×
27.08.2014
216.012.effe

Результат интеллектуальной деятельности: КОМПЕНСАТОР ТЕРМОНАВЕДЕННОЙ ДЕПОЛЯРИЗАЦИИ В ПОГЛОЩАЮЩЕМ ОПТИЧЕСКОМ ЭЛЕМЕНТЕ ЛАЗЕРА

Вид РИД

Изобретение

№ охранного документа
0002527257
Дата охранного документа
27.08.2014
Аннотация: Изобретение относится к оптической технике. Компенсатор термонаведенной деполяризации γ включает в себя расположенный на оптической оси компенсирующий оптический элемент, установленный за поглощающим оптическим элементом. При этом компенсирующий оптический элемент изготовлен из материала, параметры которого удовлетворяют, по крайней мере, одному условию: либо параметр оптической анизотропии материала является отрицательным (ξ<0), либо термооптическая характеристика Q материала имеет знак, противоположный знаку термооптической характеристики Q материала поглощающего оптического элемента, при этом длина L компенсирующего оптического элемента и положение его кристаллографических осей определяются выбором материала компенсирующего оптического элемента и условием минимума суммарной термонаведенной деполяризации в системе поглощающий оптический элемент - компенсирующий оптический элемент. Технический результат заключается в обеспечении возможности компенсации термонаведенной деполяризации в поглощающем оптическом элементе лазера с помощью только одного оптического элемента, что упрощает изготовление и настройку разработанного компенсатора. 6 з.п. ф-лы, 3 ил.

Изобретение относится к оптической технике и может быть использовано для подавления термонаведенного двулучепреломления в поглощающих оптических элементах лазеров с высокой средней мощностью излучения (от 1 до 20 кВт).

При создании лазерных систем с высокой средней мощностью излучения неизбежно возникают тепловые эффекты в поглощающих оптических элементах, таких как активные элементы, оптические вентили и другие. Эти тепловые эффекты негативно влияют на работу оптических приборов и лазеров в целом. Их изучению и способу борьбы с ними посвящено много работ как в отечественной, так и зарубежной литературе.

Поглощение излучения в оптическом элементе приводит к появлению в его объеме неоднородного распределения температуры и к изменению его геометрических размеров. Вследствие этого неоднородное распределение по объему получат все оптические характеристики, зависящие от температуры. Градиент температуры приводит к появлению внутренних напряжений и термонаведенному двулучепреломлению, вызванному фотоупругим эффектом.

Кроме того, неоднородное распределение показателя преломления вкупе с изменением геометрических размеров оптического элемента приводит к искажению волнового фронта, называемому «тепловой линзой», но не изменяет поляризацию проходящего излучения.

Термонаведенное двулучепреломление в каждой точке поперечного сечения изменяет как разность хода между собственными поляризациями, так и сами собственные поляризации, которые становятся эллиптическими, и это термонаведенное двулучепреломление растет при увеличении мощности лазерного излучения. Наибольший вклад в поляризационные искажения мощного лазерного луча вносит именно фотоупругий эффект (Хазанов Е.А. Компенсация термонаведенных поляризационных искажений в вентилях Фарадея, «Квантовая электроника», 26, №1, 1999, стр.59-64). Термонаведенная деполяризация γ, вызванная фотоупругим эффектом, зависит от термооптической характеристики материала Q (А.В.Мезенов, Л.Н.Соме, А.И.Степанов. Термооптика твердотельных лазеров. Ленинград: Машиностроение, 1986), теплопроводности материала ξ, параметра оптической анизотропии материала ξ, длины волны лазерного излучения X и полной выделившийся мощности внутри поглощающего оптического элемента W≈αLPlaser, здесь α - коэффициент поглощения материала, L - длина элемента, Plaser - мощность проходящего через поглощающий оптический элемент излучения. Если поглощающий оптический элемент является монокристаллом, то термонаведенная деполяризация γ зависит еще и от направления кристаллографических осей. Выражения и способ вычисления термонаведенной деполяризации при произвольном направлении кристаллографических осей описан в работе (М.А.Каган, Е.А.Хазанов. Компенсация термонаведенного двулучепреломления в активных элементах из поликристаллической керамики. Квантовая электроника, т.33, стр.876-882, 2003).

