×
20.08.2014
216.012.ed0a

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОЛЕБАНИЯ УРОВНЯ МОРЯ

Вид РИД

Изобретение

№ охранного документа
0002526490
Дата охранного документа
20.08.2014
Аннотация: Изобретение относится к области морской гидрологии и может быть использовано для определения приливных колебаний уровня моря. Сущность: измеряют высоту поверхности уровня моря посредством регистрирующих устройств. Определяют моменты верхней кульминации Луны на фиксированном географическом меридиане. Определяют колебания уровня моря путем анализа результатов наблюдений по периодическим компонентам во временных рядах. При этом определяют гармонические постоянные по спектру частот фиктивных светил. При анализе результатов измерений выполняют деление спектра частот на равные временные циклы с последующим их совмещением, в котором гармонические постоянные определяют для отдельного фиктивного светила. Временной ход уровня прилива в точке измерения под действием приливных сил определяют по фазовому сдвигу. Изменение фазы прилива определяют по измеренным значениям уровня моря в фиксированных точках акватории моря, расположенных по возрастанию величины интервала времени между ближайшим предшествующим моментом времени верхней кульминации Луны и моментом верхней кульминации Луны. Кроме того, по изменению амплитуд гармонической составляющей высоты прилива со временем определяют пространственную изменчивость времени наступления максимальных вод прилива после сизигий в открытом море. При этом преобразования амплитуды, угловой частоты и фазы приливной гармоники сигналов осуществляют посредством интегрального и линейного преобразования Гильберта. Также определяют значения водных часов, выраженные в среднесолнечном времени. Технический результат: повышение достоверности результатов. 1 табл., 3 ил.
Основные результаты: Способ определения колебания уровня моря, включающий измерение высоты поверхности уровня моря посредством регистрирующих устройств, измерение моментов времени, определение верхней кульминации Луны на фиксированном географическом меридиане, определение колебания уровня моря путем анализа результатов наблюдений по периодическим компонентам во временных рядах результатов наблюдений с определением гармонических постоянных по спектру частот фиктивных светил, при анализе результатов измерений выполняют деление спектра частот на равные временные циклы с последующим их совмещением, в котором гармонические постоянные определяют для отдельного фиктивного светила, временной ход уровня прилива в точке измерения под действием приливных сил определяют по фазовому сдвигу, изменение фазы прилива определяют по измеренным значениям уровня моря в фиксированных точках акватории моря, расположенных по возрастанию величины интервала времени между ближайшим предшествующим моментом времени верхней кульминации Луны и моментом верхней кульминации Луны, а пространственную изменчивость времени наступления максимальных вод прилива после сизигий в открытом море определяют по изменению амплитуд гармонической составляющей высоты прилива со временем, при этом преобразования амплитуды, угловой частоты и фазы приливной гармоники измеренных сигналов осуществляют путем интегрального и линейного преобразований Гильберта, отличающийся тем, что определяют значения водных часов, выраженные в среднесолнечном времени, как ближайшие моменты среднесолнечного времени t с фазами прилива, кратными целым значениям 15° для "суточных" приливов (T=[0,…,24]) или 30° для "полусуточных" приливов (T=[0,…,12]).

Изобретение относится к области морской гидрологии, а более конкретно к определению приливных колебаний уровня моря.

Известен способ определения колебания уровня моря (патент RU №2343415 С2, 10.01.2009 [1]), в котором технический результат, заключающийся в снижении трудоемкости определения колебания уровня моря с одновременным повышением достоверности определения конечных результатов, достигается тем, что измеряют высоту поверхности уровня моря посредством регистрирующих устройств. Определяют момент верхней кульминации Луны на фиксированном географическом меридиане. Определяют колебания уровня моря путем анализа результатов наблюдений. При этом уровень моря измеряют в различных точках акватории моря, расположенных по возрастанию величины интервала времени между ближайшим предшествующим моментом верхней кульминации Луны и моментом верхней кульминации Луны.

В известном способе определения интервала времени между ближайшим предшествующим моментом времени верхней кульминации Луны и моментом верхней кульминации Луны позволяет определить временной ход приливных колебаний уровня в различных точках акватории моря и получить пространственный ход приливных колебаний на данной акватории на любой астрономический момент времени. Измеренные значения уровня моря в некоторых точках акватории моря, расположенных по возрастанию величины интервала времени, позволяют по изменению фазы прилива определить и временной ход уровня в точке измерения под действием приливных сил. Однако активизация технологического освоения континентального шельфа и прибрежной полосы морей повысила требования к точности и содержанию информации об уровне моря. Данные об уровне моря требуются при планировании и при оперативном обеспечении задач по добыче и транспортировке полезных ископаемых в прибрежных водах северных морей, при проектировании и строительстве портов и технических сооружений. Особую значимость эти данные имеют в задачах океанографического обеспечения так называемых морских операций - особо рискованных работах на море, например буксировка, установка и обеспечение функционирования плавучих буровых вышек.

