×
10.09.2014
216.012.f1fe

Результат интеллектуальной деятельности: ТЕПЛООБМЕННЫЙ АППАРАТ

Вид РИД

Изобретение

№ охранного документа
0002527772
Дата охранного документа
10.09.2014
Аннотация: Изобретение предназначено для применения в теплотехнике и может быть использовано в теплообменных аппаратах с оребренными трубами. В теплообменном аппарате оребренная теплообменная труба диаметром d выполнена серпантинообразной с внешним диаметром оребрения D и толщиной ребер L, расположенных на расстоянии L друг от друга, при этом амплитуда серпантина A по внешнему диаметру оребрения составляет не менее период волны серпантина P не менее Технический результат: интенсификация теплообмена за счет турбулизации потока, проходящего внутри оребренных серпантинообразных труб, и увеличение площади теплообмена аппарата. 22 з.п. ф-лы, 8 ил., 2 табл.

Изобретение относится к области теплотехники, а именно к теплообменным аппаратам с оребренными трубами, и может быть использовано в аппаратах воздушного охлаждения, теплообменниках, холодильниках, рекуператорах, печах, которые применяются в различных отраслях промышленности.

Известны теплообменные аппараты, содержащие корпус, входной и выходной коллекторы и пучок теплообменных прямых труб (А.Г. Касаткин Основные процессы и аппараты химической технологии. Издательство Альянс, Москва, 2008, стр.326-333). Основными недостатками указанных конструкций является недостаточно интенсивный теплообмен в связи с низким коэффициентом теплопередачи из-за слабой турбулизации потоков, проходящих как внутри труб, так и в межтрубном пространстве, высокая материалоемкость и значительные габариты.

Известны теплообменные аппараты, содержащие корпус, входной и выходной коллекторы и пучок теплообменных труб в виде пространственно-спиральных змеевиков, установленных в зазорах между витками друг друга (патенты РФ №2152574, F28D 7/02 от 16.09.1999 и №2238500, F28D 7/02 от 27.12.2002). Основными недостатками указанных конструкций является сложность изготовления змеевиков, формирование трубных пучков в межтрубном пространстве теплообменного аппарата, теплообмен между средами недостаточно интенсивный, особенно в межтрубном пространстве, низкий коэффициент теплопередачи на уровне 150 ккал/ч*м2 («Теплообменное оборудование ООО «АНОД-ТЦ»»).

Известны теплообменные аппараты, содержащие корпус, входной и выходной коллекторы и змеевиковые элементы из труб, установленных в зазорах между витками змеевиковых элементов (патент РФ №2451875, F22B 37/00, F28D 7/02 от 14.10.2010). Основным недостатком указанной конструкции является недостаточно интенсивный теплообмен между средами, особенно при движении теплопередающей среды снаружи змеевиковых элементов поперек оси пучка труб и изготовления змеевиковых пучков труб вложением одного пучка труб в другие пучки.

Наиболее близким по технической сущности и достигаемому результату к заявляемому изобретению является теплообменный аппарат с оребренными теплообменными трубами, в частности аппарат воздушного охлаждения, содержащий корпус, входной и выходной коллекторы с устройствами ввода и вывода горячего и холодного потоков и пучок теплообменных прямых оребренных труб (Основы расчета и проектирования теплообменников воздушного охлаждения.: Справочник. А.Н. Бессонов, Г.А. Дрейцер, В.Б. Кунтыш и др. СПб, «Недра», 1996, стр.89-104). Основными недостатками указанной конструкции является недостаточно интенсивный теплообмен из-за слабой турбулизации потока, проходящего внутри прямых труб, и низкого коэффициента теплоотдачи от стенки к потоку внутри труб, лимитирующего общий коэффициент теплопередачи.

Задача, на решение которой направлено заявленное изобретение, заключается в интенсификации теплообмена как в трубном, так и межтрубном пространствах пучков теплообменных оребренных труб с одновременным увеличением удельной площади теплообмена.

Данная задача решается за счет того, что в теплообменном аппарате с оребренными теплообменными трубами, включающем корпус, входной и выходной коллекторы с устройствами ввода и вывода горячего и холодного потоков, по крайней мере, одну оребренную теплообменную трубу или пучок оребренных теплообменных труб, согласно изобретению оребренная теплообменная труба диаметром d выполнена серпантинообразной с оребрением на наружной поверхности серпантинообразной трубы с внешним диаметром оребрения D и толщиной ребер L1, расположенных на теплообменной серпантинообразной оребренной трубе на расстоянии L2 друг от друга, при этом амплитуда серпантина A теплообменной оребренной трубы по внешнему диаметру оребрения составляет не менее

а период волны серпантина P не менее

.