Наиболее близкой по технической сущности заявляемой конструкции является конструкция компенсатора термонаведенной деполяризации в поглощающем оптическом элементе лазера, описанная в патенте №2465698, содержащая после поглощающего оптического элемента последовательно расположенные на оптической оси поляризационный вращатель, вращающий плоскость поляризации лазерного излучения на угол φ, и компенсирующий оптический элемент. Параметры поляризационного вращателя и компенсирующего элемента рассчитываются исходя из параметров поглощающего элемента и термооптических констант материала компенсирующего элемента. Предложенная схема прототипа обеспечивает компенсацию термонаведенной деполяризации γ0, возникшей в поглощающем оптическом элементе, при последующем прохождении этого же лазерного луча через компенсирующий оптический элемент, в котором наводится термонаведенная деполяризация γ1.

Недостаток известного технического решения прототипа заключается в том, что в схеме компенсатора прототипа используются два оптических элемента: поляризационный вращатель и компенсирующий оптический элемент. Во-первых, эти элементы суммарно имеют четыре оптические поверхности, которые порождают паразитные блики. Эти блики могут привести к пробою оптики или самовозбуждению усилителей в лазерной системе. Во-вторых, усложняется настройка компенсатора, так как настроить два элемента сложнее, чем один. В-третьих, использование двух оптических элементов увеличивает габариты всего устройства. В-четвертых, необходимость в устройствах для компенсации термонаведенной деполяризации в поглощающем оптическом элементе лазера возникает при высокой средней мощности лазерного излучения. При таких мощностях требование к качеству обработки поверхностей и качеству диэлектрического просветляющего покрытия значительно возрастает, а следовательно, возрастает и стоимость каждого используемого оптического элемента.

Задачей, на решение которой направлено настоящее изобретение, является разработка устройства, позволяющего компенсировать термонаведенную деполяризацию в поглощающем оптическом элементе лазера и состоящего из одного компенсирующего оптического элемента, что позволяет избавиться от вышеперечисленных недостатков.

Технический результат в разработанном компенсаторе термонаведенной деполяризации γ0 в поглощающем оптическом элементе лазера достигается за счет того, что он, как и прототип, включает в себя расположенный на оптической оси за поглощающим оптическим элементом компенсирующий оптический элемент.

Новым в разработанном компенсаторе термонаведенной деполяризации γ0 в поглощающем оптическом элементе лазера является то, что компенсирующий оптический элемент изготовлен из материала, параметры которого удовлетворяют, по крайней мере, одному условию из двух нижеперечисленных: либо параметр оптической анизотропии материала ξ1 является отрицательным (ξ1<0), либо термооптическая характеристика Q1 материала имеет знак, противоположный знаку термооптической характеристики Q0 материала поглощающего оптического элемента, при этом длина L1 компенсирующего оптического элемента и положение его кристаллографических осей определяются выбором материала компенсирующего оптического элемента и условием минимума суммарной термонаведенной деполяризации в системе поглощающий оптический элемент - компенсирующий оптический элемент.

Таким образом, как установлено авторами, за счет выбора материала компенсирующего оптического элемента из конструкции компенсатора прототипа возможно исключить поляризационный вращатель, что существенно упрощает настройку как компенсатора, так и всей лазерной системы в целом и удешевляет устройство. При этом на параметры материала, из которого изготавливается компенсирующий оптический элемент, накладывается строгое ограничение: или параметр оптической анизотропии материала должен быть отрицательным (ξ<0), или термооптическая характеристика Q1 материала должна быть противоположного знака по отношению к термооптической характеристике Q0 материала поглощающего оптического элемента. Численно рассчитывается термонаведенная деполяризация системы поглощающий оптический элемент - компенсирующий оптический элемент. При этом учитывается кристаллическая структура материалов поглощающего и компенсирующего оптических элементов (монокристалл, керамика или стекло), и если материал представляет собой монокристалл, то учитывается направление кристаллографических осей, а затем, варьируя длину L1 компенсирующего оптического элемента и положения кристаллографических осей в компенсирующем оптическом элементе (а если материал поглощающего оптического элемента представляет собой монокристалл, то и положения его кристаллографических осей), ищутся такие их значения, при которых термонаведенная деполяризация системы минимальна. Для нахождения термонаведенной деполяризации используется формализм матриц Джонса. Каждый оптический элемент описывается своей матрицей Джонса, при этом учитывается геометрия оптических элементов, форма и размер греющего излучения, способ отвода от них тепла и ориентация их кристаллографических осей. Зная матрицы Джонса для каждого оптического элемента и поле на входе, можно найти поле на выходе и вычислить термонаведенную деполяризацию системы оптических элементов.