Буксировку подобных объектов с большой осадкой в морях с приливами планируют на время наступления полной воды прилива с максимальными значениями относительно ближайших по времени. Такие приливы в океанографической практике связываются с явлениями новолуния и полнолуния (сизигиями) и называются сизигийными приливами. Среди серии последовательных сизигийных полных вод встречается вода с максимальной высотой за лунный месяц - период от одного новолуния до непосредственно последующего. Интервал времени от момента наступления новолуния до момента наступления прилива с максимальной полной водой называется возрастом прилива. Этот параметр приливов интересовал мореходов и исследователей со средних веков. Они отмечали, что в различных географических пунктах (портах) океана время наступления максимальной полной воды относительно момента наступления сизигии различно. Это обстоятельство, в частности, Ньютон объясняет особенностями конкретных географических условий формирования прилива в данном месте (Ньютон И. Математические начала натуральной философии. - М.: Издательство ЛКИ. 2008. - 704 с. [17]).

Первоначально, до появления гармонического анализа приливов, понятие возраста прилива относилось к любому типу прилива (полусуточному, суточному и т.д.). С внедрением в практику гармонического анализа приливов единое понятие возраста прилива разделилось. Стали различать возраст прилива или возраст полусуточного прилива, возраст суточного прилива и возраст параллактического прилива. Это условное деление можно объяснить недостаточной эффективностью используемых методов гармонического анализа приливов в начале XX века (Никитин М.В. Гармонический анализ приливов. - Л.: Гидрографическое Управление СССР. Гидрометеорологический отдел, 1925. - 168 с. [18]).

В настоящее время в отечественной и зарубежной практике (Tide and Current Glossary. -NOAA, National Ocean Service, 2000. - 34 p. [19], Вакман Д.Е., Вайнштейн Л.А. Амплитуда, фаза, частота - основные понятия теории колебаний // Успехи физических наук, том 123, вып.4, 1977, с.657-682 [20]) возраст прилива (age of tide=age of phase inequality) количественно выражается в часах среднесолнечного времени. Однако известные математические выражения позволяют получить соответствующие возрасты прилива только для тех географических точек, для которых известны гармонические постоянные. Представление о географической (пространственной) изменчивости в морях времени наступления максимальных вод прилива после сизигий (возраста прилива) на основании этих выражений получить сложно. Например, можно предположить, что максимальная вода на акватории Белого моря наступает в один и тот же приливной цикл. Кроме того, получаемые по известным математическим выражениям значения являются константами, т.е. интервал времени наступления, например, максимальной полной воды после любой сизигии постоянный и одинаковый для некоторой географической точки. Однако - это не верно. Достаточно взять любые таблицы приливов и соответствующий астрономические ежегодник, чтобы выяснить, что максимальные воды после сизигий в одном и том же географическом пункте наступают через различные интервалы времени. Таким образом, можно констатировать, что в настоящее время задача океанографического обеспечения морских операций по проводке объектов с большой осадкой на критических глубинах на акватории с приливами не обеспечена падежной информацией о времени наступления сизигийных приливов. Выявленные недостатки устранены в известном способе определения колебания уровня моря (патент RU №2452984 С1, 10.06.2012 [2].

Известный способ определения колебания уровня моря [2] включает измерение высоты поверхности уровня моря посредством регистрирующих устройств, измерение моментов времени, определение верхней кульминации Луны на фиксированном географическом меридиане, определение колебания уровня моря путем анализа результатов наблюдений по периодическим компонентам во временных рядах результатов наблюдений с определением гармонических постоянных по спектру частот фиктивных светил, при анализе результатов измерений выполняют деление спектра частот на равные временные циклы с последующим их совмещением, в котором гармонические постоянные определяют для отдельного фиктивного светила, временной ход уровня прилива в точке измерения под действием приливных сил определяют по фазовому сдвигу, изменение фазы прилива определяют по измеренным значениям уровня моря в фиксированных точках акватории моря, расположенных по возрастанию величины интервала времени между ближайшим предшествующим моментом времени верхней кульминации Луны и моментом верхней кульминации Луны, в котором пространственную изменчивость времени наступления максимальных вод прилива после сизигий в открытом море определяют по изменению амплитуд гармонической составляющей высоты прилива со временем, при этом преобразования амплитуды, угловой частоты и фазы приливной гармоники по измеренным сигналам осуществляют путем интегрального и линейного преобразования Гильберта.

