×
10.09.2014
216.012.f195

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ДВУХФАЗНОЙ ТРЕХКОМПОНЕНТНОЙ СРЕДЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтедобывающей промышленности, а именно к способам определения дебита нефтяных скважин без предварительной сепарации газа из продукции скважины. Способ измерения расхода двухфазной трехкомпонентной среды, включающий калибровку многофазного расходомера, обработку результатов калибровочных работ, синтез математической модели движения двухфазной трехкомпонентной среды, определение интервала дебитов жидкости и нефтяного газа, при котором имеет место допустимая погрешность расчета дебитов нефти, воды и нефтяного газа. При этом в процессе проведения калибровочных работ и синтеза математической модели движения двухфазной трехкомпонентной среды определяют зависимость погрешности проверочных точек от среднего веса точек обучающей модели, а в процессе эксплуатации скважины снимают показания датчиков многофазного расходомера и расчет покомпонентного расхода продукции нефтяной скважины проводят при среднем весе обучающих точек, при котором на проверочных точках имеет место минимальная величина среднеквадратического отклонения между расчетными и замеренными значениями дебитов жидкости. Технический результат - снижение погрешности измерения покомпонентного расхода продукции нефтяной скважины. 1 ил., 2 табл.
Основные результаты: Способ измерения расхода двухфазной трехкомпонентной среды, включающий калибровку многофазного расходомера, обработку результатов калибровочных работ, синтез математической модели движения двухфазной трехкомпонентной среды, определение интервала дебитов жидкости и нефтяного газа, при котором имеет место допустимая погрешность расчета дебитов нефти, воды и нефтяного газа, отличающийся тем, что в процессе калибровки многофазного расходомера и синтеза математической модели движения двухфазной трехкомпонентной среды определяют зависимость погрешности проверочных точек от среднего веса точек обучающей модели, а в процессе эксплуатации скважины снимают показания датчиков многофазного расходомера и определение покомпонентного расхода проводят при среднем весе обучающих точек, при котором имеет место минимальная погрешность проверочных точек.

Изобретение относится к нефтедобывающей промышленности, а именно, к способам определения дебита нефтяных скважин без предварительной сепарации газа из продукции скважины.

Известен способ определения дебита нефтяных скважин, включающий зондирование потока акустическими импульсами, регистрацию прошедших через среду импульсов приемником в ограниченном контролируемом объеме потока, образованном парой «источник излучения-приемник», фиксируют время прохождения импульсов через контролируемый объем и вычисляют расход компонентов на основе закономерностей движения двухфазной трехкомпонентной среды [1]. Однако данный способ приводит к существенным ошибкам при определении расхода двухфазной среды из-за неучета влияния растворенного в нефти и воде нефтяного газа при давлениях и температурах в измеряемом потоке.

Наиболее близким к предлагаемому решению является способ измерения расхода двухфазной трехкомпонентной среды, включающий калибровку многофазного расходомера, обработку результатов калибровочных работ, синтез математической модели движения двухфазной трехкомпонентной среды, определение интервала дебитов жидкости и нефтяного газа, при котором имеет место допустимая погрешность расчета дебитов нефти, воды и газа [2].

Однако этот способ приводит к ошибкам при определении покомпонентного расхода продукции нефтяной скважины из-за неправильного выбора среднего веса обучающих точек.

Задачей предлагаемого технического решения является разработка такого способа измерения расхода двухфазной трехкомпонентной среды, при реализации которого можно было бы исключить ошибки, обусловленные неправильным выбором среднего веса обучающих точек.

Задача решается тем, что в процессе калибровки многофазного расходомера и синтеза математической модели движения двухфазной трехкомпонентной среды определяют зависимость погрешности проверочных точек от среднего веса точек обучающей модели, а в процессе эксплуатации скважины снимают показания датчиков многофазного расходомера и определение покомпонентного расхода проводят при среднем весе обучающих точек, при котором имеет место минимальная погрешность проверочных точек.

Техническим результатом изобретения является повышение точности измерения расхода двухфазной трехкомпонентной среды.

