×
27.08.2014
216.012.ee2e

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ПОВЕРХНОСТИ ПОКРЫТИЯ АВТОМОБИЛЬНОЙ ДОРОГИ ПО ЕЕ ГЕОМЕТРИЧЕСКИМ ПАРАМЕТРАМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области геодезического контроля в дорожно-строительной отрасли. Техническим результатом изобретения является определение достоверных и точных значений геометрических параметров поверхности покрытия автомобильной дороги с помощью наземного лазерного сканера. Согласно способу определения состояния поверхности покрытия автомобильной дороги по ее геометрическим параметрам, вычисляют относительные отметки точек поверхности покрытия и выполняют планово-высотное обоснование на измеряемом участке автомобильной дороги. Определяют пространственные координаты по осям X, Y, Z точек отражения лазерного луча от поверхности автомобильной дороги и ее элементов. Передают результаты сканирования в компьютерную программу. Регистрируют в ней сканы со всех станций и получают фактическую цифровую точечную трехмерную (3D) модель поверхности покрытия измеряемого участка автомобильной дороги и с помощью специальной компьютерной программы получают фактическую цифровую векторную трехмерную (3D) модель поверхности покрытия измеряемого участка автомобильной дороги. Моделируют проектную цифровую трехмерную модель поверхности покрытия измеряемого участка автомобильной дороги, совмещают ее с полученной фактической цифровой векторной трехмерной (3D) моделью поверхности покрытия измеряемого участка автомобильной дороги и формируют с заданной дискретностью поперечные сечения. Определяют расхождения между значениями измеряемых геометрических параметров и соответствующими значениями проектной цифровой векторной трехмерной (3D) модели поверхности покрытия измеряемого участка автомобильной дороги. 2 ил.
Основные результаты: Способ определения состояния поверхности покрытия автомобильной дороги по ее геометрическим параметрам, при котором вычисляют относительные отметки точек поверхности покрытия, отличающийся тем, что выполняют планово-высотное обоснование сканерной съемки на измеряемом участке автомобильной дороги, устанавливают наземный лазерный сканер на точку планово-высотного обоснования, выполняют сканирование участка с точек планово-высотного обоснования, в результате чего определяют пространственные координаты по осям X, Y, Z точек отражения лазерного луча от поверхности автомобильной дороги, где координаты оси Z соответствуют относительным высотным отметкам высотной сети, получают скан, выполняют вышеупомянутые действия на станциях, расположенных через 20-50 метров вдоль оси дороги, передают результаты сканирования (сканы) в компьютерную программу, регистрируют в ней сканы со всех станций и получают фактическую цифровую точечную трехмерную (3D) модель поверхности покрытия измеряемого участка автомобильной дороги, передают ее в ПЭВМ и с помощью специальной компьютерной программы получают фактическую цифровую векторную трехмерную (3D) модель поверхности покрытия измеряемого участка автомобильной дороги, в этой же программе моделируют проектную цифровую трехмерную модель поверхности измеряемого участка автомобильной дороги, используя проектные значения соответствующих геометрических параметров, совмещают ее с полученной фактической цифровой векторной трехмерной (3D) моделью поверхности покрытия измеряемого участка автомобильной дороги и формируют с заданной дискретностью поперечные сечения, в автоматическом режиме определяют расхождения между значениями измеряемых геометрических параметров на основе полученных пространственных координат по оси Z фактической цифровой векторной трехмерной (3D) модели и соответствующими значениями проектной цифровой векторной трехмерной (3D) модели поверхности покрытия измеряемого участка автомобильной дороги, сравнивая полученные данные с соответствующими требованиями нормативных документов, делается вывод о состоянии поверхности покрытия автомобильной дороги.

Данный способ относится к области геодезического контроля в дорожно-строительной отрасли.

Известен способ определения геометрических параметров дорожного полотна с помощью нивелира и нивелирной рейки ГОСТ №30412-96 «Дороги автомобильные и аэродромы. Методы измерений неровностей оснований и покрытий», утвержден постановлением Минстроя РФ от 5 августа 1996 г. №18-60], взятый в качестве прототипа.

Сущность данного способа состоит в том, что на контролируемом участке проводят измерения с помощью нивелира, последовательно устанавливая нивелирную рейку в местах, обозначенных метками. По данным нивелирования вычисляют относительные отметки точек поверхности основания (покрытия) автомобильной дороги в местах разметки.

Недостатком этого способа является невозможность повторения измерений, так как точки измерений не закрепляются, поэтому невозможно произвести повторные измерения на контролируемом участке.