Известный способ [2] реализуется следующим образом.

Посредством контактных или дистанционных измерителей уровня моря выполняют измерение уровня моря в различных точках акватории моря в различные моменты времени таким образом, чтобы получаемые измерения в каждой точке измерения имели различные значения интервалов времени относительно ближайшего к моменту измерения последнего момента верхней кульминации Луны на фиксированном географическом меридиане.

При этом измеренные значения уровня моря в точках акватории моря, расположенных по возрастанию величины интервала времени между ближайшим предшествующим моментом времени верхней кульминации Луны на фиксированном меридиане и моментом измерения, позволяют установить временной ход уровня под действием приливных сил, что обусловлено тем, что приливные колебания в некоторой точке акватории моря имеют практически постоянный фазовый сдвиг относительно времени верхней кульминации Луны на фиксированном географическом меридиане. Так как сочетания фаз движения Луны вокруг Земли и фаз колебания уровня моря в некоторой точке повторяются с периодом движения Луны вокруг Земли, то измеренные значения уровня моря в некоторой точке акватории моря, расположенные по возрастанию величины интервала времени между ближайшим предшествующим моментом времени верхней кульминации Луны на фиксированном географическом меридиане и моментом измерения, представляют собой изменение фазы прилива, а следовательно, и временной ход уровня в точке измерения под действием приливных сил.

По измеренным приборным значениям уровня моря формируют ряды наблюдений. Определяют значения высоты прилива конкретной гармонической составляющей волны h(t), которая задается амплитудой А, углом положения g (А и g - гармонические постоянные) и периодом Т в соответствии с зависимостью h(t)=Acos(qt-g), где q - угловая скорость гармонической волны за один час среднего времени, t - фиксированный момент времени.

Определяют амплитуды гармонической составляющей высоты прилива. Для анализа гармонических колебаний ось времени разбивается на равные отрезки, которые впоследствии совмещаются друг с другом. В полученном таким образом циклическом времени моменты измерения описывают изменения функции на одном периоде, что обеспечивает связь между временем континентальным (солнечным) и океаническим (приливным) в соответствии с зависимостью x=y-ym, где x - приливное время (число приливных суток от начала приливного года), y - дата солнечного времени (число суток от начала года), уm - число суток между солнечным и приливным временем (число суток от начала года). Вследствие того что периоды системы времени измерения и периоды гармоник колебательного процесса могут быть несоизмеримы, осуществляют преобразование циклического времени в линейное. Далее выполняют дальнейшую обработку с учетом преобразованного времени. Определяют значения высоты прилива h=h(x, y) для последовательного набора дискретных значений времени h=h(x, y, t), например, методом сеток (см., например, Лаврентьев М.А., Шабат Б.В. Методы теории функций переменного. - М-Л.: ГИТТЛ, 1958).

По полученным значениям высоты прилива для последовательного набора дискретных значений времени определяют амплитуды колебаний гармонической составляющей, например, в узлах сетки.

По полученным значениям h=h (x, y, t) определяют время наступления максимального уровня в пунктах измерения.

Известный способ [2] выгодно отличается от известных способов [1], в которых регистрация приливов осуществляется в солнечном (циклическом) времени, что не обеспечивает информативность о повторяемости колебательного процесса, так как приливные колебания, записанные приборами в аномальном для их природы времени, оказываются зашифрованными для непосредственного анализа, что требует выражения результатов наблюдений рядами гармонических колебаний с аппроксимацией артефактов о реальной динамике приливных явлений, что может вносить дополнительные погрешности.

Применение известного способа [2] позволяет при анализе периодической составляющей колебательного процесса использовать множество действительных чисел, в то время как в известных способах, представляющих собой численные расчеты, используются только рациональные числа, что не позволяет определить реальную изменчивость колебательного процесса.

Кроме того, ввиду того что пространственную изменчивость времени наступления максимальных вод прилива после сизигий в открытом море определяют по изменению амплитуд гармонической составляющей высоты прилива со временем, при этом преобразования амплитуды, угловой частоты и фазы приливной гармоники измеренных сигналов осуществляют путем интегрального и линейного преобразований Гильберта, то обеспечивается возможность установления возраста прилива по пространству между стационарными пунктами измерения уровня моря, что существенно повышает океанографическое обеспечение проводки на мелководье плавучих объектов с большой осадкой.