Теплообменный аппарат с оребренными теплообменными трубами может быть выполнен с оребрением серпантинообразной теплообменной трубы, представляющим собой кольца толщиной L1 с наружным диаметром D и внутренним диаметром, равным наружному диаметру теплообменных труб d, расположенные на серпантинообразной оребренной теплообменной трубе на расстоянии L2 друг от друга, что унифицирует оснастку для изготовления оребрения и снижает затраты на производство серпантинообразной оребренной теплообменной трубы.

Теплообменный аппарат с оребренными теплообменными трубами может быть выполнен с оребрением серпантинообразной теплообменной трубы, представляющим собой лепестки толщиной L1 с наружным диаметром D и внутренним диаметром, равным наружному диаметру теплообменных труб d, с расстоянием между смежными лепестками, равным длине основания лепестка, с расстоянием L2 между рядами лепестков, что интенсифицирует турбулизацию потока в межтрубном пространстве за счет того, что кромки лепестков рассекают поток в межтрубном пространстве, обеспечивая формирование в нем вихрей, приводящих к выравниванию температурного поля.

Теплообменный аппарат с оребренными теплообменными трубами может быть выполнен с оребрением серпантинообразной теплообменной трубы, представляющим собой шипы толщиной L1 и высотой, равной D-d, с расстоянием между смежными шипами L1 и расстоянием L2 между рядами шипов, что упрощает технологию изготовления оребрения и снижает его материалоемкость.

Теплообменный аппарат с оребренными теплообменными трубами может быть выполнен с оребрением серпантинообразной теплообменной трубы, представляющим собой спиральную ленту толщиной L1 с поверхностью, описываемой спиралью Архимеда, с шириной ленты равной D-d, с расстоянием между витками спиральной ленты L2 друг от друга, что обеспечивает закручивание потока в межтрубном пространстве и увеличивает скорость этого потока, приводя к дополнительному увеличению коэффициента теплоотдачи к внешней поверхности серпантинообразной теплообменной трубы.

Теплообменный аппарат с оребренными теплообменными трубами может быть выполнен с оребрением серпантинообразной теплообменной трубы, представляющим собой эллиптические пластины толщиной L1, расположенные относительно серпантинообразной теплообменной трубы с эксцентриситетом так, что ось серпантинообразной теплообменной трубы совпадает с одним из центров эллиптической пластины с максимальным расстоянием от наружной стенки серпантинообразной теплообменной трубы d до вершины эллиптической пластины D, и расположенные на серпантинообразной оребренной теплообменной трубе на расстоянии L2 друг от друга, что позволяет увеличить поверхность оребрения и соответственно теплопередачу между трубным и межтрубным пространствами теплообменного аппарата.

Теплообменный аппарат с оребренными теплообменными трубами может быть выполнен с оребрением серпантинообразной теплообменной трубы, представляющим собой эллиптические пластины, установленные на серпантинообразной теплообменной трубе таким образом, что в зоне гребня серпантина максимальное расстояние от наружной стенки серпантинообразной теплообменной трубы до вершины эллиптической пластины D обращено в строну гребня серпантина, а в зоне впадины серпантина максимальное расстояние от наружной стенки серпантинообразной теплообменной трубы до вершины эллиптической пластины D обращено в сторону впадины серпантина, при этом обеспечивается максимальное использование внутреннего пространства теплообменного аппарата за счет того, что увеличивается число изгибов серпантинообразной теплообменной трубы, приводя к увеличению поверхности теплообмена на единицу длины теплообменного аппарата, дополнительной турбулизации потока в трубном пространстве и, как следствие, к увеличению коэффициента теплопередачи.

Теплообменный аппарат с оребренными теплообменными трубами может быть выполнен с оребрением серпантинообразной теплообменной трубы, имеющим в поперечном сечении форму прямоугольника, что упрощает формирование оребрения за счет постоянства давления роликовой оснастки на слой деформируемого металла, нанесенного на наружную поверхность серпантинообразной теплообменной трубы.

Теплообменный аппарат с оребренными теплообменными трубами может быть выполнен с оребрением серпантинообразной теплообменной трубы, имеющим в поперечном сечении форму трапеции с широким основанием у наружной поверхности стенки теплообменной трубы, что позволяет увеличить высоту оребрения с одновременным повышением его механической прочности.