Технический результат достигается тем, что в способе измерения расхода двухфазной трехкомпонентной среды, включающем калибровку многофазного расходомера, обработку результатов калибровочных работ, синтез математической модели движения двухфазной трехкомпонентной среды, определение интервала дебитов жидкости и нефтяного газа, при котором имеет место допустимая погрешность расчета дебитов нефти, воды и нефтяного газа, в процессе калибровки многофазного расходомера и синтеза математической модели движения двухфазной трехкомпонентной среды определяют зависимость погрешности проверочных точек от среднего веса точек обучающей модели, а в процессе эксплуатации скважины снимают показания датчиков многофазного расходомера и расчет покомпонентного расхода проводят при среднем весе обучающих точек, при котором имеет место минимальная погрешность проверочных точек.

Способ реализуется следующим образом. Проводится калибровка многофазного расходомера. В таблице результатов калибровочных работ дебиту жидкости соответствуют показания датчиков газонасыщенности, доплеровского сдвига частоты, влажности нефти, давления и температуры.

Проводят экспериментальные работы по определению зависимости погрешности проверочных точек от среднего веса точек обучающей модели. Веса каждой экспериментальной точки (stats.w) можно получить с помощью функции robustfit в среде MatLab. В этой функции реализуется итерационный взвешенный метод наименьших квадратов. Веса каждой экспериментальной точки на текущей итерации вычисляются при помощи биквадратической функции от вектора остатков, рассчитанных на предыдущей итерации. Использование такого алгоритма позволяет задать меньшее значение весов для наблюдений, имеющих большее отклонение от регрессионной модели по отношению к остальным. Средний вес точек обучающей модели изменяется в экспериментальных работах за счет изменения количеств экспериментальных точек с тем или иным весом. При этом аппроксимация экспериментальных точек проводится на основе регрессионной зависимости.

В результате проведения экспериментальных работ находится зависимость погрешности проверочных точек от среднего веса экспериментальных точек обучающей модели. Находится средний вес обучающих точек, при котором имеет место минимум средней абсолютной погрешности проверочных точек. В процессе эксплуатации скважины снимаются показания датчиков многофазного расходомера, и расчет расхода двухфазной трехкомпонентной среды проводится при среднем весе обучающих точек, при котором наблюдается наименьшая погрешность.

Пример конкретной реализации способа иллюстрируется материалами калибровочных работ прибора «Ультрафлоу». При этом в качестве отклика был принят расход жидкости.

Используется регрессионная модель следующего вида:

где y - расход жидкости, м3/сут;

x1 - показания датчика газонасыщенности;

x2 - доплеровский сдвиг частоты, Гц;

x3 - показания датчика обводненности;

x4 - давление в интервале измерения, МПа;

x5 - температура потока, °C.

Данные по обучающей выборке приведены в табл.1. По этим данным была синтезирована регрессионная зависимость (1).

Таблица 1
Расход жидкости, м3/сут Показания датчика газонасыщенности, дел Доплеровский сдвиг частоты, Гц Показания датчика водонасыщенности, дел Давление, МПа Температура, °C
10,37 0,4127 4197,4 33020,3 0,1521 24
15,25 0,7052 4280,2 28121,1 0,1489 24,6
15,20 0,5992 4291,3 27702,1 0,1499 24,2
10,6 0,4493 4314,9 26523,1 0,1507 25,7
15,33 0,6734 4417,7 27658,7 0,1491 25
10,01 0,4928 4525,4 25362,4 0,1502 25
15,25 0,6247 4634,1 27641,3 0,1499 25,2
15,24 0,7759 4893 28190,4 0,1486 24,6
15,18 0,7961 5219,9 28354,8 0,1485 24,3
10,12 0,7049 5497,3 25720,4 0,1483 25,1
10,1 0,69 5708,1 32745,9 0,1494 24,9
10,11 0,7598 5735,2 26197,5 0,1481 25,2
10,33 0,7611 5811,4 26261,7 0,1488 25,2
10,37 0,7620 5862,0 26196 0,1485 25,1
10,2 0,7304 5881,4 32659,6 0,1489 24,7
10,26 0,7670 5961,8 32432 0,1487 24,7
15,15 0,4976 4076,3 27759,1 0,1512 25,4

Экспериментальные точки, которые не участвовали в синтезе модели (1), называются проверочными. Погрешность проверочных точек используется для выбора вида регрессионной зависимости. В процессе нормальной эксплуатации скважины проверочными точками являются точки, по входным переменным которых определяется зависимая переменная (в данном случае расход жидкости). Данные по проверочным точкам приведены в табл.2.