Однако в любых измерениях временных процессов применяют какие-либо часы для хронологической упорядоченности моментов времени. Обычно в качестве часов используют процесс видимого движения Солнца вокруг Земли, а время, определяемое по этим часам, называется среднесолнечным. Точнее, среднее солнечное время - это время, которое определяется изменениями часового угла среднего экваториального Солнца - фиктивной точки, равномерно двигающейся по небесному экватору со средней скоростью движения истинного Солнца по эклиптике и совершающей полный оборот в течение года. Например, в сфере гидрометеорологического обеспечения ВМФ встречается задача, когда в качестве часов используют другой процесс - временной ход приливного уровня. Так, например, изменения приливных течений на некоторой акватории моря синхронизируют с изменениями приливных колебаний уровня моря на одном из береговых постов наблюдения, находящихся в этой акватории. В результате получают карты приливных течений на акватории для каждого водного часа приливных колебаний на береговом посту (Березкин В.А. Динамика моря. - Л., Ленинград, Военно-морская академия им. тов. Ворошилова. Гидрографическое управление главного управления Северного Морского пути при СНК СССР, 1938. - с.516-518. Дуванин А.И. Приливы в море. - Л., ГИМИЗ, 1960. -390 с.).

Осложняющим обстоятельством решения этой задачи является этап вычисления значений водных часов, выраженных в среднесолнечном времени. Это связано с тем, что понятие водного времени, определяемого приливом, является одним из равноправных способов измерения времени на основе какого-либо циклического процесса. Способ по своей сути тождественен измерению общеземных среднесолнечных часов, используемых в обычной жизни. Среднесолнечные часы - это деление интервала времени между двумя смежными кульминациями Солнца (интервал в одни сутки) на равные двадцать четыре интервала. Очевидно, что, основываясь на этой аналогии, сейчас принято рассчитывать водные часы, разбивая интервал времени между моментами наступления двух смежных полных вод на 24 равных интервала для "суточных" приливов, или на 12 равных интервалов для "полусуточных" приливов.

Равномерное деление солнечного суточного периода не правомерно для деления периода прилива. Действительно, длительность среднесолнечного часа определяется величиной угла (фазы) видимого поворота Солнца за 1/24 долю интервала солнечных суток. Угловая скорость видимого движения Солнца по небосклону практически постоянна, следовательно, и длительности интервалов времени соответствующих интервалам среднесолнечных часов практически равны. В градусной мере солнечные сутки равны 360°, а один среднесолнечный час равен времени видимого поворота Солнца на 15°. Однако для временного хода приливов такой равномерной изменчивости в изменении уровня моря не наблюдается. Напротив, временной ход приливных колебаний уровня чрезвычайно переменчив. Это связано с тем, что приливные колебания в большей степени синхронизированы с движением Луны, а не Солнца. Угловое движение Луны вокруг Земли значительно сложнее, менее постоянно, чем движение Солнца. Ответная синхронизация уровня моря на совместное влияние небесных светил и является источником непостоянства изменения фазы прилива, что очевидно должно приводить к непостоянству интервалов времени водных часов.

Дадим формальное обоснование. Любые часы используют цикличность какого-либо процесса, точнее используют изменение фазы Ω(τ) со временем (как общее понятие) τ у некоторого циклического процесса. Чем равномернее изменяется фаза, тем "лучше" часы, наилучшие имеют чисто периодический характер.

В общем смысле фаза Ω(τ) понимается как временная упорядоченная последовательность состояний процесса. В нашем случае удобно представить фазу как угловую меру плоского вращательного движения точки вокруг центра, аналог видимого вращения Солнца вокруг Земли. Математическая запись для плоских координат {x(τ),y(τ)} вращения с единичным радиусом проста:

Заметим, что в астрономии фаза Солнца Ω(τ) называется "часовым углом Солнца". Солнечная фаза Ω(τ) изменяется практически равномерно, а как обстоит дело с фазой прилива в среднесолнечном исчислении времени?

Временной ход приливного уровня h(t) в некоторой точке акватории представляется в виде конечной тригонометрической суммы

где t - среднесолнечное время, ai, ωi, φi - амплитуда, угловая частота и фаза приливной гармоники i(i=1,…,N). В (2) опущена астрономическая часть фаз для гармоник, чтобы не загромождать формулы элементами, не существенными для рассматриваемой задачи. Выражение (2) содержит частные фазы для отдельных приливных гармоник Ω(τ), а нам нужно получить выражение для одной общей фаза Ω(τ) приливного процесса. Для этой цели воспользуемся представлением приливного хода уровня в виде узкополосного процесса, то есть определим h(t) в виде

где

Здесь σ(t) - функция, сопряженная функции h(t), определяется интегральным преобразованием Гильберта

Заметим, что функция h(t) соответствует функции x(t), a σ(t) соответствует y(t) из выражения (1), а выражение (5) определяет искомую фазу прилива.