Теплообменный аппарат с оребренными теплообменными трубами может быть выполнен с оребрением серпантинообразной теплообменной трубы, имеющим в поперечном сечении форму чередующихся прямоугольников переменного сечения с широким основанием у наружной поверхности стенки теплообменной трубы и последовательно уменьшающимся по мере удаления от стенки теплообменной трубы.

Теплообменный аппарат с оребренными теплообменными трубами может быть выполнен с оребрением серпантинообразной теплообменной трубы, размещенным на стенке теплообменной трубы параллельно друг другу при нанесении оребрения на первоначально прямую оребряемую теплообменную трубу.

Теплообменный аппарат с оребренными теплообменными трубами может быть выполнен с оребрением серпантинообразной теплообменной трубы, размещенным на стенке теплообменной трубы перпендикулярно оси теплообменной трубы при нанесении оребрения на первоначально серпантинообразную оребряемую теплообменную трубу.

Теплообменный аппарат с оребренными теплообменными трубами может быть выполнен с оребрением серпантинообразной теплообменной трубы, выполненным привариванием элемента оребрения к наружной поверхности серпантинообразной теплообменной трубы в том случае, когда материал оребрения и трубы однороден.

Теплообменный аппарат с оребренными теплообменными трубами может быть выполнен с оребрением серпантинообразной теплообменной трубы, выполненным экструдированием из слоя деформируемого металла, нанесенного на наружную поверхность серпантинообразной теплообменной трубы в том случае, когда труба выполнена из биметалла с внешним слоем легко деформируемого металла.

В качестве деформируемого металла, нанесенного на наружную поверхность серпантинообразной теплообменной трубы, можно применять алюминий или сплавы на его основе, что снижает материалоемкость теплообменного аппарата.

В качестве деформируемого металла, нанесенного на наружную поверхность серпантинообразной теплообменной трубы, можно применить медь или сплавы на ее основе, что повышает теплопроводность оребрения и стойкость его к агрессивным средам.

Теплообменный аппарат с оребренными теплообменными трубами может быть выполнен путем изгиба ранее изготовленной оребренной прямой теплообменной трубы, что существенно упрощает технологию изготовления теплообменного аппарата.

Теплообменный аппарат с оребренными теплообменными трубами может быть выполнен путем оребрения ранее изогнутой прямой теплообменной трубы, что позволяет формировать оригинальные нестандартные конструкции теплообменных аппаратов.

Теплообменный аппарат с оребренными теплообменными трубами может быть выполнен с оребренной серпантинообразной теплообменной трубой, имеющей форму змеевика с наличием протяженных участков и переходных зон с изменением направления движения потока в трубе, что позволяет использовать подобные теплообменные аппараты как элемент конструкции камеры конвекции трубчатой печи или погружного конденсатора-холодильника ящичного типа.

Теплообменный аппарат с оребренными теплообменными трубами, выполненными в форме змеевика, может не иметь оребрения в переходных зонах с изменением направления движения потока в трубе, что упрощает использование его в качестве элемента конструкции камеры конвекции трубчатой печи.

Теплообменный аппарат с оребренными теплообменными трубами, выполненными в форме змеевика и не имеющими оребрения в переходных зонах с изменением направления движения потока в трубе, может выполняться с выносом переходных зон за пределы корпуса, например в камере конвекции трубчатой печи.

При прохождении потока в межтрубном пространстве теплообменного аппарата с оребренными теплообменными трубами параллельно пучку оребренных серпантинообразных теплообменных труб корпус теплообменного аппарата может выполняться также серпантинообразным, повторяя форму пучка оребренных серпантинообразных теплообменных труб, что устраняет наличие зон с отсутствием теплопередачи между теплообменивающимися потоками и увеличивает скорость потока в межтрубном пространстве теплообменного аппарата, приводя к возрастанию коэффициента теплоотдачи в межтрубном пространстве теплообменного аппарата.

При прохождении потока в межтрубном пространстве теплообменного аппарата с оребренными теплообменными трубами перпендикулярно пучку оребренных серпантинообразных теплообменных труб пучок оребренных серпантинообразных теплообменных труб может размещаться в корпусе в горизонтальной плоскости формирования серпантина, а корпус теплообменного аппарата может выполняться также серпантинообразным, повторяя форму пучка оребренных серпантинообразных теплообменных труб.

