×
27.08.2014
216.012.f0c4

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ АЛЬДЕГИДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения альдегидов гидроформилированием терминальных или внутренних олефинов в присутствии каталитической системы, содержащей родий и моно- или полифосфитный лиганд. При этом в реакционную смесь добавляют антиоксидант, в качестве которого используют фенолы или тиомочевины, общих формул: где R - одинаковые или различающиеся алифатические или ароматические одновалентные радикалы или водород, а гидроформилирование проводят в жидкой фазе в среде растворителя, в качестве которого используют альдегид, при концентрации родия 0,1-2 ммоль/л, при температуре 20-150°C и давлении 0,2-5 МПа, при этом количество антиоксиданта составляет 1-30 моль на 1 моль фосфитного лиганда. Изобретение позволяет эффективным способом получить целевые продукты при снижении расходов на сырье. 2 табл., 15 пр.
Основные результаты: Способ получения альдегидов гидроформилированием терминальных или внутренних олефинов в присутствии каталитической системы, содержащей родий и моно- или полифосфитный лиганд, отличающийся тем, что в реакционную смесь добавляют антиоксидант, в качестве которого используют фенолы или тиомочевины, общих формул: ,где R - одинаковые или различающиеся алифатические или ароматические одновалентные радикалы или водород, а гидроформилирование проводят в жидкой фазе в среде растворителя, в качестве которого используют альдегид, при концентрации родия 0,1-2 ммоль/л, при температуре 20-150°C и давлении 0,2-5 МПа, при этом количество антиоксиданта составляет 1-30 моль на 1 моль фосфитного лиганда.

Изобретение относится к основному органическому, тонкому органическому и нефтехимическому синтезу и может быть использовано для гидроформилирования олефинов в соответствующие альдегиды.

Гидроформилирование линейных олефинов является промышленным крупнотоннажным процессом получения альдегидов и продуктов на их основе. Одним из вариантов проведения процесса является гидроформилирование олефинов на гомогенных родиевых катализаторах, модифицированных фосфитными лигандами. Наряду с преимуществами подобные каталитические системы имеют ряд недостатков - высокая стоимость Rh и лигандов, высокая реакционная способность лигандов в нежелательных деструктивных процессах. Появление в реакционной среде кислот, воды, кислорода и других химически активных соединений приводит к стремительной деградации триорганофосфитов. Существует несколько путей превращения фосфитных лигандов - гидролиз с образованием кислых фосфитов, взаимодействие с альдегидами с дальнейшей перегруппировкой в альфа-гидроксифосфонаты, окисление (Applied Catalysis А, 2001, Т.212. С.61-81).

Несмотря на то что фосфитные лиганды считаются более устойчивыми к окислению по сравнению с фосфиновыми, это справедливо лишь в случае окисления молекулярным кислородом. В среде алифатического альдегида окисление лигандов идет со значительно большими скоростями, поскольку альдегид выступает в роли медиатора кислорода. При взаимодействии альдегида с кислородом образуются высокоактивные радикалы ацильного, гидропероксидного и других типов, а также перекиси (Успехи химии, 1985, Т.54. Вып.6. С.903-922), которые способны взаимодействовать с лигандом быстрее, чем молекулярный кислород, например (Успехи химии, 1971, Т.40. Вып.2. С.254-275):

RCHO+O2→·RC(O)OOH; (RO)3P+RC(O)OOH→RC(O)OH+(RO)3P=O.

По этим причинам к чистоте используемого сырья предъявляются высокие требования. Для подавления заметного окисления фосфитов содержание кислорода в сырье не должно превышать 1-10 ppm и менее. По этой причине для увеличения срока службы катализаторной композиции необходимы стадии глубокой очистки сырья от кислорода. Это приводит к удорожанию получаемых альдегидов и продуктов на их основе. К тому же в момент первоначального запуска процесса окисление лиганда не полностью удаленным из системы и сорбированным на оборудовании кислородом осуществляется особенно интенсивно.