Явно записать (5) через гармонические постоянные и их частоты практически не возможно вследствие громоздкости получаемого выражения. Однако вполне возможно по предвычисленным значениям приливного уровня вычислить (6), а значит и (5). Задачей предлагаемого технического решения является повышение достоверности определения колебания уровня моря.

Поставленная задача решается за счет того, что в способе определения колебания уровня моря, включающем измерение высоты поверхности уровня моря посредством регистрирующих устройств, измерение моментов времени, определение верхней кульминации Луны на фиксированном географическом меридиане, определение колебания уровня моря путем анализа результатов наблюдений по периодическим компонентам во временных рядах результатов наблюдений с определением гармонических постоянных по спектру частот фиктивных светил, при анализе результатов измерений выполняют деление спектра частот на равные временные циклы с последующим их совмещением, в котором гармонические постоянные определяют для отдельного фиктивного светила, временной ход уровня прилива в точке измерения под действием приливных сил определяют по фазовому сдвигу, изменение фазы прилива определяют по измеренным значениям уровня моря в фиксированных точках акватории моря, расположенных по возрастанию величины интервала времени между ближайшим предшествующим моментом времени верхней кульминации Луны и моментом верхней кульминации Луны, в котором пространственную изменчивость времени наступления максимальных вод прилива после сизигий в открытом море определяют по изменению амплитуд гармонической составляющей высоты прилива со временем, при этом преобразования амплитуды, угловой частоты и фазы приливной гармоники измеренных сигналов осуществляют путем интегрального и линейного преобразований Гильберта, в котором в отличие от аналога и прототипа, определяют значения водных часов, выраженные в среднесолнечном времени, как ближайшие моменты среднесолнечного времени t с фазами прилива, кратным целым значениям 15° для "суточных" приливов (Т=[0,…,24]), или 30° для "полусуточных" приливов (Т=[0,…,12].

Сущность способа поясняется чертежами (фиг.1-3).

Фиг.1. Пример вычисления водных часов для конкретного периода прилива, где 1 - временной ход приливного уровня моря (в сантиметрах), 2 - границы интервалов водных часов, вычисленных по фазе прилива, 3 - границы интервалов "водных часов", вычисленных равномерным делением периода прилива.

Фиг.2. Временной ход отношения (в процентах) суммы времени ошибочного пересечения интервалов водных часов, вычисленных по алгоритму и равномерным делением интервала, к интервалу периода прилива.

Фиг.3. Гистограмма разности водных часов, вычисленных по фазе прилива и равномерным делением периода (в минутах).

Способ осуществляется следующим образом.

Как и в прототипе [2], посредством контактных или дистанционных измерителей уровня моря выполняют измерение уровня моря в различных точках акватории моря в различные моменты времени таким образом, чтобы получаемые измерения в каждой точке измерения имели различные значения интервалов времени относительно ближайшего к моменту измерения последнего момента верхней кульминации Луны на фиксированном географическом меридиане.

При этом измеренные значения уровня моря в точках акватории моря, расположенных по возрастанию величины интервала времени между ближайшим предшествующим моментом времени верхней кульминации Луны на фиксированном меридиане и моментом измерения, позволяют установить временной ход уровня под действием приливных сил, что обусловлено тем, что приливные колебания в некоторой точке акватории моря имеют практически постоянный фазовый сдвиг относительно времени верхней кульминации Луны на фиксированном географическом меридиане. Так как сочетания фаз движения Луны вокруг Земли и фаз колебания уровня моря в некоторой точке повторяются с периодом движения Луны вокруг Земли, то измеренные значения уровня моря в некоторой точке акватории моря, расположенные по возрастанию величины интервала времени между ближайшим предшествующим моментом времени верхней кульминации Луны на фиксированном географическом меридиане и моментом измерения, представляют собой изменение фазы прилива, а следовательно, и временной ход уровня в точке измерения под действием приливных сил.

По измеренным приборным значениям уровня моря формируют ряды наблюдений. Определяют значения высоты прилива конкретной гармонической составляющей волны h(t), которая задается амплитудой А, углом положения g (А и g - гармонические постоянные) и периодом Т в соответствии с зависимостью h(t)=Acos(qt-g), где q - угловая скорость гармонической волны за один час среднего времени, t - фиксированный момент времени.

