×
10.09.2014
216.012.f364

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СВОЙСТВА ДИЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА

Вид РИД

Изобретение

№ охранного документа
0002528130
Дата охранного документа
10.09.2014
Аннотация: Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение точности измерения. Устройство для измерения свойства диэлектрического материала содержит генератор электромагнитных колебаний, первый развязывающий элемент, соединенный выходом со входом фазовращателя, передающую и приемную антенны, детектор, подключенный выходом к блоку обработки информации, и аттенюатор. Для достижения технического результата введены первый и второй волноводные тройники и второй развязывающий элемент, причем выход генератора электромагнитных колебаний соединен с первым плечом первого волноводного тройника, второе плечо которого подключено к входу первого развязывающего элемента, выход фазовращателя через аттенюатор соединен с первым плечом второго волноводного тройника, второе плечо которого подключено к приемной антенне, третье плечо второго волноводного тройника соединено со входом детектора, третье плечо первого волноводного тройника через второй развязывающий элемент соединен с передающей антенной. 1 ил.
Основные результаты: Устройство для измерения свойства диэлектрического материала, содержащее генератор электромагнитных колебаний, первый развязывающий элемент, соединенный выходом со входом фазовращателя, передающую и приемную антенны, детектор, подключенный выходом к блоку обработки информации и аттенюатор, отличающееся тем, что в него введены первый и второй волноводные тройники и второй развязывающий элемент, причем выход генератора электромагнитных колебаний соединен с первым плечом первого волноводного тройника, второе плечо которого подключено к входу первого развязывающего элемента, выход фазовращателя через аттенюатор соединен с первым плечом второго волноводного тройника, второе плечо которого подключено к приемной антенне, третье плечо второго волноводного тройника соединено со входом детектора, третье плечо первого волноводного тройника через второй развязывающий элемент соединено с передающей антенной.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известно устройство, реализующее радиометрический контроль состава и свойств диэлектрических материалов по уровню их радиотеплового электромагнитного излучения (Куценко В.П. и др. «Радиометрический контроль состава и свойств диэлектрических материалов», Международная Крымская микроволновая конференция (КрыМиКо' 2006) «СВЧ-техника и телекоммуникационные технологии», материалы конф., Т.2, секция 7/1: Измерение параметров материалов. - Ст.7.11. - С.762-764). В устройстве, содержащем приемную антенну, ее электрический эквивалент, аттенюатор, СВЧ переключатель, избирательный приемник, генератор, АЦП, микроэвм, цифровой индикатор и регистрирующий прибор, измерением мощности (энергетического спектра) на основе алгоритма обработки информации определяют искомый параметр.

Недостатком этого известного устройства является сложность процедуры приема мощности слабых радиоизлучений и создания алгоритма обработки информативного сигнала.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип амплитудно-фазовый измеритель свойства материала, работающий по схеме «на прохождение» (С.В. Мищенко, Н.А. Малков. Проектирование радиоволновых (СВЧ) приборов неразрушающего контроля. Учеб. пособие. Тамбов: Изд-во ТГТУ, 2003, с.12-13). Работа этого известного радиоволного прибора контроля состоит в том, что энергия СВЧ от клистронного генератора подается через вентиль в волновод и аттенюатор к излучающему рупору. Энергия проходит через образец, принимается приемной антенной и через измерительный аттенюатор поступает на детектор, после чего сигнал усиливается и подается на индикаторный прибор. Такая схема позволяет проводить контроль свойств материалов по величине затухания (ослабление мощности) энергии СВЧ в образце, отсчитываемого по шкале аттенюатора, с помощью которого величина сигнала индикаторного прибора поддерживается на постоянном уровне.

Недостатком этого бесконтактного измерителя свойства материала следует считать невысокую точность измерения из-за нестабильности работы клистронного генератора по мощности.

Техническим результатом заявляемого решения является повышение точности измерения.