Конструкция разработанного компенсатора термонаведенной деполяризации γ0 в поглощающем оптическом элементе лазера в соответствии с п.1 формулы позволяет создать устройство из одного компенсирующего оптического элемента, эффективно компенсирующее термонаведенную деполяризацию в поглощающем оптическом элементе лазерной системы без внесения изменения в поглощающий оптический элемент. При этом материал компенсирующего оптического элемента может быть выбран отличным от материала поглощающего элемента, например выбран более дешевым из оптических материалов, имеющих отрицательный параметр оптической анизотропии (ξ1<0).

В первом частном случае реализации разработанного устройства изготовление компенсатора термонаведенной деполяризации в соответствии с п.2 формулы позволяет эффективно компенсировать термонаведенную деполяризацию в частном случае поглощающего оптического элемента - в оптическом вентиле. При условии что поглощающий оптический элемент выполнен из монокристалла ТГГ с ориентацией кристаллографических осей [001], компенсирующий оптический элемент выполнен из монокристалла CaF2 с отрицательным параметром оптической анизотропии ξ1 и с ориентацией кристаллографических осей [001], длина L1 компенсирующего оптического элемента выбирается такой, что α1L1=(1,9±0,2) α0L0, а значения углов θ0=29,5О±0,5° и θ1=40,9°±0,5°. Таким образом, длина L1 компенсирующего оптического элемента выбирается такой, чтобы полная выделившаяся мощность в компенсирующем оптическом элементе равнялась примерно 1,9 от полной выделившейся мощности в поглощающем оптическом элементе. Расчеты показывают, что при добавлении в лазер компенсатора с приведенными параметрами величина термонаведенной деполяризации может быть снижена более чем на два порядка и, кроме того, это позволяет увеличить максимально допустимую мощность, ниже которой степень изоляции оптического вентиля больше 30 дБ, в 2,7 раза.

Во втором частном случае реализации разработанного устройства изготовление компенсатора термонаведенной деполяризации в соответствии с п.3 формулы также позволяет эффективно компенсировать термонаведенную деполяризацию в оптическом вентиле. При условии что поглощающий оптический элемент выполнен из монокристалла ТГГ с ориентацией [111], компенсирующий оптический элемент выполнен из монокристалла CaF2 с отрицательным параметром оптической анизотропии ξ1 и с ориентацией [001], длина L1 компенсирующего оптического элемента выбирается такой, α1L1=(2,7±0,4) α0L0, а значение угла θ1=37,5°±0,5°. Таким образом, длина L1 компенсирующего оптического элемента выбирается такой, чтобы полная выделившаяся мощность в компенсирующем оптическом элементе равнялась примерно 2,7 от полной выделившейся мощности в поглощающем оптическом элементе. Расчеты показывают, что величина термонаведенной деполяризации при добавлении в лазер компенсатора с приведенными параметрами может быть снижена более чем на порядок и также позволяет увеличить максимально допустимую мощность, ниже которой степень изоляции оптического вентиля больше 30 дБ, в 3,1 раза.

В третьем частном случае реализации разработанного устройства построение компенсатора термонаведенной деполяризации в соответствии с п.4 формулы также позволяет эффективно компенсировать термонаведенную деполяризацию в частном случае поглощающего оптического элемента - в оптическом вентиле. При условии что поглощающий оптический элемент выполнен из магнитоактивного стекла, компенсирующий оптический элемент выполнен из монокристалла CaF2 с отрицательным параметром оптической анизотропии ξ1 и с ориентацией [001], длина L1 компенсирующего оптического элемента выбирается такой, что α1L1=(1,6±0,2) α0L0, а значение угла θ1=37,5°±0,5°. Таким образом, длина L1 компенсирующего оптического элемента выбирается такой, чтобы полная выделившаяся мощность в компенсирующем оптическом элементе равнялась примерно 1,6 от полной выделившейся мощности в поглощающем оптическом элементе. Расчеты показывают, что величина термонаведенной деполяризации при добавлении компенсации с приведенными параметрами может быть снижена более чем на порядок и позволяет также увеличить максимально допустимую мощность, ниже которой степень изоляции оптического вентиля больше 30 дБ, в 3,2 раза.