Выполнение пучка теплообменных оребренных труб серпантинообразным с помощью изгибов трубы в вертикальной или горизонтальной плоскостях позволяет турбулизировать поток, проходящий внутри трубы. Серпантинообразная форма труб пучка теплообменных оребренных труб приводит к тому, что скорости локальных струй потока внутри труб становятся переменными, причем в зоне изгиба трубы на внутреннем по отношению к изгибу участке локальные скорости уменьшаются, а на внешнем участке увеличиваются, что приводит к турбулизации потока за счет неоднородности скоростного режима локальных струй, затем при переходе потока в зону следующего изгиба структура локальных струй меняется на противоположную.

Турбулизация потока является высокоэффективным методом интенсификации теплообмена, так как позволяет при незначительном росте гидравлического сопротивления увеличить коэффициент теплоотдачи. При чрезмерном расстоянии между изгибами трубы (большой амплитуде волны серпантина) дополнительно возникшая на изгибе трубы турбулентность затухает и остальной участок трубы до следующего изгиба будет мало отличаться по структуре потока от прямой трубы. Поэтому амплитуда волны серпантина пучка теплообменных оребренных труб по вершинам дисков A должна быть минимальной настолько, насколько позволяет конструкция оребренной серпантинообразной трубы, при этом она не может быть меньше

а период волны Р соответственно должен быть не меньше

.

При выполнении пучка теплообменных оребренных труб серпантинообразным кроме турбулизации потока, проходящего внутри труб, по сравнению с прямыми оребренными трубами, используемых в прототипе, за счет изгибов увеличивается длина оребренных труб, размещаемых в одном и том же корпусе аппарата, и, соответственно, возрастает площадь теплообмена.

При выполнении пучка теплообменных оребренных труб серпантинообразным в горизонтальной плоскости целесообразно корпус теплообменного аппарата аналогично выполнять серпантинообразным в вертикальной плоскости. В этом случае закрываются пустоты в корпусе и интенсифицируется теплообмен.

Достигаемый технический результат заключается в интенсификации теплообмена за счет турбулизации потока, проходящего внутри теплообменных оребренных труб, выполненных серпантинообразными в вертикальной или горизонтальной плоскостях, одновременно возрастает площадь теплообмена по сравнению с прототипом, используемым прямые оребренные трубы.

Изобретение поясняется фигурами 1-8:

на фигуре 1 изображен пучок теплообменных оребренных труб, выполненный серпантинообразным в вертикальной плоскости;

на фигуре 2 изображен пучок теплообменных оребренных труб, выполненный серпантинообразным в горизонтальной плоскости;

на фигуре 3 изображен конструктивный фрагмент теплообменной оребренной трубы диаметром 25 мм с диаметром оребрения 55 мм, толщиной ребер 1 мм и расстоянием между ними 3,5 мм, выполненной серпантинообразным в вертикальной плоскости;

на фигуре 4 представлена фотография опытно-промышленной теплообменной секции с пучком теплообменных оребренных труб, выполненным серпантинообразным в горизонтальной плоскости;

на фигуре 5 представлена фотография фрагмента опытно-промышленной теплообменной секции с пучком теплообменных оребренных труб, выполненным серпантинообразным в горизонтальной плоскости;

на фигуре 6 изображен фрагмент конвекционной камеры трубчатой печи со змеевиком, выполненным из теплообменных оребренных серпантинообразных труб, не имеющих оребрения в переходных зонах;

на фигуре 7 изображен холодильник с пучком теплообменных оребренных труб, выполненным серпантинообразным в горизонтальной плоскости (вид сверху и в аксонометрии);

на фигуре 8 изображен холодильник с пучком теплообменных оребренных труб, выполненным серпантинообразным в горизонтальной плоскости (вид сверху и в аксонометрии).

На фигурах 1-2, 6-8: 1 - пучок теплообменных оребренных серпантинообразных труб, 2 - теплообменная оребренная серпантинообразная труба, 3 - камера, 4 - входной штуцер, 5 - выходной штуцер.

На фигуре 3: 1 - теплообменная серпантинообразная труба, 2 - ребра.

Согласно фигурам 1 и 8 пучок теплообменных оребренных серпантинообразных труб 1 состоит из теплообменных оребренных труб 2, выполненных серпантинообразно в вертикальной плоскости, с противоположных сторон серпантинообразных труб установлены камеры 3 с входным штуцером 4 и выходным штуцером 5.

Согласно фигурам 2 и 7 пучок теплообменных оребренных серпантинообразных труб 1 состоит из теплообменных оребренных труб 2, выполненных серпантинообразно в горизонтальной плоскости, с противоположных сторон серпантинообразных труб установлены камеры 3 с входным штуцером 4 и выходным штуцером 5.