Кроме того, данный способ предполагает контроль геометрических параметров в дискретных точках автомобильной дороги, что не позволяет достоверно оценить качество поверхности дорожного полотна в целом. Также, данный способ предполагает наличие человеческого фактора в процессе контроля, что ведет к снижению достоверности и точности измерения.

Задачей предлагаемого изобретения является разработка способа определения состояния поверхности покрытия автомобильной дороги по ее геометрическим параметрам: земляного полотна, слоев щебеночного основания и слоев покрытия с применением наземного лазерного сканера.

Поставленная задача достигается тем, что в способе определения состояния поверхности покрытия автомобильной дороги по ее геометрическим параметрам вычисляют относительные отметки точек поверхности покрытия и, согласно изобретению, выполняют планово-высотное обоснование сканерной съемки на измеряемом участке автомобильной дороги, устанавливают наземный лазерный сканер на точку планово-высотного обоснования, выполняют сканирование участка с точек планово-высотного обоснования, в результате чего определяют пространственные координаты по осям X, Y, Z точек отражения лазерного луча от поверхности автомобильной дороги и ее элементов, где координаты оси Z соответствуют относительным высотным отметкам высотной сети, получают скан, выполняют вышеупомянутые действия на станциях, расположенных через 20-50 метров вдоль оси дороги, передают результаты сканирования (сканы) в компьютерную программу, регистрируют в ней сканы со всех станций и получают фактическую цифровую точечную трехмерную (3D) модель поверхности покрытия измеряемого участка автомобильной дороги, передают ее в ПЭВМ и с помощью специальной компьютерной программы получают фактическую цифровую векторную трехмерную (3D) модель поверхности покрытия измеряемого участка автомобильной дороги, в этой же программе моделируют проектную цифровую трехмерную модель поверхности измеряемого участка покрытия автомобильной дороги, используя проектные значения соответствующих геометрических параметров, совмещают ее с полученной фактической цифровой векторной трехмерной (3D) моделью поверхности покрытия измеряемого участка автомобильной дороги и формируют с заданной дискретностью поперечные сечения, в автоматическом режиме определяют расхождения между значениями измеряемых геометрических параметров на основе полученных пространственных координат по оси Z фактической цифровой векторной трехмерной (3D) модели и соответствующими значениями проектной цифровой векторной трехмерной (3D) модели поверхности покрытия измеряемого участка автомобильной дороги, сравнивая полученные данные с соответствующими требованиями нормативных документов делается вывод о состоянии поверхности покрытия автомобильной дороги, необходимый для комплексной оценки качества при строительстве или содержании автомобильных дорог.

Способ поясняется чертежами.

На Фиг.1 представлена схема создания фактической цифровой векторной трехмерной (3D) модели измеряемого участка автомобильной дороги и ее элементов. На Фиг.2 представлена схема сравнения геометрических параметров поверхности покрытия измеряемого участка автомобильной дороги и ее элементов с помощью проектной цифровой трехмерной модели.