Определяют амплитуды гармонической составляющей высоты прилива. Для анализа гармонических колебаний ось времени разбивается на равные отрезки, которые впоследствии совмещаются друг с другом. В полученном таким образом циклическом времени моменты измерения описывают изменения функции на одном периоде, что обеспечивает связь между временем континентальным (солнечным) и океаническим (приливным) в соответствии с зависимостью x=y-ym, где x - приливное время (число приливных суток от начала приливного года), у - дата солнечного времени (число суток от начала года), ym - число суток между солнечным и приливным временем (число суток от начала года). Вследствие того что периоды системы времени измерения и периоды гармоник колебательного процесса могут быть несоизмеримы, осуществляют преобразование циклического времени в линейное. Далее выполняют дальнейшую обработку с учетом преобразованного времени. Определяют значения высоты прилива h=h(x, y) для последовательного набора дискретных значений времени h=h(x, y, t), например, методом сеток (см., например, Лаврентьев М.А., Шабат Б.В. Методы теории функций переменного. - М-Л.: ГИТТЛ, 1958).

По полученным значениям высоты прилива для последовательного набора дискретных значений времени определяют амплитуды колебаний гармонической составляющей, например, в узлах сетки.

По полученным значениям h=h (x, y, t) определяют время наступления максимального уровня в пунктах измерения. Алгоритм вычисления следующий:

Вход: гармонические постоянные для приливного пункта.

Вычислить ежеминутные приливные уровни h(t) по гармоническим постоянным.

Шаг 1. Вычислить преобразование Гильберта σ(t) приливных уровней h(t) по выражению (6).

Шаг 2. Вычислить фазу прилива Ω(t) по выражению (5), используя вычисленные σ(t) и h(t).

Шаг 3. Найти значения t(T) водных часов, выраженные в среднесолнечном времени, как ближайшие моменты среднесолнечного времени t с фазами прилива, кратным целым значениям 15° для "суточных" приливов (T=[0,…,24]), или 30° для "полусуточных" приливов (T=[0,…,12]).

Выход: значения водных часов, выраженные в среднесолнечном времени/(г). На фиг.1-3 приведены результаты такого вычисления для приливных колебаний у острова Сосновца в Белом море, где наблюдается "полусуточный" прилив. Они свидетельствуют о том, что фаза прилива в этом пункте изменчива настолько, что расчет водных часов путем равномерного разбиения приливного периода на 12 водных часов приводит к существенным ошибкам по сравнению с предлагаемым алгоритмом с использованием (6). Предвычисления приливов проведены по гармоникам, заданным в гринвичском часовом поясе на 2012 год (табл.1).

Источники информации

Патент RU №2343415 С2, 10.01.2009.

Патент RU №2452984 С1, 10.06.2012.

Способ определения колебания уровня моря, включающий измерение высоты поверхности уровня моря посредством регистрирующих устройств, измерение моментов времени, определение верхней кульминации Луны на фиксированном географическом меридиане, определение колебания уровня моря путем анализа результатов наблюдений по периодическим компонентам во временных рядах результатов наблюдений с определением гармонических постоянных по спектру частот фиктивных светил, при анализе результатов измерений выполняют деление спектра частот на равные временные циклы с последующим их совмещением, в котором гармонические постоянные определяют для отдельного фиктивного светила, временной ход уровня прилива в точке измерения под действием приливных сил определяют по фазовому сдвигу, изменение фазы прилива определяют по измеренным значениям уровня моря в фиксированных точках акватории моря, расположенных по возрастанию величины интервала времени между ближайшим предшествующим моментом времени верхней кульминации Луны и моментом верхней кульминации Луны, а пространственную изменчивость времени наступления максимальных вод прилива после сизигий в открытом море определяют по изменению амплитуд гармонической составляющей высоты прилива со временем, при этом преобразования амплитуды, угловой частоты и фазы приливной гармоники измеренных сигналов осуществляют путем интегрального и линейного преобразований Гильберта, отличающийся тем, что определяют значения водных часов, выраженные в среднесолнечном времени, как ближайшие моменты среднесолнечного времени t с фазами прилива, кратными целым значениям 15° для "суточных" приливов (T=[0,…,24]) или 30° для "полусуточных" приливов (T=[0,…,12]).
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛЕБАНИЯ УРОВНЯ МОРЯ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛЕБАНИЯ УРОВНЯ МОРЯ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛЕБАНИЯ УРОВНЯ МОРЯ
Источник поступления информации: Роспатент

Показаны записи 121-130 из 138.
10.05.2018
№218.016.431d

Система точной навигации подвижных объектов с использованием данных наземной инфраструктуры глонасс

