×
10.09.2014
216.012.f365

Результат интеллектуальной деятельности: БЕСКОНТАКТНОЕ РАДИОВОЛНОВОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ

Вид РИД

Изобретение

№ охранного документа
0002528131
Дата охранного документа
10.09.2014
Аннотация: Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Технический результат - повышение точности достигается тем, что устройство содержит генератор сверхвысокочастотных электромагнитных волн с частотой, управляемой модулирующим генератором линейно изменяющегося напряжения, подсоединенный через первый вывод делителя мощности и циркулятор к приемо-передающей антенне для излучения электромагнитных волн в сторону поверхности диэлектрической пластины по нормали к ней, смеситель, вычислительное устройство, являющееся выходным блоком, соединенное с выходом смесителя и с модулирующим генератором, вторую приемо-передающую антенну для излучения электромагнитных волн в сторону поверхности диэлектрической пластины по нормали к ней, соединенную со вторым выводом делителя мощности через первый умножитель частоты в N раз и второй циркулятор, выход которого соединен со вторым входом смесителя, при этом первый вход смесителя соединен со вторым выходом первого циркулятора через второй умножитель частоты в N раз. 1 ил.
Основные результаты: Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов, содержащее генератор сверхвысокочастотных электромагнитных волн с частотой, управляемой модулирующим генератором линейно изменяющегося напряжения, подсоединенный через первый вывод делителя мощности и циркулятор к приемо-передающей антенне для излучения электромагнитных волн в сторону поверхности диэлектрической пластины по нормали к ней, смеситель, вычислительное устройство, являющееся выходным блоком, соединенное с выходом смесителя и с модулирующим генератором, отличающееся тем, что дополнительно содержит вторую приемо-передающую антенну для излучения электромагнитных волн в сторону поверхности диэлектрической пластины по нормали к ней, соединенную со вторым выводом делителя мощности через первый умножитель частоты в N раз и второй циркулятор, выход которого соединен со вторым входом смесителя, при этом первый вход смесителя соединен со вторым выходом первого циркулятора через второй умножитель частоты в N раз.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов, таких как стены зданий, ледовое или дорожное покрытие в процессе мониторинга при использовании транспортных средств.

Известны устройства для дистанционного бесконтактного измерения толщины ледового покрова, использующие принцип действия импульсного радиолокатора. Размещенное на автомобиле или вездеходе оно позволяет измерять толщину льда или другого подстилающего покрытия в процессе движения. Однако получить большую точность в определении толщины при помощи импульсного радиолокатора затруднительно на малых расстояниях порядка 0,5-1,5 метров, как это имеет место в данном случае. Малое время распространения радиоволн приводит к уменьшению ширины зондирующего импульса, которая, в свою очередь, ограничена по крайней мере одним периодом частоты заполнения. При высокой частоте заполнения проникающая способность радиоволн в диэлектрических материалах резко падает.

Известно также техническое решение - радиоволновый измеритель толщины диэлектрических материалов, использующий частотную модуляцию зондирующего сигнала, по технической сущности наиболее близкое к предлагаемому способу и принятое в качестве прототипа (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989, 208 с.). Данное устройство содержит: генератор сверхвысокочастотных (СВЧ) электромагнитных волн с частотой, управляемой модулирующим генератором линейно изменяющегося напряжения (ЛЧМ), подсоединенный через первый вывод делителя мощности и циркулятор к антенне для излучения электромагнитных волн в сторону поверхности диэлектрической пластины по нормали к ней и приему отраженных электромагнитных волн; смеситель излучаемых и принимаемых электромагнитных волн, к первому и второму входам которого подсоединены соответственно СВЧ генератор через второй вывод делителя мощности и антенна отраженных электромагнитных волн через циркулятор, выход смесителя подсоединен ко входу вычислительного устройства, являющегося выходным блоком. В результате временной задержки между волной, попадающей на смеситель напрямую от СВЧ генератора и волной, прошедшей через диэлектрическую пластину и вернувшейся обратно после отражения от ее нижней границы, на выходе смесителя выделяется сигнал разностной частоты. Частота этого сигнала пропорциональна толщине диэлектрической пластины и квадратному корню от ее диэлектрической проницаемости. Точность определения толщины или разрешающая способность при данном методе прямо пропорциональна девиации частоты.