Предлагаемый способ осуществляется следующим образом. Используя проектные данные измеряемых геометрических параметров, строят проектную цифровую трехмерную (3D) модель поверхности измеряемого участка автомобильной дороги и ее элементов. Построение указанной модели осуществляется посредством любого известного продукта, например AutoCAD. На измеряемом участке автомобильной дороги устанавливают наземный лазерный сканер и собственной программой обработки данных, принадлежащей данному оборудованию, и в соответствии с эксплуатационной документацией на прибор (ЭД) автоматически определяют координаты точек, принадлежащие поверхности покрытия измеряемого участка дорожного полотна. Выполняют измерение расстояний при помощи встроенного лазерного дальномера, при этом для каждого измерения фиксируют вертикальные и горизонтальные углы, шаг сканирования (расстояние между смежными точками) должен составлять не менее 100 мм на поверхности покрытия дорожного полотна. Для выполнения сплошной сканерной съемки измеряемого участка автомобильной дороги сканирование выполняют с нескольких точек установки прибора (сканерных станций), передают результаты сканирования (сканы) в ПЭВМ и с помощью специальной компьютерной программы, регистрируют (сшивают) в ней сканы со всех станций и получают фактическую цифровую точечную трехмерную (3D) модель поверхности автомобильной дороги или ее элементов. Расстояние между сканерными станциями должно составлять 20-50 метров. Результатом работ является «облако точек» лазерных отражений или «сканы» поверхности дорожного полотна. (Фиг.1). Производят обработку данных результатов наземного лазерного сканирования с помощью специального программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат, фильтрацию сканов для удаления измерений, полученных при отражении от посторонних предметов, разрежение сканов до плотности точек на поверхности покрытия автомобильной дороги не менее 25 точек на 1 кв. м, производят построение фактической цифровой точечной трехмерной (3D) модели поверхности покрытия дорожного полотна, передают фактическую цифровую точечную трехмерную (3D) модель поверхности покрытия автомобильной дороги и ее элементов в специальную компьютерную программу и получают цифровую векторную трехмерную (3D) модель поверхности автомобильной дороги и ее элементов, производят редактирование фактической цифровой векторной модели в программном продукте AutoCAD, строят проектную цифровую трехмерную модель поверхности автомобильной дороги и ее элементов, используя проектные значения геометрических параметров поверхности автомобильной дороги и ее элементов, совмещают ее с полученной фактической цифровой векторной 3D моделью, формируют с заданной дискретностью поперечные сечения, в автоматическом режиме распознают расхождения между значениями измеряемых геометрических параметров фактической цифровой векторной трехмерной модели и ее значениями в проектной цифровой трехмерной 3D моделью измеряемого участка поверхности автомобильной дороги и ее элементов, сравнивая полученные данные с соответствующими требованиями нормативных документов, делается вывод о состоянии поверхности покрытия автомобильной дороги, необходимый для определения фактического уровня качества выполненных работ при комплексной оценке содержания, строительства, ремонта и реконструкции автомобильных дорог. (Фиг.2).

В целях повышения точности и достоверности при оценке качества всех основных элементов, параметров и характеристик автомобильных дорог, определяющих их транспортно-эксплуатационное состояние, целесообразно автоматизировать весь процесс мониторинга состояния покрытия и обустройства автодороги. Геодезические измерения, выполненные методом наземного лазерного сканирования, позволяют получить объективную оценку измеряемого участка автомобильной дороги и ее элементов:

- земляного полотна;

- слоев щебеночного основания;

- и покрытия с точностью, соответствующей действующим международным нормативным документам.

Полученные лазерным сканированием результаты, представленные в виде «облака точек» всего объекта измерений, интерпретируются в контролируемые по нормативным документам параметры автодороги по требуемым сечениям (реперам):

- продольные и поперечные уклоны;

- высотные отметки;

- ширина полотна и ее ось;

- и другие (откосы, обочины, дорожные знаки и инженерные сооружения).

Полученные лазерным сканированием результаты методом наложения на проектные величины (ширина, высотные отметки, ровность, уклоны и другие) сравниваются с ними и выявляются в автоматическом режиме имеющаяся погрешность и ее соответствие проектным и нормативным значениям.

Предлагаемый инновационный способ позволяет повысить достоверность оценки геометрических параметров поверхности покрытия дорожного полотна при контроле качества строительства и эксплуатации автомобильных дорог.

Способ определения состояния поверхности покрытия автомобильной дороги по ее геометрическим параметрам, при котором вычисляют относительные отметки точек поверхности покрытия, отличающийся тем, что выполняют планово-высотное обоснование сканерной съемки на измеряемом участке автомобильной дороги, устанавливают наземный лазерный сканер на точку планово-высотного обоснования, выполняют сканирование участка с точек планово-высотного обоснования, в результате чего определяют пространственные координаты по осям X, Y, Z точек отражения лазерного луча от поверхности автомобильной дороги, где координаты оси Z соответствуют относительным высотным отметкам высотной сети, получают скан, выполняют вышеупомянутые действия на станциях, расположенных через 20-50 метров вдоль оси дороги, передают результаты сканирования (сканы) в компьютерную программу, регистрируют в ней сканы со всех станций и получают фактическую цифровую точечную трехмерную (3D) модель поверхности покрытия измеряемого участка автомобильной дороги, передают ее в ПЭВМ и с помощью специальной компьютерной программы получают фактическую цифровую векторную трехмерную (3D) модель поверхности покрытия измеряемого участка автомобильной дороги, в этой же программе моделируют проектную цифровую трехмерную модель поверхности измеряемого участка автомобильной дороги, используя проектные значения соответствующих геометрических параметров, совмещают ее с полученной фактической цифровой векторной трехмерной (3D) моделью поверхности покрытия измеряемого участка автомобильной дороги и формируют с заданной дискретностью поперечные сечения, в автоматическом режиме определяют расхождения между значениями измеряемых геометрических параметров на основе полученных пространственных координат по оси Z фактической цифровой векторной трехмерной (3D) модели и соответствующими значениями проектной цифровой векторной трехмерной (3D) модели поверхности покрытия измеряемого участка автомобильной дороги, сравнивая полученные данные с соответствующими требованиями нормативных документов, делается вывод о состоянии поверхности покрытия автомобильной дороги.
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ПОВЕРХНОСТИ ПОКРЫТИЯ АВТОМОБИЛЬНОЙ ДОРОГИ ПО ЕЕ ГЕОМЕТРИЧЕСКИМ ПАРАМЕТРАМ
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ПОВЕРХНОСТИ ПОКРЫТИЯ АВТОМОБИЛЬНОЙ ДОРОГИ ПО ЕЕ ГЕОМЕТРИЧЕСКИМ ПАРАМЕТРАМ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 37.
27.01.2013
№216.012.210e