Изобретение относится к области радиотехники и может быть использовано для навигации подвижных объектов в режиме реального времени. Система точной навигации подвижных объектов с использованием данных наземной инфраструктуры ГЛОНАСС включает спутники глобальных навигационных систем (ГЛОНАСС,...
Тип: Изобретение
Номер охранного документа: 0002649628
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.478d

Автономная сейсмоакустическая станция

Изобретение относится к области геофизики и может быть использовано для сейсмоакустических исследований на шельфе при выполнении разведочных работ нефтегазоносных месторождений. Заявлена автономная сейсмоакустическая станция (МАСАС), содержащая устанавливаемый на морском дне, всплывающий после...
Тип: Изобретение
Номер охранного документа: 0002650849
Дата охранного документа: 17.04.2018
29.05.2018
№218.016.5920

Индивидуальное спасательное средство для поддержания летчика на плаву при приводнении

Изобретение относится к области спасательных средств на воде и может быть использовано в качестве штатного снаряжения для летного состава в условиях аварийного приводнения. Индивидуальное спасательное средство для поддержания летчика на плаву при приводнении содержит наполняемую газом...
Тип: Изобретение
Номер охранного документа: 0002655251
Дата охранного документа: 24.05.2018
28.08.2018
№218.016.7fdf

Способ обеспечения безопасности судов и спасательная система для его осуществления

Изобретение относится к обеспечению безопасности судов. Техническим результатом является повышение безопасности мореплавания в критических ситуациях. В способе формируют базу знаний по обеспечению безопасности каждого судна, базы данных, при этом обеспечивают взаимный обмен информацией...
Тип: Изобретение
Номер охранного документа: 0002664919
Дата охранного документа: 27.08.2018
21.11.2018
№218.016.9f4b

Навигационный буй с комплексной энергоустановкой

Изобретение относится к плавучим средствам навигационного оборудования, в частности к бую, предназначенному для ограждения фарватеров и отдельных навигационных опасностей на судоходных акваториях, а также для проведения сейсмических и экологических наблюдений. Предложен навигационный буй,...
Тип: Изобретение
Номер охранного документа: 0002672830
Дата охранного документа: 19.11.2018
10.04.2019
№219.017.01b3

Способ обработки изделий из твердых сплавов на основе монокарбида вольфрама

Изобретение относится к области металлургии, преимущественно к способам радиационной модификации изделий из твердых сплавов, в частности, к изделиям из твердых сплавов, применяемым для холодной и горячей механической обработки металлов и сплавов, например, резанием. Предложенный способ...
Тип: Изобретение
Номер охранного документа: 0002220819
Дата охранного документа: 10.01.2004
10.04.2019
№219.017.0765

Способ создания каналов в ледяных покровах и ледокольная приставка для создания каналов в ледяных покровах

Изобретение относится к ледокольному флоту и, в частности, касается технологии разрушения ледяного покрова. Способ создания каналов в ледяных покровах состоит в том, что по бортам ледокола выдвигают вперед две штанги с электродами, которые нагревают током, вырабатываемым на борту ледокола,...
Тип: Изобретение
Номер охранного документа: 0002457977
Дата охранного документа: 10.08.2012
10.04.2019
№219.017.0994

Способ активной борьбы с айсберговой опасностью и устройство для его осуществления

Изобретение относится к области обеспечения безопасной эксплуатации добычных платформ в арктических морях. Способ активной борьбы с айсберговой опасностью предусматривает обнаружение айсберга путем наблюдений за акваторией. Далее айсберг покрывают водонепроницаемой оболочкой. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002467121
Дата охранного документа: 20.11.2012
22.11.2019
№219.017.e49d

Устройство для оперативной герметизации пробойного отверстия в корпусе космического аппарата

Изобретение относится к космической технике, а более конкретно к ремонту космического аппарата. Устройство для оперативной герметизации пробойного отверстия в корпусе космического объекта содержит герметизирующий элемент и резервуар. Резервуар выполнен в виде двухстороннего зонта. Одна рабочая...
Тип: Изобретение
Номер охранного документа: 0002706670
Дата охранного документа: 19.11.2019
12.12.2019
№219.017.ec59

Лазерный судовой измеритель скорости

Устройство относится к области морского приборостроения и предназначено для использования в качестве относительного и абсолютного лага, а также измерителя скорости течений для приповерхностных и глубоководных исследований преимущественно при малых глубинах под килем. Лазерный судовой измеритель...
Тип: Изобретение
Номер охранного документа: 0002708526
Дата охранного документа: 09.12.2019
Показаны записи 121-130 из 157.
10.05.2018
№218.016.431d

Система точной навигации подвижных объектов с использованием данных наземной инфраструктуры глонасс