Согласно фигуре 3 на теплообменной серпантинообразной трубе 1 ребра 2 в силу конструктивных особенностей имеют различное расстояние между вершинами ребер.

Теплообменные аппараты, в которых установлен пучок теплообменных серпантинообразных оребренных труб, работают следующим образом.

Пучок теплообменных серпантинообразных оребренных труб 1 устанавливают в теплообменную секцию типового аппарата воздушного охлаждения, в котором имеются вентилятор и диффузор с коллектором для подачи воздуха. Корпус теплообменной секции, как показано на фигурах 4 и 7, выполнен серпантинообразным в горизонтальной плоскости, повторяющим серпантинообразность оребренных труб 2. Такая конструкция препятствует проскоку потока воздуха через пространство, образовавшееся при установке оребренных труб, выполненных серпантинообразными в горизонтальной плоскости. Поток воздуха направляется вентилятором по диффузору на внешнюю поверхность теплообменных серпантинообразных оребренных труб 2, проходя через пучок теплообменных оребренных труб 1, снимает теплоту охлаждаемой среды, проходящей внутри труб 2, вследствие чего воздух нагревается и выводится из аппарата. Охлаждаемой средой могут быть жидкости, газы и конденсируемые пары, которые подаются через штуцер ввода 4, установленный в камере теплообменной секции 3, в пучок 1, состоящий из теплообменных оребренных серпантинообразных труб 2. Двигаясь по внутренним каналам труб 2, среда охлаждается и выводится через выходной штуцер 5. Выполнение оребренной трубы в отличие от прототипа не прямой, а серпантинообразной приводит к увеличению поверхности теплообмена за счет удлинения трубы и дополнительной интенсификации теплообмена, вызванной турбулизацией потока охлаждаемой среды. Для охлаждения газа можно использовать пучок теплообменных оребренных труб, выполненных серпантинообразными как в вертикальной (фигуры 2, 8), так и в горизонтальной плоскости (фигуры 1, 7). Для охлаждения жидкостей необходимо использовать пучок теплообменных оребренных труб, выполненных серпантинообразными в горизонтальной плоскости, для обеспечения опорожнения труб при остановке и ремонте аппарата воздушного охлаждения. Для охлаждения и конденсации паров необходимо использовать пучок теплообменных оребренных труб, выполненных серпантинообразными в горизонтальной плоскости, для исключения образования жидкостных пробок в местах изгиба трубы и обеспечения опорожнения труб при остановке и ремонте аппарата воздушного охлаждения.

При использовании пучка теплообменных серпантинообразных оребренных труб 1 для нагревания технологических потоков, например в трубчатых печах, пучок устанавливают в корпусе аппарата, в котором имеются входной и выходной каналы для подачи газообразного теплоносителя. Теплоносителем являются дымовые газы, образовавшиеся при сгорании топлива в энергетических установках (печах, котлах, газотурбинных установках и т.д.), которые по входному каналу поступают внутрь корпуса аппарата и, омывая внешнюю поверхность теплообменных серпантинообразных оребренных труб 2 со всех сторон, отдают свою теплоту нагреваемой среде, проходящей внутри труб 2, вследствие чего охлаждаются и выводятся из аппарата через выводной канал аппарата. Нагреваемой средой являются жидкости и газы, которые подаются через штуцер ввода 4, установленный в камере теплообменной секции 3, в пучок 1, состоящий из теплообменных оребренных серпантинообразных труб 2. Двигаясь по внутренним каналам труб 2, нагреваемая среда воспринимает теплоту от теплоносителя, нагревается и выводится через выходной штуцер 5. Выполнение оребренной трубы в отличие от прототипа не прямой, а серпантинообразной приводит к увеличению поверхности теплообмена за счет удлинения трубы и дополнительной интенсификации теплообмена, вызванной турбулизацией потока нагреваемой среды. Для нагрева газа можно использовать пучок теплообменных оребренных труб, выполненных серпантинообразными как в вертикальной, так и в горизонтальной плоскости. Для нагрева жидкостей необходимо использовать пучок теплообменных оребренных труб, выполненных серпантинообразными в горизонтальной плоскости, для обеспечения опорожнения труб при остановке и ремонте аппарата. Подобным образом теплообменные серпантинообразные оребренные трубы 1 устанавливают вместо прямых участков трубчатого змеевика в конвекционной камере нагревательных печей, как показано на фигуре 6.