В литературе описано несколько способов замедления деградации фосфитного лиганда посредством введения в реакционную смесь различных добавок. Однако, исходя из их химической сущности, они не решают проблем с окислением. Так, известен способ гидроформилирования олефинов (патент US 5364950) с добавками соединений, содержащих оксирановый цикл для связывания гидроксифосфонатов. Данные вещества позволяют инактивировать кислоты, образующиеся из фосфитов, но не обладают антиоксидантными свойствами.

Предложен способ нейтрализации кислот, образующихся из фосфитов, непрерывным пропусканием части потока катализаторного раствора через колонну с ионно-обменной смолой (патент US 4599206). Однако данный метод требует введения в процесс дополнительного оборудования, которое может быть источником сорбированного кислорода.

Известен способ получения альдегидов гидроформилированием олефинов (патенты US 5731472, US 5744650) с введением в реакционную смесь аминов или азотсодержащих гетероциклов, которые препятствуют автокаталитическому гидролизу фосфитов. Однако добавление аминов вызывает протекание побочных процессов, например олигомеризации альдегидов. Кроме того, амины не могут предотвратить окисление фосфита в растворе альдегида.

Имеются сведения о введении 2,6-дитретбутил-4-метилфенола в реакционную смесь гидроформилирования в качестве антиоксиданта (WO 195003702, US 4599206). Однако к какому техническому результату это приводит и как сказывается на стабильности фосфитного лиганда, не сообщается. В то же время известно, что недостаточно объемные моноядерные фенолы способны переэтерифицировать P-O-связи лигандов, разрушая их структуру, что особенно критично для полифосфитов и областей высоких температур (свыше 100-110°C). Это препятствует применению больших концентраций антиоксидантов подобного типа, которые необходимы для снижения требований к очистке сырья и достижения при этом продолжительного действия каталитического комплекса.

Для стабилизации дорогостоящих полифосфитов могут быть использованы монофосфины (US 6153800, US 2012/0029242). Однако добавление фосфинов вызывает снижение активности катализатора, причем для нивелирования этого эффекта требуется применение специфических и достаточно труднодоступных лигандов (как фосфиновых, так и фосфитных).

Задачей изобретения выступает создание эффективного способа получения альдегидов и снижения затрат на его осуществление за счет смягчения требований к качеству очистки сырья и уменьшения расхода дорогостоящего фосфорорганического лиганда.

Технический результат заключается в подавлении окисления фосфорорганического лиганда примесями кислорода в присутствии альдегидного продукта или растворителя, в результате чего деградация лиганда замедляется, срок службы каталитической системы продлевается и, следовательно, снижается ее расход. Одновременно снижаются требования к чистоте сырья и аппаратурному оформлению в части предотвращения контакта раствора катализатора с кислородом воздуха.

Технический результат достигается добавлением в реакционную среду при гидроформилировании олефинов на родиевом катализаторе, модифицированном фосфитными лигандами, антиоксидантов класса тиомочевин и объемных бисфенолов в количествах 1-30 эквивалентов по отношению к лиганду. Указанные антиоксиданты имеют общие формулы:

где R - одинаковые или различающиеся алифатические или ароматические одновалентные радикалы или водород. В качестве антиоксидантов из указанных формул могут использоваться тиомочевина, N-метил-N,N′-дифенилтиомочевина, 2,2′-метилен-бис(6-трет-бутил-4-метилфенол), 2,2′-бис(4,6-ди-трет-бутилфенол) и др.

Представленные вещества выступают в роли радикальных ловушек, связывая образующиеся из альдегида и кислорода активные окислители, и таким образом препятствуют окислению фосфита. Например, осуществляются реакции:

Гидроформилирование олефинов может осуществляться при температурах 20-150°C, суммарном давлении водорода, окиси углерода и непредельного соединения 0,05-5 МПа, парциальном давлении водорода 0,01-3 МПа, парциальном давлении монооксида углерода 0,01-3 МПа.

Осуществление настоящего изобретения иллюстрируют приведенные ниже примеры.

Пример 1

Растворяют 33,36 мг дифосфитного лиганда А в 10 мл ацетона. Приготовленный раствор в количестве 1 мл на воздухе переносят в виалу объемом 4 мл, содержащую 2 мл ацетона, встряхивают и анализируют методом ВЭЖХ. Через 14 и 42 минуты концентрация фосфита в растворе не меняется и соответствует расчетной 1.11 мг/мл. Этот пример демонстрирует, что в растворе ацетона лиганд А устойчив к действию воздуха.

