спектроанализаторах.

Известен способ измерения параметров двухполюсников со сложными схемами замещения с помощью разветвленной мостовой цепи при воздействии на нее нескольких тестовых гармонических сигналов с разными частотами, разделяемых с помощью аналоговых фильтров (Шеремет Л.П. Принципы построения мостовых измерительных цепей для одновременного уравновешивания на нескольких частотах // Проблемы технической электродинамики, вып.54, Киев: Наукова думка, 1975. - С.14-19).

Данный способ позволяет производить измерения сложных объектов исследования одновременно на нескольких частотах, обеспечивая тем самым возможность получения информации о быстроизменяющихся параметрах таких объектов, а через них и о протекающих в этих объектах физических или химических процессах. Однако применяемые для разделения сигналов с разными частотами аналоговые фильтры имеют низкую избирательность, не позволяющую получить высокие помехоустойчивость и точность измерения, и обладают инерционностью, а также сложностью реализации, возрастающими по мере повышения их избирательности, что является недостатком способа.

Известен также, принятый автором за прототип, способ измерения вектора гармонического сигнала S(t)=Asin(2πt/T+φ0), действующего совместно с другими гармоническими сигналами Sm(t)Amsin(2πt/Tm0m), где , в том числе помехами, имеющими, как и сигнал S(t), известные, но не кратные друг другу значения периодов (Tm и Т), согласно которому проекции р' и р” сигнала S(t) на два ортогональных совпадающих с измеряемым сигналом по частоте вектора опорных сигналов, связанные с А и φ0, например, соотношениями А=[(р')2+(р”)2]l/2и φ0=arctg(p'/р”), измеряют путем выборки и суммирования дискретных отсчетов, или дискрет, суммарного сигнала с помощью мгновенных импульсов, действующих в моменты времени, образующие множества и , а значения проекций р' и р” определяют по соотношениям и , где - нормирующий множитель, причем формируют с помощью пошаговой процедуры, начинающейся с произвольного начального момента t0, выступающего в качестве исходного множества, и получения на первом шаге дополнительного множества путем сдвига исходного на нечетное число полупериодов первого подавляемого сигнала или гармонической помехи, и далее получения на каждом последующем шаге дополнительного множества посредством сдвига полученного на предыдущем шаге множества на нечетное число nm полупериодов m-го подавляемого сигнала до тех пор, пока число шагов не станет равным М-1 (RU №2377577 С1, 27.12.2009).

Недостатком данного способа является пониженная точность измерения в тех случаях, когда вместе с измеряемым гармоническим сигналом S(t) действуют субгармонические помехи - гармонические сигналы с периодом, кратным периоду S(t), подавление которых этим способом в общем случае не обеспечивается, в чем легко убедиться уже на примере совместного действия сигнала S(t) и одной нечетной субгармонической помехи, т.е. гармонического сигнала, частота которого в нечетное число раз меньше частоты сигнала S(t).

Техническим результатом изобретения является повышение точности измерения в реальном времени вектора гармонического сигнала S(t)=Asin(2πt/Т+φ0) с известным периодом Т, действующего совместно с сигналами субгармонических помех Pm(t)=Amsin(2πt/Tm0m), где , периоды Tm которых тоже известны и кратны Т.

Технический результат достигается тем, что в предлагаемом способе измерения вектора гармонического сигнала S(t)=Asin(2πt/T+φ0) с известным периодом Т, действующего совместно с сигналами гармонических помех Pm(t)=Amsin(2πt/Tm0m), где , значения периодов Tm которых тоже известны, согласно которому амплитуду А и начальный фазовый сдвиг φ0 сигнала S(t) определяют, например, по соотношениям A=[(p')2+(p”)2]1/2 и φ0=arctg(p'/p”), где p', p” - проекции вектора сигнала S(t) на два ортогональных вектора опорных сигналов, а значения этих проекций измеряют путем частотозависимой дискретизации суммарного сигнала и суммирования его дискретных отсчетов, производимых с помощью мгновенных импульсов, действующих в моменты времени, образующие соответственно для р' и для р” множества и , где ΔТ=(2k±1)T/4, а k=0,1,2,…, при Tm, кратных T, когда Tm/T=rm, где rm=2,3,…, множества моментов времени и дискретных отсчетов сигнала σ(t) формируют согласно условию: или , или , где t0 - произвольный начальный момент отсчета времени, Н - наименьшее общее кратное множества чисел {rm}, , ni=0,1,2,…, а значения проекций р' и р” получают по соотношениям: , , где K=1/Н.

Сущность изобретения состоит в том, что примененная в нем процедура формирования множества моментов времени выборки дискретных отсчетов суммарного сигнала σ(t), позволяет точно и быстро (в реальном времени) измерять проекции p' и р” гармонического сигнала S(t) инвариантно по отношению к действующим вместе с ним М гармоническим помехам Pm(t) при условии, что периоды этих помех кратны периоду измеряемого сигнала S(t), т.е. исключить или минимизировать в зависимости от точности информации о периодах сигналов Pm(t) и S(t) влияние таких помех на точность измерения р' и р”, а значит, и на точность измерения А и φ0 сигнала S(t).