Технический результат достигается тем, что в устройство для измерения свойства диэлектрического материала, содержащее генератор электромагнитных колебаний, первый развязывающий элемент, соединенный выходом со входом фазовращателя, передающую и приемную антенны, детектор, подключенный выходом к блоку обработки информации и аттенюатор, введены первый и второй волноводные тройники и второй развязывающий элемент, причем выход генератор электромагнитных колебаний соединен с первым плечом первого волноводного тройника, второе плечо которого подключено ко входу первого развязывающего элемента, выход фазовращателя через аттенюатор соединен с первым плечом второго волноводного тройника, второе плечо которого подключено к приемной антенне, третье плечо второго волноводного тройника соединено со входом детектора, третье плечо первого волноводного тройника через второй развязывающий элемент соединен с передающей рупорной антенной.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что изменение разности фаз двух сигналов, обусловленное изменением свойства материала, дает возможность измерять свойство контролируемого объекта.

Наличие в заявляемом устройстве совокупности перечисленных существующих признаков, позволяет решить поставленную задачу измерения свойства материала на основе использования фазового сдвига между двумя электромагнитными сигналами с желаемым техническим результатом, т.е. повышением точности измерения.

На чертеже схематично представлено предложенное устройство.

Устройство содержит генератор электромагнитных колебаний 1, соединенный выходом с первым плечом первого волноводного тройника 2, первый развязывающий элемент 3, фазовращатель 4, подключенный выходом через аттенюатор 5 к первому плечу второго волноводного тройника 6, детектор 7, соединенный выходом со входом блока обработки информации 8, приемную антенну 9, второй развязывающий элемент 10, подключенный выходом к передающей антенне 11. На чертеже цифрой 12 обозначен объект контроля.

Устройство работает следующим образом. С выхода генератора электромагнитных колебаний 1 сигнал поступает в первое плечо первого волноводного тройника 2, после чего сигнал поровну разделяется между вторым и третьим плечами этого тройника. Далее сигналы со второго и третьего плеч поступают на входы первого и второго развязывающих элементов (вентили) 3 и 10 соответственно. Здесь вентили используются для прохождения электромагнитной волны в одну сторону (от первого тройника к передающее антенне и фазовращателю). Сигнал с выхода первого развязывающего элемента подводится на вход фазовращателя 4 и далее поступает на вход аттенюатора 5. После этого выходной сигнал последнего поступает на первое плечо второго волноводного тройника 6. Одновременно с этим выходной сигнал второго развязывающего элемента поступает в передающую антенну 11. Излучающим сигналом передающей антенны зондируют контролируемый материал 12. В данном случае воздействие электромагнитного сигнала на объект приводит к тому, что часть сигнала отражается от раздела двух сред воздух - поверхность материала, а часть - проходит через материал. Прошедший через материал сигнал улавливается приемной рупорной антенной 9 и далее он поступает на второе плечо второго волноводного тройника 6.