В четвертом частном случае реализации разработанного устройства построение компенсатора термонаведенной деполяризации в соответствии с п.5 формулы позволяет создать устройство, эффективно компенсирующие термонаведенную деполяризацию в частном случае поглощающего оптического элемента. При условии что поглощающий и компенсирующий оптические элементы выполнены из монокристалла с отрицательным параметром оптической анизотропии (ξ<0) и ориентацией [001], отношение длин компенсирующего оптического элемента к поглощающему оптическому элементу равняется 1/|ξ|, если |ξ|>1, и равняется |ξ|, если 0<|ξ|<1, а кристаллографические оси в этих элементах, лежащие в плоскости падения лазерного излучения, повернуты на 45° друг относительно друга. Расчеты показывают, что величина термонаведенной деполяризации такой пары кристаллов скомпенсирована достаточно эффективно (уменьшена более чем на два порядка), а суммарная длина кристаллов остается свободным параметром. Такая пара кристаллов может использоваться как адаптивный компенсатор тепловой линзы для других поглощающих элементов лазера, при условии что термооптическая характеристика P1 имеет противоположный знак, нежели Р0 в других поглощающих элементах лазера. Такой адаптивный компенсатор при добавлении в лазерную систему не вносит существенного изменения термонаведенной деполяризации.

В пятом частном случае реализации разработанного устройства построение компенсатора термонаведенной деполяризации в соответствии с п.6 формулы позволяет выбирать материал компенсирующего оптического элемента со знаком термооптической характеристики P1, противоположным знаку аналогичной термооптической характеристики Р0 материала поглощающего оптического элемента, а длину компенсирующего оптического элемента находить согласно п.1 формулы. Такое устройство кроме компенсации термонаведенной деполяризации будет дополнительно частично компенсировать тепловую линзу.

В шестом частном случае реализации разработанного устройства построение компенсатора термонаведенной деполяризации в соответствии с п.7 формулы позволяет совмещать в компенсирующем элементе функции других оптических элементов лазера. Например, при изготовлении компенсирующего элемента с соответствующим диэлектрическим покрытием он может дополнительно выполнять функцию поляризатора или зеркала.

Сущность изобретения поясняется чертежами:

- На фиг.1,а представлена в разрезе схема разработанного компенсатора термонаведенной деполяризации в соответствии с пунктами 1, 5 и 6 формулы.

- На фиг.1,6 изображены направления кристаллографических осей, определяемые углами θ0 в поглощающем оптическом элементе и θ1 в компенсирующем оптическом элементе относительно оси х в том случае, если поглощающий и компенсирующий оптические элементы изготовлены из монокристалла с ориентацией [001].

- На фиг.1,в показано характерное распределение термонаведенной деполяризации излучения для кристалла с ориентацией [001], представляющее собой так называемый «мальтийский крест».

- На фиг.2 представлена в разрезе схема разработанного компенсатора термонаведенной деполяризации в соответствии с пунктами 2, 3 и 4 формулы.

- на фиг.3 представлена в разрезе схема разработанного устройства для компенсации термонаведенной деполяризации в соответствии с п.7 формулы.

Компенсатор термонаведенной деполяризации, изготовленный в соответствии с п.1 формулы и представленный на фиг.1, содержит компенсирующий оптический элемент 1, помещенный на оптической оси за поглощающим оптическим элементом 2. Длина L1 и положение кристаллографических осей θ1 компенсирующего элемента 1 находятся исходя из параметров Р0, Q0, к0, ξ0, α0 материала поглощающего оптического элемента 2, параметров материала компенсирующего оптического элемента Р1, Q1, к1, ξ1, α1 и условий минимума суммарной термонаведенной деполяризации в системе поглощающий оптический элемент - компенсирующий оптический элемент. Отклонение от найденных параметров будет ухудшать компенсацию термонаведенной деполяризации, а при значительных отклонениях параметров устройство перестанет быть компенсирующим и будет дополнительно к термонаведенной деполяризации поглощающего оптического элемента вносить свои поляризационные искажения, увеличивая суммарную деполяризацию.