Способ осуществления справочно-аналитических функций гис

Изобретение относится к геоинформационной обработке данных и может быть использовано для осуществления геопространственного анализа специалистами, профессионально не владеющими геоинформационными технологиями. Технический результат заключается в расширении сферы применения и увеличении числа...
Тип: Изобретение
Номер охранного документа: 0002473963
Дата охранного документа: 27.01.2013
20.02.2013
№216.012.281b

Двухдиапазонный инфракрасный светосильный объектив

Объектив может быть использован в технологических установках для проверки параметров матричных приемников излучения, работающих в инфракрасном диапазоне. Объектив содержит последовательно расположенные по ходу лучей три компонента. Первый и третий компоненты - положительные мениски из...
Тип: Изобретение
Номер охранного документа: 0002475787
Дата охранного документа: 20.02.2013
20.06.2013
№216.012.4da2

Интерференционный монохроматор

Изобретение может найти применение в системах экспресс-анализа химических веществ и различных промышленных жидкостей и газов, при исследованиях содержания вредных веществ в окружающей среде. Интерференционный монохроматор содержит мультиплексный интерферометр с несовпадающими порядками...
Тип: Изобретение
Номер охранного документа: 0002485456
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4da3

Оптоэлектронное устройство для определения усталости твердых материалов

Изобретение относится к области измерительной техники и может быть использовано для определения усталости твердых материалов, например металлов, пластмасс, композиционных материалов, стекла, бумаги и т.п., где усталость является ключевым параметром твердых материалов. Устройство состоит из...
Тип: Изобретение
Номер охранного документа: 0002485457
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4dbe

Оптоэлектронный многопараметровый колориметр

Изобретение относится к технической физике и может быть использовано для контроля физическо-химических параметров жидких сред. Колориметр содержит помещенные в корпус задающий генератор, n диодов, n измерительных фотоприемников, оптически связанных с диодами, блок обработки фотоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002485484
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e08

Способ получения равномерных нанозазоров между поверхностями тел

Способ может использоваться при изготовлении различных оптических, оптоэлектронных, квантовых и микромеханических устройств, в которых необходимо получать зазор равной и малой толщины между электродами или пластинами, имеющими поверхности большой площади, в частности, управляемых...
Тип: Изобретение
Номер охранного документа: 0002485558
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e2b

Способ построения перспективных карт местности (варианты)

Изобретение относится к области обработки и отображения пространственной информации. Техническим результатом является расширение функциональных возможностей за счет нахождения оптимального положения центра проекции (точки наблюдения) при создании перспективной карты на основе трехмерной...
Тип: Изобретение
Номер охранного документа: 0002485593
Дата охранного документа: 20.06.2013
27.08.2013
№216.012.655b

Интерференционный многолучевой светофильтр (варианты)

Изобретение может использоваться в качестве узкополосного светофильтра и в качестве диспергирующего устройства монохроматоров и спектрофотометров. Светофильтр содержит на плоской поверхности планарный оптический волновод и призмы ввода в волновод и вывода излучения, оптически изолированные от...
Тип: Изобретение
Номер охранного документа: 0002491584
Дата охранного документа: 27.08.2013
10.11.2013
№216.012.7fbd

Оптический коммутатор оптических линий связи

Изобретение относится к оптике, к оптическим волноводным устройствам, в частности к микромеханическим оптическим коммутаторам оптических линий связи. Технический результат изобретения заключается в создании устройства матричного коммутатора оптических линий связи, имеющего размеры...
Тип: Изобретение
Номер охранного документа: 0002498374
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.834a