Поясним математически механизм подавления сигналов Pm(t), сопутствующих измеряемому, и выведем фигурирующие в формуле изобретения соотношения.

Рассмотрим сначала простейший случай, когда вместе с сигналом S(t) действует лишь одна субгармоническая помеха Pm(t). Суть механизма подавления помех заключается в том, что при кратном отношении периода Pm(t) к периоду S(t) в зависимости от точности информации о значениях периодов S(t) и помехи Pm(t) подавление последней осуществляют путем формирования множества моментов выборки дискретных отсчетов суммарного сигнала σ(t) согласно известному тригонометрическому соотношению:

где n=2,3,… - число дискретных отсчетов синусоиды, а AS и φ0,S - произвольные значения амплитуды и угла начального фазового сдвига синусоиды (или косинусоиды).

Соотношение (1) означает, что операция суммирования n дискретных отсчетов синусоиды ASsin[2π(i-1)/n+φ0,S], взятых через фазовые интервалы Δφd, составляющие n-ые доли ее периода, равного (в радианах) 2π, т.е. при Δφdii-1=2π/n, где φi=2π(i-1)/n, позволяет «обнулить» синусоиду инвариантно по отношению к AS и φ0S. При этом нужно отметить, что с учетом свойства периодичности синусоиды значения φi приобретают выражение общего вида: φi=2π[(i-1)/n±k], где , a k=0,1,2,….

Применительно к форме записи помехи Pm(t), соотношение (1) имеет вид:

где - значения моментов времени дискретизации сигнала σ(t), а n=rm.

В том, что соотношение (2) выполняется и помеха Pm(t) подавляется («обнуляется») при любых значениях Am и φ0m, легко убедиться, приняв во внимание, что здесь Tm=nT=rmT, т.е. n=rm. После этого остается лишь убедиться в том, что сам измеряемый сигнал S(t) при этом не подавляется, для чего, с учетом эффекта подавления Pm(t), достаточно просуммировать при указанных значениях дискретные отсчеты (только) S(t), так как подвергающийся дискретизации σ(t) является суммой S(t) и «обнуляемого» Pm(t):

.

Из этого выражения следует, что в данном случае р'=KrmAsinφ0, т.е. значение проекции р' сигнала S(t) на опорный сигнал, в отличие от помехи Pm(t), не равно тождественно нулю и при этом усилено в rm раз, что имеет место благодаря тому, что интервалы между моментами выборки дискретных отсчетов S(t) кратны его периоду: , где l - целое число.

Перейдем теперь к рассмотрению общего случая. Для того чтобы имело место подавление М помех при отсутствии подавления S(t), необходимо, чтобы соотношение (2) выполнялось одновременно для всех помех Pm(t), т.е. при . Осуществить это возможно, если число N дискретных отсчетов σ(t), а значит, и S(t), сделать равным произведению М чисел при условии: , где l - целое число.

С геометрической точки зрения это означает, что если имеется отрезок, длина L которого кратна Т:L=TN, то на нем можно уложить целые числа , любого из (одинаковых) отрезков длиной Lj=rjT. Однако в общем случае это условие является слишком сильным, а необходимым и достаточным, согласно теории чисел, будет условие: N=Н, где Н - наименьшее общее кратное (множества) чисел rm.

Что касается значения нормирующего множителя K=1/Н, то оно следует из соотношения , а также условий: N=H и .

Итак, все соотношения, входящие в формулу изобретения, математически обоснованы.

Способ измерения вектора гармонического сигнала S(t)=Asin(2πt/T+φ) с известным периодом T, действующего совместно с сигналами гармонических помех P(t)=Asin(2πt/T+φ), где , значения периодов T которых тоже известны, согласно которому амплитуду А и начальный фазовый сдвиг φ сигнала S(t) определяют, например, по соотношениям А=[(р')+(р”)] и φ=arctg(p'/р”), где р', р” - проекции вектора сигнала S(t) на два ортогональных вектора опорных сигналов, а значения этих проекций измеряют путем частотозависимой дискретизации суммарного сигнала и суммирования его дискретных отсчетов, производимых с помощью мгновенных импульсов, действующих в моменты времени, образующие соответственно для р' и для р” множества и , где ΔТ=(2k±1)T/4, а k=0,1,2,…, отличающийся тем, что при T, кратных Т, когда T/Т=r, где r=2,3,…, множества и моментов времени и дискретных отсчетов сигнала σ(t) формируют согласно условию: или t, или , где t - произвольный начальный момент отсчета времени, Н - наименьшее общее кратное множества чисел {r}, , n=0,1,2,…, а значения проекций p' и p” получают по соотношениям: , , где К=1/Н.
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА
Источник поступления информации: Роспатент

Показаны записи 111-120 из 276.
13.01.2017
№217.015.73e2

Способ измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких сред в трубопроводах. Радиоволну направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока. Отраженную волну смешивают с частью падающей волны...
Тип: Изобретение
Номер охранного документа: 0002597666
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.748f

Способ измерения количества и качества топлива в баке с трехслойной смесью "воздух-топливо-вода" и устройство для его осуществления