Пучок теплообменных серпантинообразных оребренных труб 1 можно также устанавливать внутри корпуса погружного холодильника, в котором имеются штуцеры для ввода и вывода охлаждающей среды, например оборотной воды. Охлаждающая среда по входному штуцеру поступает внутрь корпуса погружного холодильника, омывая внешнюю поверхность теплообменных серпантинообразных оребренных труб 2 со всех сторон, снимает избыточное тепло с охлаждаемой среды, проходящей внутри труб 2, и выводится из аппарата через штуцер вывода. Охлаждаемой средой могут быть жидкости, газы и конденсируемые пары, которые подаются через штуцер ввода 4, установленный в камере теплообменной секции 3, в пучок 1, состоящий из теплообменных оребренных серпантинообразных труб 2. Двигаясь по внутренним каналам труб 2, среда охлаждается и выводится через выходной штуцер 5. Выполнение оребренной трубы в отличие от прототипа не прямой, а серпантинообразной приводит к увеличению поверхности теплообмена за счет удлинения трубы и дополнительной интенсификации теплообмена, вызванной турбулизацией потока охлаждаемой среды. Для охлаждения газа можно использовать пучок теплообменных оребренных труб, выполненных серпантинообразными как в вертикальной, так и в горизонтальной плоскости. Для охлаждения жидкостей необходимо использовать пучок теплообменных оребренных труб, выполненных серпантинообразными в горизонтальной плоскости, для обеспечения опорожнения труб при остановке и ремонте аппарата воздушного охлаждения. Для охлаждения и конденсации паров необходимо использовать пучок теплообменных оребренных труб, выполненных серпантинообразными в горизонтальной плоскости, для исключения образования жидкостных пробок в местах изгиба трубы и обеспечения опорожнения труб при остановке и ремонте аппарата воздушного охлаждения.

На фигуре 3 приведены размеры теплообменной оребренной трубы, выполненной серпантинообразной, согласно предлагаемому изобретению. Оребренная теплообменная труба диаметром d=25 мм выполнена серпантинообразной с оребрением на наружной поверхности серпантинообразной трубы с внешним диаметром оребрения D=55 мм и толщиной ребер L1=1 мм, расположенных на теплообменной серпантинообразной оребренной трубе на расстоянии L2=3,5 мм друг от друга, при этом амплитуда серпантина теплообменной оребренной трубы по внешнему диаметру оребрения составляет A=155 мм, согласно предлагаемому изобретению это значение должно быть не менее

а период волны серпантина P=200 мм, согласно предлагаемому изобретению это значение должно быть не менее

Сравнение теплообменного аппарата воздушного охлаждения, выполненного согласно предлагаемому изобретению (фиг.4), с известным теплообменным аппаратом, применяющим теплообменную секцию с прямой трубой с приварным оребрением, подтвердило более высокую эффективность предлагаемого теплообменного аппарата и показало, что вода охлаждается на 1-4°C ниже, температура отходящего воздуха на 5-6°C выше, длина труб и площадь поверхности теплообмена в 1,23 раза больше, чем у прототипа. Результаты испытаний представлены в таблицах 1 и 2.

Таким образом, выполнение теплообменных оребренных труб серпантинообразными приводит к интенсификации теплообмена за счет турбулизации потока, проходящего внутри теплообменных оребренных труб, и увеличению площади теплообмена аппарата.


ТЕПЛООБМЕННЫЙ АППАРАТ
ТЕПЛООБМЕННЫЙ АППАРАТ
ТЕПЛООБМЕННЫЙ АППАРАТ
ТЕПЛООБМЕННЫЙ АППАРАТ
ТЕПЛООБМЕННЫЙ АППАРАТ
ТЕПЛООБМЕННЫЙ АППАРАТ
ТЕПЛООБМЕННЫЙ АППАРАТ
ТЕПЛООБМЕННЫЙ АППАРАТ
ТЕПЛООБМЕННЫЙ АППАРАТ
ТЕПЛООБМЕННЫЙ АППАРАТ
ТЕПЛООБМЕННЫЙ АППАРАТ
ТЕПЛООБМЕННЫЙ АППАРАТ
ТЕПЛООБМЕННЫЙ АППАРАТ
ТЕПЛООБМЕННЫЙ АППАРАТ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 101.
27.12.2019
№219.017.f28f

Газоперерабатывающий и газохимический комплекс

Газоперерабатывающий и газохимический комплекс относится к области переработки природных углеводородных газов с повышенным содержанием азота и может быть использован в газовой промышленности в условиях ее интенсивного развития. На газоперерабатывающий завод подают природный углеводородный газ,...
Тип: Изобретение
Номер охранного документа: 0002710228
Дата охранного документа: 25.12.2019
16.01.2020
№220.017.f545