Лиганд А

Пример 2

Операции выполняют аналогично примеру 1 за исключением того, что в виалу вместо 2 мл ацетона помещают 2 мл свежеперегнанных бутиральдегидов (смесь н- и изобутираля с отношением н/изо ~1). Сразу после смешения растворов по ВЭЖХ исходный фосфит А не обнаруживается, причем наблюдаются пики, относящиеся к продуктам окисления одного или двух атомов фосфора. Этот пример показывает, что в присутствии альдегидов лиганд А подвергается быстрому окислению на воздухе.

Примеры 3-6

Операции выполняют аналогично примеру 2 за исключением того, что в бутиральдегид предварительно добавляют 13 моль на 1 моль фосфита А 2,2′-метилен-бис(6-трет-бутил-4-метилфенол), N-метил-N,N′-дифенилтиомочевины, тиомочевины или 2,2′-бис(4,6-ди-трет-бутилфенола). Пробы анализируют методом ВЭЖХ через промежутки времени, указанные в таблице 1, находя количество оставшегося фосфита в % по отношению к его расчетной начальной концентрации (1.11 мг/мл). Результат представлен в таблице 1.

Примеры 3-6 показывают, что добавки антиоксидантов класса фенолов, тиомочевин и фосфинов замедляют окисление фосфитного лиганда в растворе альдегида.

Таблица 1
Пример Антиоксидант* N, %
Сразу после смешивания Через 14 мин после смешивания Через 42 мин после смешивания
2 нет 0 0 0
3 МВТВМР 80 79 75
4 MDPTU ~100 88 59
5 TU 72 53 31
6 BDTBP 98 88 85
*МВТВМР=2,2′-метилен-бис(6-трет-бутил-4-метилфенол), MDPTU=N-метил-N,N′-дифенилтиомочевина, TU=тиомочевина, BDTBP=2,2′-бис(4,6-ди-трет-бутилфенол).

N, %=100%*C/Co, где С - текущая концентрация фосфита в растворе, Co - начальная концентрация фосфита, рассчитанная на основании загрузки.

Сравнительный пример 1С

В стальной автоклав производства Parr Instrument объемом 100 мл, снабженный устройствами для термостатирования и перемешивания, в токе аргона помещают 20 мл смеси бутиральдегидов (н/изо ~1), 1,52 мг Rh(acac)(CO)2 и 50,33 мг лиганда A (A/Rh=10, [Rh]=0.3 ммоль/л). Автоклав продувают азотом (3*1,5 МПа) и нагревают до 90°С. После этого отбирают пробу жидкой фазы (1 мл), соответствующей раствору до начала реакции. Часть раствора (0,2 мл) помещают в виалу (0,3 мл), содержащую ~3 мг тиомочевины, и методом ВЭЖХ определяют долю не подвергшегося деградации свободного лиганда в % от теоретического количества, найденного на основании загрузки катализатора. Далее в автоклав вводят 3 мл пропилена, доводят общее давление до 2 МПа посредством подачи синтез-газа (H2/CO=1) и проводят процесс при постоянном давлении, находя начальную скорость реакции (TOF, моль альдегида на 1 моль Rh в час) по поглощению синтез-газа из калиброванной мерной емкости. По завершении поглощения синтез-газа, автоклав охлаждают, региоселективность гидроформилирования (SH) рассчитывают на основании ГЖХ-анализа исходной и результирующей смеси альдегидов. Долю не подвергшегося деградации лиганда определяют методом ВЭЖХ, как это указано выше. Результат представлен в таблице 2. Сравнительный пример 1С показывает, что в отсутствии антиоксиданта и без принятия специальных мер по предотвращению попадания кислорода в растворитель более 90% свободного дифосфитного лиганда распадается еще до начала реакции.