Использование: для определения количества топлива и его качества в баках транспортных средств. Сущность изобретения заключается в том, что способ измерения количества и качества топлива в баке с трехслойной смесью «воздух - топливо - вода», по которому в размещенном в баке резонаторе возбуждают...
Тип: Изобретение
Номер охранного документа: 0002597682
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7496

Радиоволновое устройство для измерения скорости потока жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидких сред в трубопроводах. Устройство содержит генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к...
Тип: Изобретение
Номер охранного документа: 0002597663
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7e50

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости, в частности оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, охлаждающей жидкости в ядерных реакторах и др. Предлагается бесконтактный...
Тип: Изобретение
Номер охранного документа: 0002601283
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7e51

Устройство для измерения концентрации сыпучего материала

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. Техническим результатом заявляемого технического решения является упрощение процедуры измерения концентрации и повышение точности измерения. Устройство...
Тип: Изобретение
Номер охранного документа: 0002601275
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7eb9

Устройство для измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких сред в трубопроводах. Устройство содержит генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению...
Тип: Изобретение
Номер охранного документа: 0002601273
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7eea

Способ пневматического частотного измерения ускорения движения тела

Изобретение относится к устройствам, использующимся при навигации летательных аппаратов, при измерении ускорения. Техническим результатом является повышение достоверности (уменьшения погрешности) за счет включения в прямую цепь интегратора, линеаризующего выходную характеристику системы...
Тип: Изобретение
Номер охранного документа: 0002601271
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7f1b

Оптоструйный преобразователь

Изобретение относится к области автоматики и может быть использовано для преобразования светового сигнала в струйный. Оптоструйный преобразователь содержит бистабильный струйный элемент с каналом питания, с первым и вторым выходными каналами, с первым управляющим каналом, который соединен...
Тип: Изобретение
Номер охранного документа: 0002601276
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8347

Устройство для измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидкостей в трубопроводах, в частности, при трубопроводной транспортировке нефтепродуктов и сжиженных газов. Устройство для измерения расхода жидких сред содержит первый...
Тип: Изобретение
Номер охранного документа: 0002601538
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.a80f

Способ измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения массового расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов, продуктов химического производства, в т.ч. химически агрессивных...
Тип: Изобретение
Номер охранного документа: 0002611336
Дата охранного документа: 21.02.2017
Показаны записи 111-120 из 169.
13.01.2017
№217.015.73e2

Способ измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких сред в трубопроводах. Радиоволну направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока. Отраженную волну смешивают с частью падающей волны...
Тип: Изобретение
Номер охранного документа: 0002597666
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.748f

Способ измерения количества и качества топлива в баке с трехслойной смесью "воздух-топливо-вода" и устройство для его осуществления

Использование: для определения количества топлива и его качества в баках транспортных средств. Сущность изобретения заключается в том, что способ измерения количества и качества топлива в баке с трехслойной смесью «воздух - топливо - вода», по которому в размещенном в баке резонаторе возбуждают...
Тип: Изобретение
Номер охранного документа: 0002597682
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7496

Радиоволновое устройство для измерения скорости потока жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидких сред в трубопроводах. Устройство содержит генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к...
Тип: Изобретение
Номер охранного документа: 0002597663
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7e50

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости, в частности оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, охлаждающей жидкости в ядерных реакторах и др. Предлагается бесконтактный...
Тип: Изобретение
Номер охранного документа: 0002601283
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7e51

Устройство для измерения концентрации сыпучего материала

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. Техническим результатом заявляемого технического решения является упрощение процедуры измерения концентрации и повышение точности измерения. Устройство...
Тип: Изобретение
Номер охранного документа: 0002601275
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7eb9

Устройство для измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких сред в трубопроводах. Устройство содержит генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению...
Тип: Изобретение
Номер охранного документа: 0002601273
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7eea

Способ пневматического частотного измерения ускорения движения тела

Изобретение относится к устройствам, использующимся при навигации летательных аппаратов, при измерении ускорения. Техническим результатом является повышение достоверности (уменьшения погрешности) за счет включения в прямую цепь интегратора, линеаризующего выходную характеристику системы...
Тип: Изобретение
Номер охранного документа: 0002601271
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7f1b

Оптоструйный преобразователь

Изобретение относится к области автоматики и может быть использовано для преобразования светового сигнала в струйный. Оптоструйный преобразователь содержит бистабильный струйный элемент с каналом питания, с первым и вторым выходными каналами, с первым управляющим каналом, который соединен...
Тип: Изобретение
Номер охранного документа: 0002601276
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8347

Устройство для измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидкостей в трубопроводах, в частности, при трубопроводной транспортировке нефтепродуктов и сжиженных газов. Устройство для измерения расхода жидких сред содержит первый...
Тип: Изобретение
Номер охранного документа: 0002601538
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.a80f

Способ измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения массового расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов, продуктов химического производства, в т.ч. химически агрессивных...
Тип: Изобретение
Номер охранного документа: 0002611336
Дата охранного документа: 21.02.2017
+ добавить свой РИД