Газохимический комплекс производства полиэтилена

Изобретение относится к газохимической промышленности. Описан газохимический комплекс производства полиэтилена, который состоит, как минимум, из двух или более установок пиролиза, каждая из которых включает секцию печей, секцию компримирования пирогаза и секцию разделения пирогаза, двух или...
Тип: Изобретение
Номер охранного документа: 0002710906
Дата охранного документа: 14.01.2020
27.02.2020
№220.018.065e

Комплекс по переработке природного газа с получением сжиженного природного газа регулируемого качества

Изобретение относится к области использования природных ресурсов и может быть использовано в газоперерабатывающей промышленности. Комплекс по переработке природного газа с получением сжиженного природного газа (СПГ) регулируемого качества включает газоперерабатывающий блок с выработкой...
Тип: Изобретение
Номер охранного документа: 0002715126
Дата охранного документа: 25.02.2020
05.03.2020
№220.018.092d

Комплекс по переработке природного углеводородного газа в товарную продукцию

Изобретение относится к разработке и проектированию объектов газовой промышленности в условиях ее интенсивного развития. Комплекс по переработке магистрального природного газа в товарную продукцию, состоящий из газоперерабатывающего блока А, вырабатывающего метановую, этановую, пропановую,...
Тип: Изобретение
Номер охранного документа: 0002715838
Дата охранного документа: 03.03.2020
19.03.2020
№220.018.0d11

Турбулентный смеситель-реактор

Турбулентный смеситель-реактор для реагентной обработки технологических потоков предназначен для формирования устойчивых неоднородных систем типа эмульсий и проведения массообменных и/или химических процессов и может быть использован в нефтеперерабатывающей и химической промышленности....
Тип: Изобретение
Номер охранного документа: 0002717031
Дата охранного документа: 17.03.2020
21.03.2020
№220.018.0ef9

Способ и установка адсорбционной осушки и очистки природного газа

Изобретение относится к газопереработке и может быть использовано в газовой промышленности. Способ и установка адсорбционной осушки и очистки природного газа от серосодержащих компонентов после дожимной компрессорной станции перед подачей природного газа в магистральный газопровод включают...
Тип: Изобретение
Номер охранного документа: 0002717052
Дата охранного документа: 17.03.2020
15.05.2020
№220.018.1cec

Газоперерабатывающий кластер

Изобретение относится к газоперерабатывающему кластеру, предназначенному для дополнительной переработки метан-водородной фракции (МВФ). Кластер состоит из блока сжижения метана и блока хранения сжиженного природного газа (СПГ). МВФ подают на блок сжижения метана, откуда сжиженный метан...
Тип: Изобретение
Номер охранного документа: 0002720813
Дата охранного документа: 13.05.2020
30.05.2020
№220.018.22a0

Компоновка газоперерабатывающего комплекса

Изобретение относится к разработке и проектированию газоперерабатывающего комплекса и может быть использовано для объектов газоперерабатывающей промышленности. Компоновка газоперерабатывающего комплекса, состоящего из одной или нескольких очередей, каждая из которых включает технологические...
Тип: Изобретение
Номер охранного документа: 0002722255
Дата охранного документа: 28.05.2020
04.07.2020
№220.018.2ef6

Система подвода тепла в ректификационную колонну (варианты)

Изобретение относится к системе подвода тепла в ректификационную колонну и может найти применение в нефтегазоперерабатывающей, химической и других отраслях промышленности. Система включает первый и второй теплообменные аппараты. Первый теплообменный аппарат, снабженный датчиком уровня...
Тип: Изобретение
Номер охранного документа: 0002725305
Дата охранного документа: 30.06.2020
12.04.2023
№223.018.4493

Комплекс переработки в газохимическую продукцию углеводородного сырья месторождений, расположенных в сложных климатических условиях

Изобретение относится к разработке и проектированию объектов газовой промышленности в условиях ее интенсивного развития. Изобретение относится к комплексу для переработки в газохимическую продукцию углеводородного сырья месторождений, расположенных в сложных климатических условиях. Комплекс...
Тип: Изобретение
Номер охранного документа: 0002771006
Дата охранного документа: 25.04.2022
Показаны записи 91-100 из 108.
29.06.2019
№219.017.a15e