Компенсатор термонаведенной деполяризации, изготовленный в соответствии с п.2, п.3 и п.4 формулы и представленный на фиг.2, содержит компенсирующий оптический элемент 1, помещенный на оптической оси после поглощающего оптического элемента 2, который представляет из себя магнитооптический элемент, помещенный в магнитную систему 3, выполненную, например, на постоянных магнитах либо на сверхпроводящем соленоиде. И все эти элементы расположены между поляризаторами 4 и 5. Схема, представленная на фиг.2, представляет собой оптический вентиль с добавленным в него компенсатором термонаведенной деполяризации, который позволяет увеличить два основных потребительских свойства оптического вентиля: максимально допустимую среднюю мощность лазерного излучения и степень изоляции.

Компенсатор термонаведенной деполяризации, изготовленный в соответствии с п.7 формулы и представленный на фиг.3, содержит компенсирующий оптический элемент 1, помещенный на оптической оси после поглощающего оптического элемента 2. На одну из граней компенсирующего оптического элемента 1 нанесено диэлектрическое покрытие 4, а сам элемент 1 располагается под углом к падающему излучению, и в зависимости от диэлектрического покрытия компенсирующий оптический элемент 1 может дополнительно выполнять функцию поляризатора или поворотного зеркала.

В примере конкретной реализации разработан компенсатор термонаведенной деполяризации в оптическом вентиле по схеме, представленной на фиг.2. В качестве компенсирующего оптического элемента 1 использовался кристалл CaF2 с отрицательным параметром оптической анизотропии ξ1 с размерами: диаметр 25 мм, длина 7,7 мм, и ориентацией [001]. Компенсировали деполяризованное излучение, которое возникло в оптическом вентиле. В качестве поглощающего оптического элемента выступал магнитооптический элемент 2 оптического вентиля, изготовленный из кристалла ТГГ, с ориентацией [001]. Параметры компенсатора несколько отличались от приведенных в п.2 формулы, но добавление компенсатора с такими параметрами в схему оптического вентиля позволило при мощности лазерного излучения 300 Вт уменьшить термонаведенную деполяризацию в 4.24 раза и увеличить степень изоляции оптического вентиля с 32.5 дБ до 38.9 дБ, что хорошо согласуется с расчетами. А так как термооптические характеристики кристаллов ТГГ и CaF2 имеют противоположные знаки, то согласно п.6 добавление компенсатора термонаведенной деполяризации уменьшило силу тепловой линзы, возникающую в оптическом вентиле, в 1,23 раза. Компенсация тепловой линзы частичная. Компенсатор термонаведенной деполяризации с параметрами, приведенными в п.2 формулы, позволит при той же мощности увеличить степень изоляции оптического вентиля до 50 дБ.

Принцип работы разработанного компенсатора термонаведенной деполяризации γ0 в поглощающем оптическом элементе лазера аналогичен принципу работы прототипа. При прохождении поглощающего оптического элемента 2 (см. фиг.1) линейно поляризованное лазерное излучение частично поглощается, что приводит к неоднородному распределению температуры внутри поглощающего элемента 2, а вследствие этого возникают напряжения, которые благодаря фотоупругому эффекту приводят к термонаведенному двулучепреломлению. Термонаведенное двулучепреломление в каждой точке поперечного сечения изменяет как разность хода между собственными поляризациями, так и сами собственные поляризации, которые становятся эллиптическими. Это приводит к возникновению деполяризованной компоненты у изначально линейно поляризованного излучения. Отношение мощности деполяризованной компоненты к полной падающей мощности лазерного излучения определяет термонаведенную деполяризацию γ0 в поглощающем оптическом элементе 2 лазера. При прохождении компенсирующего оптического элемента 1 происходят процессы, аналогичные процессам в поглощающем оптическом элементе 2. В нем возникает термонаведенная деполяризация γ1. Как показано в работе (Ilya Snetkov, Anton Vyatkin, Oleg Palashov, and Efim Khazanov Drastic reduction of thermally induced depolarization in CaF2 crystals with [111] orientation. Optics Express, Vol.20, Issue 12, pp.13357-13367 (2012)), в средах с отрицательным параметром оптической анизотропии поведение распределения локальной термонаведенной деполяризации кардинально отличается от аналогичного поведения в средах с положительным параметром оптической анизотропии при вращении кристалла относительно направления распространения z лазерного излучения. Если параметр оптической анизотропии ξ положителен, то распределение термонаведенной деполяризации γ при вращении кристалла с ориентацией [001], представляющее собой так называемый «мальтийский крест» (см. фиг.1,в), относительно направления распространения лазерного излучения колеблется в некоторых пределах, зависящих от величины параметра оптической анизотропии и не превышающих 90°. То есть каждый лепесток «мальтийского креста» не выходит из своего квадранта (0°<φ<90°). В случае если параметр оптической анизотропии материала отрицательный (ξ<0), то «мальтийский крест» при вращении кристалла неравномерно вращается с удвоенной частотой. Лепестки «мальтийского креста» при таком вращении проходят через каждый из квадрантов (φ непрерывно изменяется от 0°до 360°).