Сравнительный пример 2С

Все операции проводятся аналогично сравнительному примеру 1С за исключением того, что в автоклав в токе аргона сначала загружают катализатор, после чего автоклав вакуумируют масляным насосом до 0.1 Торр и по тонкому стальному капилляру вводят свежеперегнанный в атмосфере CO бутиральдегид. Загрузку осуществляют в токе CO без разгерметизации перегонной аппаратуры. Результат представлен в таблице 2. В сопоставлении с примером 1С сравнительный пример 2С показывает, что меры по предотвращению контакта альдегидного растворителя с кислородом воздуха в значительной степени замедляют деструкцию дифосфитного лиганда.

Примеры 7-9

Все операции проводятся аналогично сравнительному примеру 1С за исключением того, что перед загрузкой альдегидного растворителя в автоклав помещают антиоксидант (см. табл.2) в количестве 3 моль на 1 моль лиганда А. В сопоставлении со сравнительным примером 1С примеры 7-9 показывают, что добавление антиоксиданта предотвращает драматическое окисление свободного дифосфита при проведении гидроформилирования. В сопоставлении со сравнительным примером 2С видно, что антиоксидант практически не влияет на скорость и региоселективность целевой реакции.

Сравнительный пример 3С

В стальной автоклав производства Parr Instrument объемом 100 мл, снабженный устройствами для термостатирования и перемешивания, в токе аргона помещают 19 мл смеси бутиральдегидов (н/изо ~1), 1 мл раствора Rh(acac)(CO)2 в п-ксилоле, содержащий 0.517 мг указанного комплекса родия, и 38,86 мг лиганда Б (Б/Rh=30, [Rh] 0.1 ммоль/л). Автоклав продувают азотом (3*1,5 МПа) и нагревают до 90°C. После этого отбирают пробу жидкой фазы (1 мл), соответствующей раствору до начала реакции. Часть раствора (0,2 мл) помещают в виалу (0,3 мл), содержащую ~3 мг тиомочевины, и методом ВЭЖХ определяют долю не подвергшегося деградации свободного лиганда. Далее в автоклав вводят 8 мл пропилена, доводят общее давление до 2.1 МПа посредством подачи синтез-газа (H2/CO=1) и проводят процесс при постоянном давлении, находя начальную скорость реакции (TOF, моль альдегида на 1 моль Rh в час) по поглощению синтез-газа из калиброванной мерной емкости. По завершении поглощения синтез-газа автоклав охлаждают, региоселективность гидроформилирования (SH) рассчитывают на основании ГЖХ-анализа исходной и результирующей смеси альдегидов. Долю не подвергшегося деградации свободного лиганда определяют методом ВЭЖХ, как это указано выше. Результат представлен в таблице 2. Сравнительный пример 3С показывает, что в отсутствие антиоксиданта и без принятия специальных мер по предотвращению попадания кислорода в растворитель около 50% свободного монофосфитного лиганда распадается еще до начала реакции. Одновременно по ВЭЖХ фиксируется интенсивное образование продукта окисления - фосфата.

Лиганд Б

Пример 10

Все операции проводятся аналогично сравнительному примеру 3С за исключением того, что перед загрузкой альдегидного растворителя в автоклав помещают 2,2′-метилен-бис(6-трет-бутил-4-метилфенол), (см. табл.2) в количестве 3 моль на 1 моль лиганда Б. В сопоставлении со сравнительным примером 3С пример 10 показывает, что добавление антиоксиданта значительно замедляет окисление свободного монофосфита.

