×
10.09.2014
216.012.f3f1

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНОЙ СФЕРИЧНОСТИ ОТРАЖАЮЩЕЙ ПОВЕРХНОСТИ

Вид РИД

Изобретение

Аннотация: Способ определения остаточной сферичности отражающей поверхности относится к измерительной технике и может быть использован для определения остаточной сферичности плоских зеркал и радиусов кривизны крупногабаритных сферических зеркал. Способ заключается в том, что измерительный прибор устанавливают в рабочее положение перед отражающей поверхностью, расположенной в вертикальной плоскости, и настраивают на автоколлимационное изображение, причем в качестве измерительного прибора используют, по меньшей мере, один автоколлимационный теодолит, остаточную сферичность определяют по измеренным значениям углов, считанным по вертикальному кругу теодолита при совмещении сетки теодолита с ее автоколлимационным изображением, измерение углов проводят для двух точек отражающей поверхности, максимально разнесенных на поверхности и расположенных на одной вертикали, а остаточную сферичность рассчитывают по формуле: где: Δd - разница высот установки теодолита относительно Земли, м α, β - значения углов вертикального круга теодолита при совмещении сетки теодолита с ее автоколлимационным изображением для верхнего и нижнего положения теодолита соответственно, град. Технический результат - сокращение времени определения остаточной сферичности за счет сокращения времени, необходимого на сборку измеряющей схемы. 1 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике и может быть использовано для определения остаточной сферичности плоских зеркал, а также определения радиусов кривизны крупногабаритных (от 500 мм) сферических зеркал.

Известен способ Коммона [1], где определяют отклонение от идеальной плоскостности, т.е. остаточную сферичность плоского зеркала. В этом способе проверяемую деталь устанавливают вблизи точной вогнутой сферической поверхности под известным углом<р к ее оси и на расстоянии от центра кривизны сферической поверхности. Из него на проверяемую деталь направляют расходящийся гомоцентрический пучок. Пучок на своем прямом и обратном пути дважды отражается от проверяемой поверхности. При наличии на детали отступлений от идеальной плоскостности гомоцентричность пучка нарушается и может быть обнаружена и измерена с помощью теневых или интерференционных приборов.

Способ Коммона дает достаточно точные значения остаточной сферичности проверяемого зеркала, но требует долгой и точной сборки оптической схемы, что в полевых условиях не приемлемо, а также требует иметь в наличии элементы с точной вогнутой сферической поверхностью и использования теневых или интерференционных приборов для образования гомоцентрического пучка и анализа его негомоцентричности.

Наиболее близким по техническим характеристикам к предлагаемому способу является автоколлимационный способ определения больших радиусов кривизны для сферических отражающих поверхностей, мало отличающихся от плоских, т.е. остаточной сферичности [2], где для измерения используют автоколлимационные трубы. Автоколлимационную зрительную трубу предварительно выверяют на бесконечность. Затем деталь с измеряемой поверхностью располагают перед объективом зрительной трубы и перемещением окуляра в ней добиваются получения резкого автоколлимационного изображения сетки. Определив величину смещения окуляра и измерив расстояние от измеряемой поверхности детали до передней главной плоскости объектива и его фокусное расстояние, вычисляют радиус кривизны.

Точность измерения автоколлимационным способом в основном зависит от точности фокусирования автоколлимационной зрительной трубы на центр кривизны. Большие габариты измерительной схемы делают проблематичным осуществление способа в полевых условиях и мешают оперативному получению результатов.

Технический результат по заявляемому способу заключается в сокращении времени определения остаточной сферичности за счет сокращения времени необходимого на сборку измеряющей схемы, а также в расширении возможностей экспериментального применения.

Технический результат достигается тем, что в способе определения остаточной сферичности отражающей поверхности, заключающемся в том, что измерительный прибор устанавливают в рабочее положение перед отражающей поверхностью, расположенной в вертикальной плоскости, и настраивают на автоколлимационное изображение, новым является то, что в качестве измерительного прибора используют, по меньшей мере, один автоколлимационный теодолит, остаточную сферичность определяют по измеренным значениям углов, считанным по вертикальному кругу теодолита при совмещении сетки теодолита с ее автоколлимационным изображением, измерение углов проводят для двух точек отражающей поверхности, максимально разнесенных на поверхности и расположенных на одной вертикали, а остаточную сферичность рассчитывают по формуле:

,

где:

Δd - разница высот установки теодолита относительно Земли, м;

α, β - значения углов вертикального круга теодолита при совмещении сетки теодолита с ее автоколлимационным изображением для верхнего и нижнего положения теодолита соответственно, град.