Каждый лепесток «мальтийского креста» характеризуется знаком термонаведенного двулучепреломления, который в соседних лепестках различен. Таким образом, как установлено авторами, в средах с положительным параметром оптической анизотропии вращением компенсирующего оптического элемента 1 нельзя добиться компенсации термонаведенной деполяризации, т.к. лепестки «мальтийского креста» с одинаковым знаком термонаведенного двулучепреломления всегда будут находиться напротив друг друга. Для наличия компенсации в средах с положительным параметром оптической анизотропии и одинаковыми знаками Q0 и Q1 необходим еще один элемент - поляризационный вращатель, который меняет состояние поляризации прошедшего излучения так, что знаки у лепестков изменяются на противоположные, что и было продемонстрировано в прототипе.

Если материал компенсирующего оптического элемента 1 подобран таким образом, что имеет отрицательный параметр оптической анизотропии (ξ1<0), то возможно простым поворотом компенсирующего оптического элемента 1 совместить лепестки с противоположными знаками термонаведенного двулучепреломления в оптических элементах 1 и 2 лазера. Вследствие этого суммарная деполяризация системы поглощающий оптический элемент - компенсирующий оптический элемент уменьшается, что и позволяет решить поставленную задачу для случая, когда материал компенсирующего оптического элемента выбран с отрицательным параметром ξ1.

Если термооптические постоянные Q0 и Q1 у материалов поглощающего и компенсирующего оптических элементов 2 и 1 имеют противоположные знаки, то в отсутствие фарадеевского вращения при условии, что кристаллографические оси в обоих элементах направлены одинаково и одна из осей совпадает с направлением поляризации падающего излучения, знаки термонаведенного двулучепреломления в одинаковых квадрантах у них будут противоположные вне зависимости от знаков параметров оптической анизотропии ξ0 и ξ1. Длина L1 компенсирующего оптического элемента 1 подбирается такой, чтобы величина термонаведенного двулучепреломления была максимально близкой к возникшей величине термонаведенного двулучепреломления в поглощающем оптическом элементе 2. Таким образом, деполяризованная компонента поля уменьшается на величину, близкую к γ1, и вследствие этого, суммарная деполяризация системы поглощающий оптический элемент - компенсирующий оптический элемент уменьшается, что и позволяет решить поставленную задачу для случая, когда материал компенсирующего оптического элемента выбран с термооптической характеристикой Q1 со знаком, противоположным знаку термооптической характеристики Q0 поглощающего оптического элемента.

Сложность заключается в поиске материалов с отрицательным параметром оптической анизотропии ξ и материалов с противоположными знаками термооптических постоянных Q. Способ определения параметра оптической анизотропии ξ, материалов с учетом знака описан в заявке авторов на изобретение №2012135658 от 20.08.2012. Характерными представителями материалов с отрицательным параметром оптической анизотропии ξ по данным из литературных источников являются фториды CaF2, BaF2, SrF2, бромиды KBr, RbBr, хлориды KC1, RbCl, иодиды KI, RbI, NaI. К представителям материалов с противоположным знаком Q можно отнести TeO2 (стекло), YIG, KBr, RbBr, KI, RbI, NaI (Q>0) и YAG, TGG, CaF2, BaF2, SrF2 (Q<0).


КОМПЕНСАТОР ТЕРМОНАВЕДЕННОЙ ДЕПОЛЯРИЗАЦИИ В ПОГЛОЩАЮЩЕМ ОПТИЧЕСКОМ ЭЛЕМЕНТЕ ЛАЗЕРА
КОМПЕНСАТОР ТЕРМОНАВЕДЕННОЙ ДЕПОЛЯРИЗАЦИИ В ПОГЛОЩАЮЩЕМ ОПТИЧЕСКОМ ЭЛЕМЕНТЕ ЛАЗЕРА
КОМПЕНСАТОР ТЕРМОНАВЕДЕННОЙ ДЕПОЛЯРИЗАЦИИ В ПОГЛОЩАЮЩЕМ ОПТИЧЕСКОМ ЭЛЕМЕНТЕ ЛАЗЕРА
Источник поступления информации: Роспатент