Сравнительный пример 4С

В стальной автоклав производства Parr Instrument объемом 100 мл, снабженный устройствами для термостатирования и перемешивания, в токе аргона помещают 17 мл смеси бутиральдегидов (н/изо ~1), 3 мл раствора Rh(acac)(CO)2 в п-ксилоле, содержащего 7,78 мг указанного комплекса родия, и 195,11 мг лиганда Б (Б/Rh=10, [Rh] 1,5 ммоль/л). Автоклав продувают азотом (3*15 атм) и нагревают до 130°C. После этого отбирают пробу жидкой фазы (1 мл), соответствующей раствору до начала реакции. Часть раствора (0,2 мл) помещают в виалу (0,3 мл), содержащую ~3 мг тиомочевины, и методом ВЭЖХ определяют долю не подвергшегося деградации свободного лиганда. Далее в автоклав вводят 8 мл бутена-2, доводят общее давление до 3,5 МПа посредством подачи синтез-газа (H2/CO=1) и проводят процесс при постоянном давлении, находя начальную скорость реакции (TOF, моль альдегида на 1 моль Rh в час) по поглощению синтез-газа из калиброванной мерной емкости. По завершении поглощения синтез-газа автоклав охлаждают, региоселективность гидроформилирования (SH) рассчитывают на основании ГЖХ-анализа. Долю не подвергшегося деградации лиганда определяют методом ВЭЖХ, как это указано выше. Результат представлен в таблице 2. Сравнительный пример 4С показывает, что в отсутствие антиоксиданта и без принятия специальных мер по предотвращению попадания кислорода в растворитель около 50% свободного монофосфитного лиганда распадается еще до начала реакции.

Пример 11

Все операции проводятся аналогично сравнительному примеру 4С за исключением того, что перед загрузкой альдегидного растворителя в автоклав помещают 2,2'-бис(4,6-ди-трет-бутилфенол) (см. табл.2) в количестве 30 моль на 1 моль лиганда Б. В сопоставлении со сравнительным примером 4С пример 11 показывает, что добавление антиоксиданта предотвращает драматическое окисление свободного монофосфита и не ухудшает показатели процесса гидроформилирования внутреннего олефина.

Таблица 2
Пример Лиганд Антиоксидант* Антиоксидант/лиганд TOF, ч-1 Sh**, % N***, %
до реакции после реакции
А Нет - 13100 93 7 0
А Нет - 14400 96 92 50
7 А МВТВМР 3 13300 95 99 54
8 А TU 3 11400 95 87 49
9 А MDPTU 3 13000 96 99 50
Б Нет - 58700 55 49 40
10 Б МВТВМР 3 63300 57 84 69
Б Нет - 44130 30 52 33
11 Б BDTBP 30 46280 31 97 93
*MBTBMP=2,2′-метилен-бис(6-трет-бутил-4-метилфенол), MDPTU=N-метил,N,N′-дифенилтиомочевина, TU=тиомочевина, BDTBP=2,2′-бис(4,6-ди-трет-бутилфенол).
**Sh=100%×н/(н+изо), где н - выход линейного альдегида, изо - выход разветвленного альдегида.
***N, %=100%*C/Co, где C - текущая концентрация фосфита в растворе, Со - начальная концентрация свободного лиганда, рассчитанная на основании загрузки фосфита и родия.

Способ получения альдегидов гидроформилированием терминальных или внутренних олефинов в присутствии каталитической системы, содержащей родий и моно- или полифосфитный лиганд, отличающийся тем, что в реакционную смесь добавляют антиоксидант, в качестве которого используют фенолы или тиомочевины, общих формул: ,где R - одинаковые или различающиеся алифатические или ароматические одновалентные радикалы или водород, а гидроформилирование проводят в жидкой фазе в среде растворителя, в качестве которого используют альдегид, при концентрации родия 0,1-2 ммоль/л, при температуре 20-150°C и давлении 0,2-5 МПа, при этом количество антиоксиданта составляет 1-30 моль на 1 моль фосфитного лиганда.
СПОСОБ ПОЛУЧЕНИЯ АЛЬДЕГИДОВ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 129.
10.05.2015
№216.013.47d7

Способ получения маловязких белых масел

Изобретение относится к области нефтепереработки и нефтехимии. Изобретение касается способа получения маловязких белых масел, в котором вакуумный газойль подвергают гидрокрекингу при объемном соотношении водорода к сырью 800-1000 нм/м, объемной скорости подачи сырья 0,4-0,6 ч, температуре...
Тип: Изобретение
Номер охранного документа: 0002549898
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b3c

Способ получения гидрофобной добавки в асфальтобетонную смесь и способ получения асфальтобетонной смеси с ее использованием