Кроме того, используют теодолит с компенсатором места нуля вертикального круга.

Если величина остаточной сферичности имеет отрицательное значение, то поверхность является выпуклой, если положительное значение - вогнутой.

Техническим результатом предлагаемого изобретения является сокращение времени измерений, обеспечиваемое тем, что по сравнению с известным способом, в котором автоколлимационное изображение получают при помощи автоколлимационной зрительной трубы с длиннофокусным объективом, средства измерения заменяются, по крайней мере, на один автоколлимационный теодолит, который компактен, мобилен и требует меньше времени на предварительную настройку. Применение теодолитов с самоустанавливающимся нулем вертикального круга позволяет не выполнять прецизионное горизонтирование.

Благодаря компактности теодолит можно устанавливать непосредственно перед проверяемой отражающей поверхностью, не производя ее демонтажа при проведении измерений.

Способ не требует сборки сложных оптических схем, нет необходимости иметь в наличии пробники или образцы с подходящими характеристиками для калибровки поверхности, расчет остаточной сферичности проводится в один этап, подстановкой значений измеренных углов и разницей высот теодолитов в формулу. Из выше изложенного вытекает, что способ очень прост, мобилен и удобен для использования в полевых условиях.

На Фиг. показана схема для реализации способа определения остаточной сферичности крупногабаритных плоских отражающих поверхностей с помощью двух автоколлимационных теодолитов, где 1 - плоское зеркало, 2 - автоколлимационные теодолиты, Δd - разница высот установки теодолита относительно Земли, м; α, β - значения углов вертикального круга теодолита при совмещении сетки теодолита с ее автоколлимационным изображением для верхнего и нижнего положения теодолита соответственно, град; R - остаточная сферичность зеркала.

Принцип реализации способа состоит в том, что в качестве измерительного прибора используют, по меньшей мере, один автоколлимационный теодолит 1. Теодолит устанавливают перед отражающей поверхностью 2, установленной в вертикальное положение, и выполняют его горизонтирование. Теодолит настраивают на автоколлимационное изображение, совмещают сетку теодолита с ее автоколлимационным изображением, совмещают штрихи лимба и считывают значение угла (измеряется угол между нормалью к отражающей поверхности и горизонтальной плоскостью). Для определения остаточной сферичности измерение углов проводят для двух точек отражающей поверхности, максимально разнесенных на поверхности и расположенных на одной вертикали.

В примере конкретного выполнения заявляемый способ был реализован с помощью следующих технических средств: двух теодолитов марки ЗТ2А с самоустанавливающимся нулем вертикального круга. Объектом измерений являлось плоское зеркало диаметром 760 мм (зеркало изготовлено из стекла марки К8).

Измерения проводились по следующей схеме:

1. Теодолит устанавливался перед вертикально установленным зеркалом на максимально возможной для получения автоколлимационного изображения высоте.

2. Горизонтировался и настраивался на автоколлимационное изображение. С теодолита считывался полученный угол по вертикальному кругу. Для конкретного случая угол составил α=90°59'43".

3. Измерялась высота установки теодолита. Она составила dl=l,864 м.

4. Аналогично измерялись угол и высота в нижнем положении теодолита. Угол составил β=90°59'23", высота d2=l,l 14 м.

5. По формуле рассчитывалась остаточная сферичность плоского зеркала. Она составила 7800 м.

Исходя из расчетной формулы и точности используемых теодолитов, доверительный интервал определения остаточной сферичности находился в пределах ±50 км. Относительная погрешность составила ~16%.

Источники информации

1. Максутов Д.Д. Изготовление и исследование астрономической оптики - М.: «Наука». Главная редакция физико-математической литературы, 1984. - 272 с.