Показаны записи 21-30 из 36.
20.05.2016
№216.015.3f41

Способ получения прозрачной керамики алюмоиттриевого граната

Изобретение относится к способу получения прозрачной керамики алюмоиттриевого граната (ИАГ), в том числе легированной ионами редкоземельных металлов (Nd, Yb, Tm, Но, Er), которая может быть использована в качестве активной лазерной среды, либо люминофоров и сцинтилляторов (при легировании...
Тип: Изобретение
Номер охранного документа: 0002584187
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.42fe

Плазмохимический способ получения халькогенидных стекол системы as-s и устройство для его реализации

Изобретение относится к производству высокочистых халькогенидных стекол для изготовления оптических элементов, световодов и широкозонных полупроводниковых устройств. Изобретение позволяет исключить загрязнение получаемого халькогенидного стекла за счет неполного разложения исходных веществ, а...
Тип: Изобретение
Номер охранного документа: 0002585479
Дата охранного документа: 27.05.2016
13.01.2017
№217.015.75ad

Изолятор фарадея с неоднородным магнитным полем для лазеров большой мощности

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров с субкиловаттной средней мощностью излучения. Изолятор Фарадея с неоднородным магнитным полем для лазеров большой мощности содержит последовательно расположенные...
Тип: Изобретение
Номер охранного документа: 0002598623
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.8264

Оптический вентиль с монокристаллическим магнитооптическим элементом для лазеров большой мощности

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки или невзаимный вращатель поляризации на эффекте Фарадея для лазеров с большой мощностью. Оптический вентиль с монокристаллическим магнитооптическим элементом включает в себя последовательно...
Тип: Изобретение
Номер охранного документа: 0002601390
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.854c

Изолятор фарадея для неполяризованного лазерного излучения

Изобретение относится к оптической технике, а именно к изоляторам Фарадея для неполяризованного лазерного излучения. Изолятор Фарадея содержит последовательно расположенные на оптической оси поляризационный расщепитель пучка, магнитооптический элемент, установленный в магнитной системе,...
Тип: Изобретение
Номер охранного документа: 0002603229
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.a2ef

Изолятор фарадея со стабилизацией степени изоляции

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров, подверженных влиянию окружающей среды. Изолятор Фарадея со стабилизацией степени изоляции содержит последовательно расположенные на оптической оси поляризатор,...
Тип: Изобретение
Номер охранного документа: 0002607077
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a5da

Многопроходный лазерный усилитель на дисковом активном элементе

Многопроходный лазерный усилитель на дисковом активном элементе содержит активный элемент и две оптические системы для переноса изображения с лазерного активного элемента обратно на лазерный активный элемент. В усилителе угол отклонения нормали активного элемента от оптической оси первой...
Тип: Изобретение
Номер охранного документа: 0002607839
Дата охранного документа: 20.01.2017
25.08.2017
№217.015.c5aa

Усилитель лазерного излучения с большим коэффициентом усиления, высокой средней и пиковой мощностью и высоким качеством выходного пучка

Изобретение относится к лазерной технике. Усилитель лазерного излучения на основе твердотельного активного элемента включает основанный на лазерных диодах источник излучения накачки, выступающий в роли волновода для излучения накачки твердотельный активный элемент с двумя круговыми торцевыми...
Тип: Изобретение
Номер охранного документа: 0002618498
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c9c8

Оптический вентиль с компенсацией термонаведенной деполяризации в магнитном поле

Оптический вентиль с компенсацией термонаведенной деполяризации в магнитном поле включает в себя последовательно расположенные поляризатор, два магнитооптических элемента, установленных внутри магнитной системы и невзаимно вращающих плоскость поляризации проходящего излучения на суммарный угол,...
Тип: Изобретение
Номер охранного документа: 0002619357
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.d0f7

Ячейка поккельса для мощного лазерного излучения

Изобретение относится к оптической технике. Сущность изобретения заключается в охлаждении электрооптического элемента ячейки Поккельса, выполненного из кристалла DKDP, до криогенных температур в оптическом криостате. Для этого электрооптический элемент присоединен посредством теплопроводящей...
Тип: Изобретение
Номер охранного документа: 0002621365
Дата охранного документа: 02.06.2017
Показаны записи 21-30 из 43.
10.07.2016
№216.015.2b18