Изобретение относится к области радиотехники и может быть использовано для навигации подвижных объектов в режиме реального времени. Система точной навигации подвижных объектов с использованием данных наземной инфраструктуры ГЛОНАСС включает спутники глобальных навигационных систем (ГЛОНАСС,...
Тип: Изобретение
Номер охранного документа: 0002649628
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.478d

Автономная сейсмоакустическая станция

Изобретение относится к области геофизики и может быть использовано для сейсмоакустических исследований на шельфе при выполнении разведочных работ нефтегазоносных месторождений. Заявлена автономная сейсмоакустическая станция (МАСАС), содержащая устанавливаемый на морском дне, всплывающий после...
Тип: Изобретение
Номер охранного документа: 0002650849
Дата охранного документа: 17.04.2018
29.05.2018
№218.016.5920

Индивидуальное спасательное средство для поддержания летчика на плаву при приводнении

Изобретение относится к области спасательных средств на воде и может быть использовано в качестве штатного снаряжения для летного состава в условиях аварийного приводнения. Индивидуальное спасательное средство для поддержания летчика на плаву при приводнении содержит наполняемую газом...
Тип: Изобретение
Номер охранного документа: 0002655251
Дата охранного документа: 24.05.2018
28.08.2018
№218.016.7fdf

Способ обеспечения безопасности судов и спасательная система для его осуществления

Изобретение относится к обеспечению безопасности судов. Техническим результатом является повышение безопасности мореплавания в критических ситуациях. В способе формируют базу знаний по обеспечению безопасности каждого судна, базы данных, при этом обеспечивают взаимный обмен информацией...
Тип: Изобретение
Номер охранного документа: 0002664919
Дата охранного документа: 27.08.2018
21.11.2018
№218.016.9f4b

Навигационный буй с комплексной энергоустановкой

Изобретение относится к плавучим средствам навигационного оборудования, в частности к бую, предназначенному для ограждения фарватеров и отдельных навигационных опасностей на судоходных акваториях, а также для проведения сейсмических и экологических наблюдений. Предложен навигационный буй,...
Тип: Изобретение
Номер охранного документа: 0002672830
Дата охранного документа: 19.11.2018
18.01.2019
№219.016.b0f9

Инструментальный материал на основе оксида алюминия и способ его получения

Группа изобретений относится к получению спеченного инструментального материала на основе оксида алюминия. Материал состоит из зерен оксида алюминия сферической формы размером от 0,01 до 0,4 мкм с тонкой пленкой никеля на поверхности каждого зерна толщиной 0,1÷0,4 от его размера. Способ...
Тип: Изобретение
Номер охранного документа: 0002677423
Дата охранного документа: 16.01.2019
21.03.2019
№219.016.eb17

Способ калибровки слитка полупроводникового материала

Изобретение относится к области изготовления изделий электронной техники, заготовкой для которых является слиток полупроводникового материала, требующий калибровки - получение цилиндрической поверхности. Технический результат заключается в повышении качества поверхностного слоя слитка,...
Тип: Изобретение
Номер охранного документа: 0002682564
Дата охранного документа: 19.03.2019
10.04.2019
№219.017.0765

Способ создания каналов в ледяных покровах и ледокольная приставка для создания каналов в ледяных покровах

Изобретение относится к ледокольному флоту и, в частности, касается технологии разрушения ледяного покрова. Способ создания каналов в ледяных покровах состоит в том, что по бортам ледокола выдвигают вперед две штанги с электродами, которые нагревают током, вырабатываемым на борту ледокола,...
Тип: Изобретение
Номер охранного документа: 0002457977
Дата охранного документа: 10.08.2012
10.04.2019
№219.017.0913

Состав эмульсионного взрывчатого вещества

Изобретение относится к области взрывных работ в горной промышленности на земной поверхности с ручным и механизированным заряжанием скважин любой степени обводненности, а именно взрывчатым веществам по крепким, средним, слабым породам и углю. Состав эмульсионного взрывчатого вещества содержит...
Тип: Изобретение
Номер охранного документа: 0002446134
Дата охранного документа: 27.03.2012
10.04.2019
№219.017.0994

Способ активной борьбы с айсберговой опасностью и устройство для его осуществления

Изобретение относится к области обеспечения безопасной эксплуатации добычных платформ в арктических морях. Способ активной борьбы с айсберговой опасностью предусматривает обнаружение айсберга путем наблюдений за акваторией. Далее айсберг покрывают водонепроницаемой оболочкой. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002467121
Дата охранного документа: 20.11.2012
+ добавить свой РИД