Суть принципа действия предлагаемого устройства состоит в использовании преломления электромагнитной волны в диэлектрических материалах (немагнитные среды). Как известно, при преломлении волны в диэлектрической среде волна, прошедшая через нее, может иметь фазовый сдвиг (закон Снеллиуса) по отношению падающей на поверхность среды волны (угол преломления волны зависит от угла падения падающей волны и диэлектрической проницаемости среды при нулевом значении диэлектрической проницаемости воздуха). В силу этого если сравнить прошедшую через контролируемый материал волну с падающей на поверхность материал волной (здесь допускается сходство падающего на поверхность материала и поступающего на первое плечо второго волноводного тройника сигналов из-за генерации их одним генератором), то между ними должна быть разность фаз. В предлагаемом устройстве для сравнения указанных выше волн используется второй волноводный тройник. Согласно принципу действия волноводного тройника (см. И.В. Лебедев. Техника и приборы СВЧ. М., «Высш. Школа», 1970, с.165) при совпадении фаз сигналов на первом и втором плечах тройника 6 на третьем его плече должен быть нулевой сигнал. В рассматриваемом случае, так как излучаемый сигнал передающей антенной 11 проходит (часть сигнала) через контролируемый диэлектрический материал, то принимаемый сигнал приемной антенной 9 и далее передаваемый во второе плечо второго волноводного тройника должен быть сдвинут по фазе по отношению сигнала, поступающего в первое плечо второго волноводного тройника. Следовательно, с третьего плеча второго волноводного тройника можно снимать сигнал, соответствующий разности фаз двух подаваемых на первое и второе плечи второго тройника электромагнитных сигналов. В данном случае для отображения информации о свойстве материала сигнал сначала с третьего плеча второго волноводного тройника подается на вход детектора 7, а затем - на вход блока обработки информации 8. Здесь по показаниям последнего можно судить о свойстве контролируемого материала. При этом калибровка нуля блока обработки информации (отсутствие в зоне излучения диэлектрического материала и другие несоответствия сигналов на первом и втором плечах тройника 6) можно произвести с помощью фазовращателя 4. Кроме того, для исключения влияния толщины плоского, например, материала, на результат измерения, необходимым является постоянство толщины материала при его зондировании с различными диэлектрическими проницаемостями и угла падения волны на поверхность материала, а также амплитуд сигналов на первом и втором плечах второго волноводного тройника (в нашем случае для выполнения последнего условия применяется аттенюатор 5). Принимая во внимание то, что разные материалы имеют разные диэлектрические проницаемости, измерением сигнала на выходе детектора посредством блока обработки информации при наличии в зоне излучения между антеннами разных материалов, можно обеспечить определение свойства контролируемого материала.

При практической реализации рассматриваемого устройства в качестве источника электромагнитных колебаний может быть использован генератор ГЛПД-1 с частотой и мощностью излучения соответственно 9,6 ГГц и 10 мВт.

Таким образом, в предлагаемом техническом решении, использующем взаимодействие электромагнитных волн с диэлектрическим материалом, на основе фазового сравнения прошедшей через материал волны, с волной, эквивалентной падающей на поверхность материала, можно обеспечить повышение точности измерения свойства материала.

Устройство для измерения свойства диэлектрического материала, содержащее генератор электромагнитных колебаний, первый развязывающий элемент, соединенный выходом со входом фазовращателя, передающую и приемную антенны, детектор, подключенный выходом к блоку обработки информации и аттенюатор, отличающееся тем, что в него введены первый и второй волноводные тройники и второй развязывающий элемент, причем выход генератора электромагнитных колебаний соединен с первым плечом первого волноводного тройника, второе плечо которого подключено к входу первого развязывающего элемента, выход фазовращателя через аттенюатор соединен с первым плечом второго волноводного тройника, второе плечо которого подключено к приемной антенне, третье плечо второго волноводного тройника соединено со входом детектора, третье плечо первого волноводного тройника через второй развязывающий элемент соединено с передающей антенной.
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СВОЙСТВА ДИЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Показаны записи 141-150 из 282.
25.08.2017
№217.015.ce89

Способ определения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для высокоточного определения положения границ раздела сред, в частности воздуха и двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является упрощение процесса измерения и повышение точности. В способе определения положения границ...
Тип: Изобретение
Номер охранного документа: 0002620780
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cea4

Способ измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрических жидкостей в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов. Способ измерения массового расхода жидких сред...
Тип: Изобретение
Номер охранного документа: 0002620774
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cedd

Устройство для измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрических жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов. Устройство для измерения расхода жидких сред...
Тип: Изобретение
Номер охранного документа: 0002620779
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.e31f

Устройство для бесконтактного измерения диаметра провода

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения диаметра провода как готового изделия, так и при его производстве. Предлагаемое устройство для бесконтактного измерения диаметра провода содержит размещаемую снаружи провода коаксиально с ним...
Тип: Изобретение
Номер охранного документа: 0002626063
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e377

Способ измерения уровня жидкости и сыпучих сред в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости и сыпучих сред, находящихся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, цемента и др. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002626386
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e380

Устройство для измерения электрического тока

Предлагаемое устройство относится к области информационно-измерительной техники. Техническим результатом является повышение точности и чувствительности измерения электрического тока. Устройство для измерения электрического тока содержит измерительную цепь, подключенную к входу нагревателя, и...
Тип: Изобретение
Номер охранного документа: 0002626387
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e3c4