Изобретение относится к области получения товарных продуктов, а именно - гидрофобной добавки для асфальтобетонных смесей и асфальтобетонной смеси с ее использованием. В способе получения гидрофобной добавки в асфальтобетонную смесь, включающем смешение нефтесодержащего шлама с негашеной...
Тип: Изобретение
Номер охранного документа: 0002550767
Дата охранного документа: 10.05.2015
10.06.2015
№216.013.52ed

Способ получения микросфер полимерного проппанта из полимерной матрицы на основе метатезис-радикально сшитой смеси олигоциклопентадиенов

Изобретение относится к технологии нефте-, газодобычи, в частности к получению полимерного проппанта в виде расклинивающих микросфер, применяемых при добыче нефти и газа методом гидравлического разрыва пласта. В способе используют полимерную матрицу на основе метатезис-радикально сшитой смеси...
Тип: Изобретение
Номер охранного документа: 0002552750
Дата охранного документа: 10.06.2015
20.07.2015
№216.013.63ab

Технологическая установка получения альдегидов, преимущественно из бутенов или пропилена, с применением родиевых катализаторов

Изобретение относится к технологической установке получения альдегидов, преимущественно из бутенов или пропилена, с применением родиевых катализаторов. Установка включает подключенные к реактору через устройства очистки источники синтез-газа и олефинов, последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002557062
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6b66

Установка для получения альдегидов гидроформилированием олефинов с3-с4 с применением каталитической системы на основе родия

Изобретение относится к установке для получения альдегидов гидроформилированием олефинов С3-С4 с применением каталитической системы на основе родия. Установка включает параллельно подключенные к реактору через устройства очистки источники синтез-газа и олефина, последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002559052
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6fa6

Способ приготовления катализатора для риформинга бензиновых фракций

Изобретение относится к способу приготовления катализатора для риформинга бензиновых фракций. Данный способ включает обработку носителя раствором соединения олова, сушку и прокалку, с последующей пропиткой водным раствором платинохлористоводородной кислоты, сушкой и прокалкой. При этом носитель...
Тип: Изобретение
Номер охранного документа: 0002560152
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6fa9

Способ термохимической переработки нефтяных шламов в смесях с твердым топливом для получения жидких продуктов

Изобретение относится к нефтехимической промышленности. Изобретение касается способа термохимической переработки нефтяных шламов в смесях с твердым топливом, включающего получение полукокса или нефтяного кокса при температуре 450-600°C. Полукокс или нефтяной кокс непосредственно в реакторе...
Тип: Изобретение
Номер охранного документа: 0002560155
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6faa

Способ получения этриола

Настоящее изобретение относится к способу получения этриола, который является сырьем для производства сложноэфирных смазочных материалов, алкидных и эпоксидных смол, эмалей, полиэфиров и пенополиуретанов, пластификаторов полимеров, а также клеев для металлов. Способ предусматривает...
Тип: Изобретение
Номер охранного документа: 0002560156
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6fab

Катализатор изодепарафинизации дизельных фракций и способ его получения

Изобретение относится к области катализа в нефтепереработке, более конкретно к катализатору изодепарафинизации для получения низкозастывающих дизельных топлив в процессе каталитической изодепарафинизации и способу его приготовления, и может быть использовано в нефтеперерабатывающей...
Тип: Изобретение
Номер охранного документа: 0002560157
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6faf

Носитель, способ его приготовления (варианты), способ приготовления катализатора риформинга (варианты) и способ риформинга бензиновых фракций

Изобретение относится к способу приготовления носителя Sn(Zr)-γ-AlO для катализатора риформинга бензиновых фракций, при этом носитель готовят осаждением раствора азотнокислого алюминия водным раствором аммиака, с последующими стадиями фильтрации суспензии и промывки осадка, его пептизации...
Тип: Изобретение
Номер охранного документа: 0002560161
Дата охранного документа: 20.08.2015
Показаны записи 51-60 из 144.
10.05.2015
№216.013.47d7

Способ получения маловязких белых масел

Изобретение относится к области нефтепереработки и нефтехимии. Изобретение касается способа получения маловязких белых масел, в котором вакуумный газойль подвергают гидрокрекингу при объемном соотношении водорода к сырью 800-1000 нм/м, объемной скорости подачи сырья 0,4-0,6 ч, температуре...
Тип: Изобретение
Номер охранного документа: 0002549898
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b3c