Способ корректировки формы поверхности оптических деталей

Изобретение может быть использовано для выравнивания поверхностей пластин интерферометров путем локального нанесения на поверхность тонких, компенсирующих неравномерности слоев. Способ включает локальное нанесение лазерным осаждением на поверхность слоя прозрачного или непрозрачного материала....
Тип: Изобретение
Номер охранного документа: 0002499286
Дата охранного документа: 20.11.2013
Показаны записи 1-10 из 38.
27.01.2013
№216.012.210e

Способ осуществления справочно-аналитических функций гис

Изобретение относится к геоинформационной обработке данных и может быть использовано для осуществления геопространственного анализа специалистами, профессионально не владеющими геоинформационными технологиями. Технический результат заключается в расширении сферы применения и увеличении числа...
Тип: Изобретение
Номер охранного документа: 0002473963
Дата охранного документа: 27.01.2013
20.02.2013
№216.012.281b

Двухдиапазонный инфракрасный светосильный объектив

Объектив может быть использован в технологических установках для проверки параметров матричных приемников излучения, работающих в инфракрасном диапазоне. Объектив содержит последовательно расположенные по ходу лучей три компонента. Первый и третий компоненты - положительные мениски из...
Тип: Изобретение
Номер охранного документа: 0002475787
Дата охранного документа: 20.02.2013
20.06.2013
№216.012.4da2

Интерференционный монохроматор

Изобретение может найти применение в системах экспресс-анализа химических веществ и различных промышленных жидкостей и газов, при исследованиях содержания вредных веществ в окружающей среде. Интерференционный монохроматор содержит мультиплексный интерферометр с несовпадающими порядками...
Тип: Изобретение
Номер охранного документа: 0002485456
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4da3

Оптоэлектронное устройство для определения усталости твердых материалов

Изобретение относится к области измерительной техники и может быть использовано для определения усталости твердых материалов, например металлов, пластмасс, композиционных материалов, стекла, бумаги и т.п., где усталость является ключевым параметром твердых материалов. Устройство состоит из...
Тип: Изобретение
Номер охранного документа: 0002485457
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4dbe

Оптоэлектронный многопараметровый колориметр

Изобретение относится к технической физике и может быть использовано для контроля физическо-химических параметров жидких сред. Колориметр содержит помещенные в корпус задающий генератор, n диодов, n измерительных фотоприемников, оптически связанных с диодами, блок обработки фотоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002485484
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e08

Способ получения равномерных нанозазоров между поверхностями тел

Способ может использоваться при изготовлении различных оптических, оптоэлектронных, квантовых и микромеханических устройств, в которых необходимо получать зазор равной и малой толщины между электродами или пластинами, имеющими поверхности большой площади, в частности, управляемых...
Тип: Изобретение
Номер охранного документа: 0002485558
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e2b

Способ построения перспективных карт местности (варианты)

Изобретение относится к области обработки и отображения пространственной информации. Техническим результатом является расширение функциональных возможностей за счет нахождения оптимального положения центра проекции (точки наблюдения) при создании перспективной карты на основе трехмерной...
Тип: Изобретение
Номер охранного документа: 0002485593
Дата охранного документа: 20.06.2013
27.08.2013
№216.012.655b

Интерференционный многолучевой светофильтр (варианты)

Изобретение может использоваться в качестве узкополосного светофильтра и в качестве диспергирующего устройства монохроматоров и спектрофотометров. Светофильтр содержит на плоской поверхности планарный оптический волновод и призмы ввода в волновод и вывода излучения, оптически изолированные от...
Тип: Изобретение
Номер охранного документа: 0002491584
Дата охранного документа: 27.08.2013
10.11.2013
№216.012.7fbd

Оптический коммутатор оптических линий связи

Изобретение относится к оптике, к оптическим волноводным устройствам, в частности к микромеханическим оптическим коммутаторам оптических линий связи. Технический результат изобретения заключается в создании устройства матричного коммутатора оптических линий связи, имеющего размеры...
Тип: Изобретение
Номер охранного документа: 0002498374
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.834a

Способ корректировки формы поверхности оптических деталей

Изобретение может быть использовано для выравнивания поверхностей пластин интерферометров путем локального нанесения на поверхность тонких, компенсирующих неравномерности слоев. Способ включает локальное нанесение лазерным осаждением на поверхность слоя прозрачного или непрозрачного материала....
Тип: Изобретение
Номер охранного документа: 0002499286
Дата охранного документа: 20.11.2013
+ добавить свой РИД