Способ очистки сжиженного углеводородного газа от диоксида углерода

Изобретение относится к способу очистки углеводородных газов от диоксида углерода и может найти применение в газовой, нефтехимической и химической отраслях промышленности и позволяет повысить эффективность работы абсорбера и повысить чистоту и количество получаемого углеводородного газа и...
Тип: Изобретение
Номер охранного документа: 0002469773
Дата охранного документа: 20.12.2012
05.09.2019
№219.017.c6fd

Комплекс по переработке и сжижению природного газа

Изобретение может быть использовано в газоперерабатывающей промышленности. Комплекс по переработке и сжижению природного газа включает газоперерабатывающий блок, блок сжижения подготовленного газа, магистральный газопровод сырьевого газа, магистральный газопровод товарного газа и блок...
Тип: Изобретение
Номер охранного документа: 0002699160
Дата охранного документа: 03.09.2019
10.10.2019
№219.017.d442

Комплекс по переработке и сжижению природного газа (варианты)

Изобретение может быть использовано в газоперерабатывающей и химической отраслях промышленности. Комплекс по переработке и сжижению природного газа включает газоперерабатывающий блок, блок сжижения подготовленного газа, магистральный газопровод сырьевого газа, магистральный газопровод товарного...
Тип: Изобретение
Номер охранного документа: 0002702441
Дата охранного документа: 08.10.2019
12.10.2019
№219.017.d4c4

Газохимический комплекс

Газохимический комплекс, обеспечивающий переработку природных углеводородных газов различных месторождений, может быть использован в газовой промышленности в условиях ее интенсивного развития. Комплекс включает газоперерабатывающий завод, газохимический завод, завод по производству метанола и...
Тип: Изобретение
Номер охранного документа: 0002702540
Дата охранного документа: 08.10.2019
17.10.2019
№219.017.d628

Газохимический комплекс

Газохимический комплекс, обеспечивающий переработку природных углеводородных газов различных месторождений, может быть использован в газовой промышленности в условиях ее интенсивного развития. Газохимический комплекс включает газоперерабатывающий завод, газохимический завод, завод по...
Тип: Изобретение
Номер охранного документа: 0002703135
Дата охранного документа: 15.10.2019
10.11.2019
№219.017.dfa7

Способ переработки природного газа с повышенным содержанием кислых компонентов

Изобретение может быть использовано в газовой промышленности с целью снижения энергоемкости подготовки природного газа. Способ переработки природного газа с повышенным содержанием кислых компонентов включает ряд стадий. При этом содержание в сырьевом природном газе кислых компонентов в...
Тип: Изобретение
Номер охранного документа: 0002705352
Дата охранного документа: 06.11.2019
27.12.2019
№219.017.f28f

Газоперерабатывающий и газохимический комплекс

Газоперерабатывающий и газохимический комплекс относится к области переработки природных углеводородных газов с повышенным содержанием азота и может быть использован в газовой промышленности в условиях ее интенсивного развития. На газоперерабатывающий завод подают природный углеводородный газ,...
Тип: Изобретение
Номер охранного документа: 0002710228
Дата охранного документа: 25.12.2019
16.01.2020
№220.017.f545

Газохимический комплекс производства полиэтилена

Изобретение относится к газохимической промышленности. Описан газохимический комплекс производства полиэтилена, который состоит, как минимум, из двух или более установок пиролиза, каждая из которых включает секцию печей, секцию компримирования пирогаза и секцию разделения пирогаза, двух или...
Тип: Изобретение
Номер охранного документа: 0002710906
Дата охранного документа: 14.01.2020
13.02.2020
№220.018.01e6

Биодеградируемый сорбирующий материал для сбора нефти и нефтепродуктов и способ его получения

Изобретение относится к области очистки окружающей среды. Предложен биодеградируемый сорбирующий материал для сбора нефти и нефтепродуктов, представляющий собой нетканое полимерное волокнистое полотно, выполненное из одного или нескольких слоев волокон биополимера: полигидроксибутирата,...
Тип: Изобретение
Номер охранного документа: 0002714079
Дата охранного документа: 11.02.2020
27.02.2020
№220.018.065e

Комплекс по переработке природного газа с получением сжиженного природного газа регулируемого качества

Изобретение относится к области использования природных ресурсов и может быть использовано в газоперерабатывающей промышленности. Комплекс по переработке природного газа с получением сжиженного природного газа (СПГ) регулируемого качества включает газоперерабатывающий блок с выработкой...
Тип: Изобретение
Номер охранного документа: 0002715126
Дата охранного документа: 25.02.2020
+ добавить свой РИД