Способ получения гидрофобной добавки в асфальтобетонную смесь и способ получения асфальтобетонной смеси с ее использованием

Изобретение относится к области получения товарных продуктов, а именно - гидрофобной добавки для асфальтобетонных смесей и асфальтобетонной смеси с ее использованием. В способе получения гидрофобной добавки в асфальтобетонную смесь, включающем смешение нефтесодержащего шлама с негашеной...
Тип: Изобретение
Номер охранного документа: 0002550767
Дата охранного документа: 10.05.2015
10.06.2015
№216.013.52ed

Способ получения микросфер полимерного проппанта из полимерной матрицы на основе метатезис-радикально сшитой смеси олигоциклопентадиенов

Изобретение относится к технологии нефте-, газодобычи, в частности к получению полимерного проппанта в виде расклинивающих микросфер, применяемых при добыче нефти и газа методом гидравлического разрыва пласта. В способе используют полимерную матрицу на основе метатезис-радикально сшитой смеси...
Тип: Изобретение
Номер охранного документа: 0002552750
Дата охранного документа: 10.06.2015
20.07.2015
№216.013.63ab

Технологическая установка получения альдегидов, преимущественно из бутенов или пропилена, с применением родиевых катализаторов

Изобретение относится к технологической установке получения альдегидов, преимущественно из бутенов или пропилена, с применением родиевых катализаторов. Установка включает подключенные к реактору через устройства очистки источники синтез-газа и олефинов, последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002557062
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6b66

Установка для получения альдегидов гидроформилированием олефинов с3-с4 с применением каталитической системы на основе родия

Изобретение относится к установке для получения альдегидов гидроформилированием олефинов С3-С4 с применением каталитической системы на основе родия. Установка включает параллельно подключенные к реактору через устройства очистки источники синтез-газа и олефина, последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002559052
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6fa6

Способ приготовления катализатора для риформинга бензиновых фракций

Изобретение относится к способу приготовления катализатора для риформинга бензиновых фракций. Данный способ включает обработку носителя раствором соединения олова, сушку и прокалку, с последующей пропиткой водным раствором платинохлористоводородной кислоты, сушкой и прокалкой. При этом носитель...
Тип: Изобретение
Номер охранного документа: 0002560152
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6fa9

Способ термохимической переработки нефтяных шламов в смесях с твердым топливом для получения жидких продуктов

Изобретение относится к нефтехимической промышленности. Изобретение касается способа термохимической переработки нефтяных шламов в смесях с твердым топливом, включающего получение полукокса или нефтяного кокса при температуре 450-600°C. Полукокс или нефтяной кокс непосредственно в реакторе...
Тип: Изобретение
Номер охранного документа: 0002560155
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6faa

Способ получения этриола

Настоящее изобретение относится к способу получения этриола, который является сырьем для производства сложноэфирных смазочных материалов, алкидных и эпоксидных смол, эмалей, полиэфиров и пенополиуретанов, пластификаторов полимеров, а также клеев для металлов. Способ предусматривает...
Тип: Изобретение
Номер охранного документа: 0002560156
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6fab

Катализатор изодепарафинизации дизельных фракций и способ его получения

Изобретение относится к области катализа в нефтепереработке, более конкретно к катализатору изодепарафинизации для получения низкозастывающих дизельных топлив в процессе каталитической изодепарафинизации и способу его приготовления, и может быть использовано в нефтеперерабатывающей...
Тип: Изобретение
Номер охранного документа: 0002560157
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6faf

Носитель, способ его приготовления (варианты), способ приготовления катализатора риформинга (варианты) и способ риформинга бензиновых фракций

Изобретение относится к способу приготовления носителя Sn(Zr)-γ-AlO для катализатора риформинга бензиновых фракций, при этом носитель готовят осаждением раствора азотнокислого алюминия водным раствором аммиака, с последующими стадиями фильтрации суспензии и промывки осадка, его пептизации...
Тип: Изобретение
Номер охранного документа: 0002560161
Дата охранного документа: 20.08.2015
+ добавить свой РИД