2. Афанасьев В.А. Оптические измерения - М.: Гостехтеоретиздат, 1968. - 409 с.


СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНОЙ СФЕРИЧНОСТИ ОТРАЖАЮЩЕЙ ПОВЕРХНОСТИ
Источник поступления информации: Роспатент

Показаны записи 181-190 из 657.
20.12.2014
№216.013.1242

Измеритель вибрации

Изобретение относится к информационно-измерительной технике и может быть использовано в контрольно-сигнальной аппаратуре для измерения вибрации. Измеритель вибрации содержит вибропреобразователь, параллельную RC-цепь, первый операционный усилитель, первый и второй резистивные делители. Для...
Тип: Изобретение
Номер охранного документа: 0002536097
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1244

Стенд для испытаний объекта на температурные воздействия

Изобретение относится к испытательному оборудованию и может быть использовано при испытании объектов на температурные воздействия. Стенд содержит приспособление для установки объекта испытаний, источник температурного воздействия с системами подачи и слива воды, установленный под объектом...
Тип: Изобретение
Номер охранного документа: 0002536099
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.131e

Способ изготовления магниторезистивного датчика

Изобретение относится к области автоматики и магнитометрии. Способ изготовления магниторезистивного датчика заключается в формировании на изолирующей подложке моста Уинстона путем вакуумного напыления магниторезистивной структуры с последующим формированием магниторезистивных полосок методом...
Тип: Изобретение
Номер охранного документа: 0002536317
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1321

Способ навигации летательных аппаратов

Изобретение относится к области радиолокационной техники и может быть использовано при построении различных радиолокационных систем, предназначенных для управления движением летательных аппаратов. Технический результат изобретения - повышение точности навигации летательных аппаратов путем...
Тип: Изобретение
Номер охранного документа: 0002536320
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.132a

Устройство для измерения динамических деформаций

Изобретение относится к измерительной технике. Устройство для измерения динамических деформаций содержит измерительные тензорезисторы, опорные резисторы, усилитель, электронно-вычислительную машину с программным обеспечением, источник постоянного напряжения, эталонный резистор, коммутатор,...
Тип: Изобретение
Номер охранного документа: 0002536329
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.17a5

Теплообменный аппарат погружного типа для ядерного реактора со свинцовым теплоносителем

Изобретение относится к области теплообменных аппаратов с подвижным промежуточным теплоносителем, а именно к теплообменным аппаратам погружного типа для ядерного реактора со свинцовым теплоносителем. Аппарат содержит корпус, внутри которого размещены теплообменные трубы. Корпус разделен на...
Тип: Изобретение
Номер охранного документа: 0002537481
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a09

Гермоввод

Изобретение относится к области изготовления миниатюрных гермовводов и может быть использовано во всех изделиях электровакуумного приборостроения. Гермоввод состоит из наружного корпуса, в котором установлено не менее одного неметаллизированного изолятора, внутри которого размещен один или...
Тип: Изобретение
Номер охранного документа: 0002538093
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b02

Многоканальный счетчик импульсов

Изобретение относится к счетчикам импульсов. Техническим результатом является повышение помехоустойчивости в режиме ОЗУ. Счетчик включает ОЗУ 12 и ОЗУ 1. Группы информационных выводов и адресных выходов устройства управления 2 соединены с группами информационных выводов и адресных входов...
Тип: Изобретение
Номер охранного документа: 0002538342
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1be8

Способ контроля срабатывания высокоточных высоковольтных безопасных электродетонаторов

Изобретение относится к области контрольно-измерительной техники и может быть использовано при проведении взрывных работ для контроля срабатывания высокоточных высоковольтных безопасных электродетонаторов (ЭД), не содержащих в своем составе инициирующих взрывчатых веществ (ВВ). Способ контроля...
Тип: Изобретение
Номер охранного документа: 0002538572
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1cc6

Способ получения композиционных порошков тугоплавких и редкоземельных металлов

Изобретение относится к области порошковой металлургии. Проводят магниетермическое восстановление хлоридов металлов в расплаве хлористого калия при нагревании и перемешивании. Восстановленную реакционную массу выдерживают без перемешивания в течение не менее 30 минут при 800-900°C, затем ее...
Тип: Изобретение
Номер охранного документа: 0002538794
Дата охранного документа: 10.01.2015
Показаны записи 181-190 из 475.
20.12.2014
№216.013.1242