Таблица 2
Расход жидкости, м3/сут Показания датчика газонасыщенности, дел Доплеровский сдвиг частоты, Гц Показания датчика водонасыщенности, дел Давление, МПа Температура, °C
10,85 0,3019 3054,6 26491 0,1524 25,6
15,11 0,3485 3120 28150,4 0,1528 25,3
10,1 0,3427 3559,9 25847,6 0,1515 25,2
10,16 0,3528 3621,7 25505,5 0,1506 26,5
15,34 0,6437 4083,8 27742,8 0,1492 24,5
15,26 0,5909 4194,3 27733,9 0,1488 24,9
10,22 0,221 2650 32415,8 0,155 24,7

Используя данные табл.1 и 2, строится зависимость средней абсолютной погрешности проверочных точек от среднего веса обучающих точек. При этом в среде Matlab вес каждой экспериментальной точки обучающей выборки (stats.w) можно получить с помощью функции robustfit. Средний вес точек обучающей выборки mean(stats.w) можно изменять за счет добавления или удаления обучающих точек. Так, например, при числе обучающих точек 18 (табл.1) средний вес обучающих точек mean(stats.w)=0,9775. При этом средняя абсолютная погрешность проверочных точек (табл.2) mae(еро)=0,0132. В обучающую выборку добавляется 19-я точка.

В1=[15,01 0,4986 4012.5 27650 0,145 27].

Тогда mean(stats.w)=0,9609, mae(epo)=0,0111 и т.д.

Входными переменными модели являются: показания датчиков газонасыщенности, доплеровский сдвиг частоты, влажность нефти, давление в интервале измерения, температура потока. При обработке экспериментальных данных была получена зависимость средней абсолютной погрешности проверочных точек от среднего веса точек обучающей выборки (см. фиг.). Как видно из приведенного фигуры, имеет место минимум погрешности расчетных значений расхода жидкости при среднем весе точек обучающей модели 0,926-0,928. При этом имеет место существенное снижение погрешности по сравнению с погрешностью вне этого интервала среднего веса.

Покомпонентный расход продукции нефтяной скважины определяется следующим образом.

Влажность нефти определяется по регрессионной зависимости [3]:

где z1 - расход жидкости, м3/сут;

z2 - показания датчика влажности нефти;

z3 - доплеровский сдвиг частоты, Гц;

z4 - показания датчика газонасыщенности;

z5 - отношение температуры потока к давлению, °C/МПа.

Расход воды определяется зависимостью Qв=Y·Wl.

При этом расход нефти определяется формулой

Qн=Y-Qв.

Газонасыщенность потока определяется по регрессионной зависимости [4]:

где W1 - расход жидкости, м3/сут;

W2 - показания датчиков газонасыщенности; влажности нефти;

W3 - доплеровский сдвиг частоты, Гц;

W4 - показания датчиков влажности нефти;

W5 - отношение температуры потока к давлению, °С/МПа.

Расход попутного газа определяется по формуле

Применение предлагаемого технического решения позволит существенно снизить погрешность расчета расхода продукции нефтяной скважины при использовании многофазного расходомера.

Источники информации

1. Патент РФ №2138023 «Способ определения расхода компонентов многофазной среды». // Мельников В.И., Дробков В.П. - 1999.09.20.

2. Письмаров М.Н. Расчет расхода трехкомпонентной среды при калибровке многофазного расходомера. Инновации и актуальные проблемы техники и технологии: Всероссийской научно-практической конференции молодых ученых в 2-х т. / М.Н. Письмаров, К.Ю. Плесовских; под ред. А.А. Большакова. - Саратов: Саратовский государственный технический университет, 2009. - Т.1. - 360 с. - С.110-112.

3. Горюнов А.Н. Определение влажности нефти по показаниям датчиков прибора «Ультрафлоу» / А.Н. Горюнов, Т.В. Калинина, О.Б. Качалов. // Инновационные образовательные технологии и методы их реализации: Сборник материалов IX Всероссийской научно-практической конференции (г. Арзамас, 27 января 2012 г.). - М.: Изд-во СГУ, 2012. - С.306-308.