Недостатком этого толщиномера является тот факт, что антенна устройства должна быть максимально согласована с материалом измеряемой пластины, чтобы устранить отражение от ее передней поверхности. Поэтому данное устройство не приспособлено для дистанционного применения. Если же применить антенну, согласованную с открытым пространством, то сигнал, отраженный от верхней стороны диэлектрической пластины, внесет сильные искажения в результирующий сигнал, что приведет к снижению точности измерения толщины.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат в предлагаемом устройстве для бесконтактного измерения диэлектрических пластин достигается тем, что оно содержит: СВЧ генератор, управляемый модулятором, соединенный через первый вывод делителя мощности и первый циркулятор с первой приемо-передающей антенной для излучения электромагнитных волн в сторону измеряемой поверхности по нормали; вторая приемо-передающая антенна для излучения в сторону измеряемой пластины по нормали, соединенная со вторым выходом делителя мощности через первый умножитель частоты и циркулятор; смеситель, первый вход которого соединен с выходом первого циркулятора через второй умножитель частоты, а второй вход - с выходом второго циркулятора; выходное вычислительное устройство, соединенное с выходом смесителя и с модулирующим генератором.

Предлагаемое устройство поясняется чертежом, где приведена его структурная схема.

Устройство содержит СВЧ генератор - 1, модулятор - 2, делитель мощности - 3, первый циркулятор - 4, первая антенна - 5, первый умножитель частоты - 6, второй циркулятор -7, вторая антенна - 8, второй умножитель частоты - 9, смеситель - 10, вычислительный блок - 11, диэлектрическая пластина - 12.

Устройство работает следующим образом.

СВЧ генератор 1 передает электромагнитные колебания с частотой, изменяющейся по линейному закону с периодом TM, от начальной частоты F до частоты F+ΔF, где ΔF -девиация частоты. Часть этой волны через циркулятор 4 излучается антенной 5 по нормали к поверхности диэлектрической пластины. Принимаемая этой антенной волна состоит из суммы двух волн, отраженных от передней и от задней поверхности диэлектрической пластины 12.

где τR=2R/c - время распространения электромагнитной волны до передней поверхности пластины и обратно; R - расстояние до пластины; с - скорость света в воздухе; A1 - амплитуда принимаемой волны от передней стороны пластины; - время распространения электромагнитной волны в пластине толщиной d и диэлектрической проницаемостью ε; A2 - амплитуда принимаемой волны от задней стороны пластины. После прохождения этой волны через циркулятор 4 и умножитель частоты 9, на вход смесителя 10 поступает сигнал:

где N - целое число - коэффициент умножения блока 9.

На второй вход смесителя 10 поступает сигнал, который от второго выхода делителя мощности 3 через умножитель частоты 6, циркулятор 7 и антенну 8 излучается по нормали к пластине 12, отражается от нее и возвращается обратно через эти же антенну и циркулятор:

Известно, что с ростом частоты СВЧ генератора резко возрастает затухание в таких диэлектрических материалах, как дерево, бетон, лед. Это справедливо для частот, применяемых в радиолокации от 1,5÷2 ГГц и выше. При кратном повышении частоты затухание для многих практических материалов возрастает в десятки и сотни раз. Поэтому в уравнении (3) в отличие от уравнения (2) можно пренебречь вторым слагаемым. В результате для смесителя 10 опорным будет сигнал В, имеющий временную задержку τR.

На выходе смесителя 10 после перемножения сигналов А с В и низкочастотной фильтрации выделится сигнал разностной частоты:

Поскольку , разностная частота или частота биений этого сигнала определится как:

Окончательно толщина диэлектрической пластины с известной диэлектрической проницаемостью ε после измерения Fb с учетом TM и вычисления по формуле

определяется в выходном вычислительном блоке 11. Точность определится ошибкой дискретности метода, которая в этом случае будет в N раз меньше, чем у прототипа:

Таким образом, устройство по сравнению с прототипом приобрело новое свойство - более высокую точность определения толщин плоских диэлектрических материалов при бесконтактном способе измерения. Благодаря этому, устройство может быть применено для мониторинга толщин различных подстилающих поверхностей, в том числе льда, с борта транспортных средств, дистанционном измерении толщин стен и определения пустот в разных диэлектрических материалах.

Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов, содержащее генератор сверхвысокочастотных электромагнитных волн с частотой, управляемой модулирующим генератором линейно изменяющегося напряжения, подсоединенный через первый вывод делителя мощности и циркулятор к приемо-передающей антенне для излучения электромагнитных волн в сторону поверхности диэлектрической пластины по нормали к ней, смеситель, вычислительное устройство, являющееся выходным блоком, соединенное с выходом смесителя и с модулирующим генератором, отличающееся тем, что дополнительно содержит вторую приемо-передающую антенну для излучения электромагнитных волн в сторону поверхности диэлектрической пластины по нормали к ней, соединенную со вторым выводом делителя мощности через первый умножитель частоты в N раз и второй циркулятор, выход которого соединен со вторым входом смесителя, при этом первый вход смесителя соединен со вторым выходом первого циркулятора через второй умножитель частоты в N раз.
БЕСКОНТАКТНОЕ РАДИОВОЛНОВОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 261-270 из 276.
12.04.2023
№223.018.4a44