Изолятор фарадея для лазерных пучков с квадратным поперечным профилем распределения интенсивности

Изобретение относится к оптической технике для мощных лазерных пучков. Магнитная система в изоляторе Фарадея для лазерных пучков с квадратным поперечным профилем распределения интенсивности изготовлена с квадратной апертурой путем заполнения ее центральных областей, через которые не проходит...
Тип: Изобретение
Номер охранного документа: 0002589754
Дата охранного документа: 10.07.2016
20.05.2016
№216.015.3f41

Способ получения прозрачной керамики алюмоиттриевого граната

Изобретение относится к способу получения прозрачной керамики алюмоиттриевого граната (ИАГ), в том числе легированной ионами редкоземельных металлов (Nd, Yb, Tm, Но, Er), которая может быть использована в качестве активной лазерной среды, либо люминофоров и сцинтилляторов (при легировании...
Тип: Изобретение
Номер охранного документа: 0002584187
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.42fe

Плазмохимический способ получения халькогенидных стекол системы as-s и устройство для его реализации

Изобретение относится к производству высокочистых халькогенидных стекол для изготовления оптических элементов, световодов и широкозонных полупроводниковых устройств. Изобретение позволяет исключить загрязнение получаемого халькогенидного стекла за счет неполного разложения исходных веществ, а...
Тип: Изобретение
Номер охранного документа: 0002585479
Дата охранного документа: 27.05.2016
13.01.2017
№217.015.75ad

Изолятор фарадея с неоднородным магнитным полем для лазеров большой мощности

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров с субкиловаттной средней мощностью излучения. Изолятор Фарадея с неоднородным магнитным полем для лазеров большой мощности содержит последовательно расположенные...
Тип: Изобретение
Номер охранного документа: 0002598623
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.8264

Оптический вентиль с монокристаллическим магнитооптическим элементом для лазеров большой мощности

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки или невзаимный вращатель поляризации на эффекте Фарадея для лазеров с большой мощностью. Оптический вентиль с монокристаллическим магнитооптическим элементом включает в себя последовательно...
Тип: Изобретение
Номер охранного документа: 0002601390
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.854c

Изолятор фарадея для неполяризованного лазерного излучения

Изобретение относится к оптической технике, а именно к изоляторам Фарадея для неполяризованного лазерного излучения. Изолятор Фарадея содержит последовательно расположенные на оптической оси поляризационный расщепитель пучка, магнитооптический элемент, установленный в магнитной системе,...
Тип: Изобретение
Номер охранного документа: 0002603229
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.a2ef

Изолятор фарадея со стабилизацией степени изоляции

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров, подверженных влиянию окружающей среды. Изолятор Фарадея со стабилизацией степени изоляции содержит последовательно расположенные на оптической оси поляризатор,...
Тип: Изобретение
Номер охранного документа: 0002607077
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a5da

Многопроходный лазерный усилитель на дисковом активном элементе

Многопроходный лазерный усилитель на дисковом активном элементе содержит активный элемент и две оптические системы для переноса изображения с лазерного активного элемента обратно на лазерный активный элемент. В усилителе угол отклонения нормали активного элемента от оптической оси первой...
Тип: Изобретение
Номер охранного документа: 0002607839
Дата охранного документа: 20.01.2017
25.08.2017
№217.015.c5aa

Усилитель лазерного излучения с большим коэффициентом усиления, высокой средней и пиковой мощностью и высоким качеством выходного пучка

Изобретение относится к лазерной технике. Усилитель лазерного излучения на основе твердотельного активного элемента включает основанный на лазерных диодах источник излучения накачки, выступающий в роли волновода для излучения накачки твердотельный активный элемент с двумя круговыми торцевыми...
Тип: Изобретение
Номер охранного документа: 0002618498
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c9c8

Оптический вентиль с компенсацией термонаведенной деполяризации в магнитном поле

Оптический вентиль с компенсацией термонаведенной деполяризации в магнитном поле включает в себя последовательно расположенные поляризатор, два магнитооптических элемента, установленных внутри магнитной системы и невзаимно вращающих плоскость поляризации проходящего излучения на суммарный угол,...
Тип: Изобретение
Номер охранного документа: 0002619357
Дата охранного документа: 15.05.2017
+ добавить свой РИД