Измеритель вибрации

Изобретение относится к информационно-измерительной технике и может быть использовано в контрольно-сигнальной аппаратуре для измерения вибрации. Измеритель вибрации содержит вибропреобразователь, параллельную RC-цепь, первый операционный усилитель, первый и второй резистивные делители. Для...
Тип: Изобретение
Номер охранного документа: 0002536097
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1244

Стенд для испытаний объекта на температурные воздействия

Изобретение относится к испытательному оборудованию и может быть использовано при испытании объектов на температурные воздействия. Стенд содержит приспособление для установки объекта испытаний, источник температурного воздействия с системами подачи и слива воды, установленный под объектом...
Тип: Изобретение
Номер охранного документа: 0002536099
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.131e

Способ изготовления магниторезистивного датчика

Изобретение относится к области автоматики и магнитометрии. Способ изготовления магниторезистивного датчика заключается в формировании на изолирующей подложке моста Уинстона путем вакуумного напыления магниторезистивной структуры с последующим формированием магниторезистивных полосок методом...
Тип: Изобретение
Номер охранного документа: 0002536317
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1321

Способ навигации летательных аппаратов

Изобретение относится к области радиолокационной техники и может быть использовано при построении различных радиолокационных систем, предназначенных для управления движением летательных аппаратов. Технический результат изобретения - повышение точности навигации летательных аппаратов путем...
Тип: Изобретение
Номер охранного документа: 0002536320
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.132a

Устройство для измерения динамических деформаций

Изобретение относится к измерительной технике. Устройство для измерения динамических деформаций содержит измерительные тензорезисторы, опорные резисторы, усилитель, электронно-вычислительную машину с программным обеспечением, источник постоянного напряжения, эталонный резистор, коммутатор,...
Тип: Изобретение
Номер охранного документа: 0002536329
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.17a5

Теплообменный аппарат погружного типа для ядерного реактора со свинцовым теплоносителем

Изобретение относится к области теплообменных аппаратов с подвижным промежуточным теплоносителем, а именно к теплообменным аппаратам погружного типа для ядерного реактора со свинцовым теплоносителем. Аппарат содержит корпус, внутри которого размещены теплообменные трубы. Корпус разделен на...
Тип: Изобретение
Номер охранного документа: 0002537481
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a09

Гермоввод

Изобретение относится к области изготовления миниатюрных гермовводов и может быть использовано во всех изделиях электровакуумного приборостроения. Гермоввод состоит из наружного корпуса, в котором установлено не менее одного неметаллизированного изолятора, внутри которого размещен один или...
Тип: Изобретение
Номер охранного документа: 0002538093
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b02

Многоканальный счетчик импульсов

Изобретение относится к счетчикам импульсов. Техническим результатом является повышение помехоустойчивости в режиме ОЗУ. Счетчик включает ОЗУ 12 и ОЗУ 1. Группы информационных выводов и адресных выходов устройства управления 2 соединены с группами информационных выводов и адресных входов...
Тип: Изобретение
Номер охранного документа: 0002538342
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1be8

Способ контроля срабатывания высокоточных высоковольтных безопасных электродетонаторов

Изобретение относится к области контрольно-измерительной техники и может быть использовано при проведении взрывных работ для контроля срабатывания высокоточных высоковольтных безопасных электродетонаторов (ЭД), не содержащих в своем составе инициирующих взрывчатых веществ (ВВ). Способ контроля...
Тип: Изобретение
Номер охранного документа: 0002538572
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1cc6

Способ получения композиционных порошков тугоплавких и редкоземельных металлов

Изобретение относится к области порошковой металлургии. Проводят магниетермическое восстановление хлоридов металлов в расплаве хлористого калия при нагревании и перемешивании. Восстановленную реакционную массу выдерживают без перемешивания в течение не менее 30 минут при 800-900°C, затем ее...
Тип: Изобретение
Номер охранного документа: 0002538794
Дата охранного документа: 10.01.2015
+ добавить свой РИД