Устройство для энергоснабжения привязного беспилотного летательного аппарата

Устройство для энергоснабжения привязного беспилотного летательного аппарата содержит наземный источник питания, силовой кабель, два бортовых понижающих преобразователя, управляющий ШИМ-контроллер, два формирователя сигнала ошибки. Обеспечивается повышение эффективности энергоснабжения...
Тип: Изобретение
Номер охранного документа: 0002793830
Дата охранного документа: 06.04.2023
20.04.2023
№223.018.4ac8

Способ и система автономного децентрализованного коллективного определения положения движущихся на трассе объектов автотранспорта

Изобретение относится к области вычислительной техники и направлено на разработку способа и системы определения местоположения движущихся объектов автономно, без привлечения внешних средств, и децентрализованно, без выделения в системе центра управления. Способ автономного децентрализованного...
Тип: Изобретение
Номер охранного документа: 0002778861
Дата охранного документа: 26.08.2022
20.04.2023
№223.018.4b66

Способ экспериментальных исследований аэромеханики и динамики полёта беспилотных летательных аппаратов и устройство для его осуществления

Изобретение относится к области авиационной испытательной техники, в частности к методам и средствам исследования аэромеханики и динамики полета беспилотных летательных аппаратов. При реализации способа экспериментально исследуют характеристики беспилотного летательного аппарата при заданном...
Тип: Изобретение
Номер охранного документа: 0002767584
Дата охранного документа: 17.03.2022
20.04.2023
№223.018.4bb6

Беспилотный летательный аппарат

Изобретение относится к малогабаритным авиационным системам с дистанционно пилотируемыми летательными аппаратами. Беспилотный летательный аппарат содержит крестовину с закрепленным в ее центре корпусом с боковыми стенками и крышкой, на которой установлена аккумуляторная батарея. На концах лучей...
Тип: Изобретение
Номер охранного документа: 0002760832
Дата охранного документа: 30.11.2021
20.04.2023
№223.018.4bcd

Устройство для измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств Устройство для измерения физических свойств жидкости содержит волноводный резонатор в виде отрезка коаксиальной длинной линии с двумя, рабочим и эталонным,...
Тип: Изобретение
Номер охранного документа: 0002760641
Дата охранного документа: 29.11.2021
20.04.2023
№223.018.4c18

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб. Техническим результатом изобретения является упрощение процесса измерения. Технический результат достигается тем, что в способе измерения длины металлической трубы, при...
Тип: Изобретение
Номер охранного документа: 0002765897
Дата охранного документа: 04.02.2022
15.05.2023
№223.018.57ec

Способ измерения физических свойств диэлектрической жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002767585
Дата охранного документа: 17.03.2022
15.05.2023
№223.018.57ee

Устройство для измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике, в частности к устройствам для бесконтактного измерения внутреннего диаметра металлических труб. Техническим результатом является расширение функциональных возможностей устройства. Технический результат достигается тем, что устройство, содержащее...
Тип: Изобретение
Номер охранного документа: 0002767586
Дата охранного документа: 17.03.2022
16.05.2023
№223.018.5dad

Устройство для определения концентрации выхлопных газов в газоходе дизельных автомобилей и очистки от газов

Изобретение относится к очистке отработавших газов дизельных двигателей внутреннего сгорания и регенерации сажевых фильтров. Предложенное устройство содержит сажевый фильтр, первый СВЧ-генератор, второй СВЧ-генератор, усилитель и компаратор. При этом в него введены первый элемент ввода...
Тип: Изобретение
Номер охранного документа: 0002757745
Дата охранного документа: 21.10.2021
21.05.2023
№223.018.6913

Устройство для измерения уровня диэлектрической жидкости в емкости

Изобретение относится к измерительной технике и служит для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости. Технический результат - повышение точности измерений. Результат достигается тем, что в устройстве для измерения уровня диэлектрической жидкости...
Тип: Изобретение
Номер охранного документа: 0002794447
Дата охранного документа: 18.04.2023
Показаны записи 181-181 из 181.
18.10.2019
№219.017.d7e6

Измеритель вектора перемещения транспортного средства

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения перемещения транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - увеличение точности измерения достигается тем, что устройство измерения перемещения...
Тип: Изобретение
Номер охранного документа: 0002703281
Дата охранного документа: 16.10.2019
+ добавить свой РИД