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств, например, плотности, концентрации смесей, влагосодержания и др., различных диэлектрических жидкостей, находящихся в электромагнитном поле волновода. Предложенный способ...
Тип: Изобретение
Номер охранного документа: 0002626409
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e3d6

Способ контроля сварных швов труб

Использование: для контроля сварных швов труб. Сущность изобретения заключается в том, что зондируют поверхность сварного шва трубы лучом и по принимаемому сигналу определяют предельные значения характеристик дефекта сварного шва по сравнению с нормативными параметрами, при этом трубу закрытыми...
Тип: Изобретение
Номер охранного документа: 0002626307
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e42a

Способ диагностики механизмов, агрегатов и машин на основе оценки микровариаций вращения вала

Изобретение относится к области неразрушающего контроля и может быть использовано для диагностики состояния механизмов, агрегатов и машин, составной частью которых являются элементы, совершающие вращательное движение. Способ заключается в том, что на валу контролируемого изделия устанавливают...
Тип: Изобретение
Номер охранного документа: 0002626388
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e42c

Радиоволновый способ измерения путевой скорости и угла сноса летательного аппарата

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерений. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002626411
Дата охранного документа: 27.07.2017
Показаны записи 141-150 из 191.
25.08.2017
№217.015.ce89

Способ определения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для высокоточного определения положения границ раздела сред, в частности воздуха и двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является упрощение процесса измерения и повышение точности. В способе определения положения границ...
Тип: Изобретение
Номер охранного документа: 0002620780
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cea4

Способ измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрических жидкостей в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов. Способ измерения массового расхода жидких сред...
Тип: Изобретение
Номер охранного документа: 0002620774
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cedd

Устройство для измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрических жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов. Устройство для измерения расхода жидких сред...
Тип: Изобретение
Номер охранного документа: 0002620779
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.e31f

Устройство для бесконтактного измерения диаметра провода

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения диаметра провода как готового изделия, так и при его производстве. Предлагаемое устройство для бесконтактного измерения диаметра провода содержит размещаемую снаружи провода коаксиально с ним...
Тип: Изобретение
Номер охранного документа: 0002626063
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e377

Способ измерения уровня жидкости и сыпучих сред в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости и сыпучих сред, находящихся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, цемента и др. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002626386
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e380

Устройство для измерения электрического тока

Предлагаемое устройство относится к области информационно-измерительной техники. Техническим результатом является повышение точности и чувствительности измерения электрического тока. Устройство для измерения электрического тока содержит измерительную цепь, подключенную к входу нагревателя, и...
Тип: Изобретение
Номер охранного документа: 0002626387
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e3c4

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств, например, плотности, концентрации смесей, влагосодержания и др., различных диэлектрических жидкостей, находящихся в электромагнитном поле волновода. Предложенный способ...
Тип: Изобретение
Номер охранного документа: 0002626409
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e3d6

Способ контроля сварных швов труб

Использование: для контроля сварных швов труб. Сущность изобретения заключается в том, что зондируют поверхность сварного шва трубы лучом и по принимаемому сигналу определяют предельные значения характеристик дефекта сварного шва по сравнению с нормативными параметрами, при этом трубу закрытыми...
Тип: Изобретение
Номер охранного документа: 0002626307
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e42a

Способ диагностики механизмов, агрегатов и машин на основе оценки микровариаций вращения вала

Изобретение относится к области неразрушающего контроля и может быть использовано для диагностики состояния механизмов, агрегатов и машин, составной частью которых являются элементы, совершающие вращательное движение. Способ заключается в том, что на валу контролируемого изделия устанавливают...
Тип: Изобретение
Номер охранного документа: 0002626388
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e42c

Радиоволновый способ измерения путевой скорости и угла сноса летательного аппарата

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерений. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002626411
Дата охранного документа: 27.07.2017
+ добавить свой РИД