4. Баранова А.В. Выбор математической модели для расчета газонасыщенности потока с помощью прибора «Ультрафлоу» / А.В. Баранова, О.Б. Качалов, А.С.Спиридонова // Инновационные образовательные технологии и методы их реализации: Сборник материалов IX Всероссийской научно-практической конференции (г. Арзамас, 27 января 2012 г.). - М.: Изд-во СГУ, 2012. - С.301-303.

Способ измерения расхода двухфазной трехкомпонентной среды, включающий калибровку многофазного расходомера, обработку результатов калибровочных работ, синтез математической модели движения двухфазной трехкомпонентной среды, определение интервала дебитов жидкости и нефтяного газа, при котором имеет место допустимая погрешность расчета дебитов нефти, воды и нефтяного газа, отличающийся тем, что в процессе калибровки многофазного расходомера и синтеза математической модели движения двухфазной трехкомпонентной среды определяют зависимость погрешности проверочных точек от среднего веса точек обучающей модели, а в процессе эксплуатации скважины снимают показания датчиков многофазного расходомера и определение покомпонентного расхода проводят при среднем весе обучающих точек, при котором имеет место минимальная погрешность проверочных точек.
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ДВУХФАЗНОЙ ТРЕХКОМПОНЕНТНОЙ СРЕДЫ
Источник поступления информации: Роспатент

Показаны записи 21-26 из 26.
27.06.2014
№216.012.d843

Емкостный датчик перемещений

Изобретение относится к микромеханическим устройствам и может применяться в интегральных акселерометрах и гироскопах. Техническим результатом заявленного изобретения является повышение точности емкостного датчика при измерении угловых перемещений. Технический результат достигнут посредством...
Тип: Изобретение
Номер охранного документа: 0002521141
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dd62

Способ получения аллилсульфоната натрия для синтеза сульфосодержащих карбоксилатных суперпластификаторов для цементных смесей

Изобретение относится к способу получения аллилсульфоната натрия, который заключается во взаимодействии аллилхлорида и сульфита натрия в гетерогенной водно-органической среде в присутствии метоксиполиэтиленгликольметакрилатов (с числом оксиэтильных звеньев 23-45) в качестве катализаторов...
Тип: Изобретение
Номер охранного документа: 0002522452
Дата охранного документа: 10.07.2014
27.08.2014
№216.012.eeda

Способ контроля за процессом обводнения газовой скважины

Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке газовых месторождений. Техническим результатом предлагаемого изобретения является уточнение даты изменения коэффициентов фильтрационного сопротивления призабойной зоны за счет учета основных...
Тип: Изобретение
Номер охранного документа: 0002526965
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ef87

Способ измерения влажности нефти

Изобретение относится к нефтедобывающей промышленности, а именно к способам измерения влажности нефти без предварительной сепарации газа из продукции скважины. В процессе проведения экспериментальных работ находится зависимость средней абсолютной погрешности проверочных точек от средней...
Тип: Изобретение
Номер охранного документа: 0002527138
Дата охранного документа: 27.08.2014
10.10.2014
№216.012.fc6e

Способ измерения параметров однофотонных источников излучения инфракрасного диапазона

Изобретение относиться к области измерения параметров слабых потоков излучения и касается способа измерения параметров однофотонных источников излучения. Параметры источника излучения измеряются с помощью однофотонного сверхпроводникового детектора. Для осуществления способа измеряют среднее...
Тип: Изобретение
Номер охранного документа: 0002530468
Дата охранного документа: 10.10.2014
27.10.2014
№216.013.023d

Способ контроля за процессом изменения коэффициентов фильтрационного сопротивления призабойной зоны газовой скважины

Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке газовых месторождений. Техническим результатом изобретения является учет влияния изменения напряженного состояния газоносного пласта на изменение коэффициентов фильтрационного сопротивления...
Тип: Изобретение
Номер охранного документа: 0002531971
Дата охранного документа: 27.10.2014
Показаны записи 21-30 из 33.
20.04.2014
№216.012.bad1

Депрессорная полимерная присадка для парафинистых нефтей

Изобретение относится к нефтедобывающей промышленности и может быть использовано для снижения температуры застывания парафинистых нефтей при их транспортировке и хранении. Депрессорная полимерная присадка для парафинистых нефтей содержит активный компонент и растворитель, при этом в качестве...
Тип: Изобретение
Номер охранного документа: 0002513553
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bb70

Обнаружитель объектов, содержащих нелинейные элементы

Изобретение относится к поисковым устройствам и предназначено для обнаружения объектов на основе приема сигналов, появляющихся в результате вторичного переизлучения с изменением спектра зондирующего сигнала. Технический результат - обеспечение возможности обнаружения объектов, содержащих...
Тип: Изобретение
Номер охранного документа: 0002513712
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.bf78

Способ изготовления каркасов искусственных клапанов сердца из технически чистого титана

Изобретение относится к способу изготовления сварных изделий, преимущественно сварных каркасов искусственных клапанов сердца ИКС. Способ изготовления каркасов искусственных клапанов сердца из технически чистого титана включает сборку и сварку деформированной волочением проволоки и пластины и...
Тип: Изобретение
Номер охранного документа: 0002514765
Дата охранного документа: 10.05.2014
27.06.2014
№216.012.d843

Емкостный датчик перемещений

Изобретение относится к микромеханическим устройствам и может применяться в интегральных акселерометрах и гироскопах. Техническим результатом заявленного изобретения является повышение точности емкостного датчика при измерении угловых перемещений. Технический результат достигнут посредством...
Тип: Изобретение
Номер охранного документа: 0002521141
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dd62

Способ получения аллилсульфоната натрия для синтеза сульфосодержащих карбоксилатных суперпластификаторов для цементных смесей

Изобретение относится к способу получения аллилсульфоната натрия, который заключается во взаимодействии аллилхлорида и сульфита натрия в гетерогенной водно-органической среде в присутствии метоксиполиэтиленгликольметакрилатов (с числом оксиэтильных звеньев 23-45) в качестве катализаторов...
Тип: Изобретение
Номер охранного документа: 0002522452
Дата охранного документа: 10.07.2014
27.08.2014
№216.012.eeda

Способ контроля за процессом обводнения газовой скважины

Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке газовых месторождений. Техническим результатом предлагаемого изобретения является уточнение даты изменения коэффициентов фильтрационного сопротивления призабойной зоны за счет учета основных...
Тип: Изобретение
Номер охранного документа: 0002526965
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ef87

Способ измерения влажности нефти

Изобретение относится к нефтедобывающей промышленности, а именно к способам измерения влажности нефти без предварительной сепарации газа из продукции скважины. В процессе проведения экспериментальных работ находится зависимость средней абсолютной погрешности проверочных точек от средней...
Тип: Изобретение
Номер охранного документа: 0002527138
Дата охранного документа: 27.08.2014
10.09.2014
№216.012.f401

Режущая пластина

Изобретение относится к области машиностроения, в частности к металлообработке. Режущая пластина содержит основу из твердого сплава и нанесенный на нее износостойкий слой из наноструктурного карбида вольфрама и наноструктурного карбида ниобия с размером зерен 20-50 нм, при их следующем...
Тип: Изобретение
Номер охранного документа: 0002528288
Дата охранного документа: 10.09.2014
10.10.2014
№216.012.fc6e

Способ измерения параметров однофотонных источников излучения инфракрасного диапазона

Изобретение относиться к области измерения параметров слабых потоков излучения и касается способа измерения параметров однофотонных источников излучения. Параметры источника излучения измеряются с помощью однофотонного сверхпроводникового детектора. Для осуществления способа измеряют среднее...
Тип: Изобретение
Номер охранного документа: 0002530468
Дата охранного документа: 10.10.2014
27.10.2014
№216.013.023d

Способ контроля за процессом изменения коэффициентов фильтрационного сопротивления призабойной зоны газовой скважины

Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке газовых месторождений. Техническим результатом изобретения является учет влияния изменения напряженного состояния газоносного пласта на изменение коэффициентов фильтрационного сопротивления...
Тип: Изобретение
Номер охранного документа: 0002531971
Дата охранного документа: 27.10.2014
+ добавить свой РИД