×
20.08.2014
216.012.ec96

Результат интеллектуальной деятельности: СПОСОБ ЗАПИРАНИЯ ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ

Вид РИД

Изобретение

№ охранного документа
0002526374
Дата охранного документа
20.08.2014
Аннотация: Использование: в области электротехники. Технический результат - снижение нагрузки по напряжению. Изобретение относится к способу запирания выпрямителя (2) переменного тока с распределенными накопителями (C) энергии с по меньшей мере двумя модулями (4, 4, 4) фаз, которые имеют соответствующие верхнюю и нижнюю ветвь (Р1, Р2, Р3, N1, N2, N3) вентилей, которые имеют соответствующее множество электрически последовательно соединенных двухполюсных подмодулей (SM1, SM2,…, SMn), которые имеют соответствующий униполярный накопительный конденсатор (C), с которым электрически параллельно включена схема последовательного соединения из двух отключаемых полупроводниковых переключателей (S1, S2) c соответствующим антипараллельно включенным диодом (D1, D2). В соответствии с изобретением подмодули (SM1, SM2,…, SMn) верхней и нижней ветви (Р1, Р2, Р3, N1, N2, N3) вентилей модуля (4, 4, 4) фазы выпрямителя (2) переменного тока управляются каскадно по времени для переключения в состояние переключения III. 4 з.п. ф-лы, 4 ил., 2 табл.

Изобретение относится к способу запирания выпрямителя переменного тока с распределенными накопителями энергии с по меньшей мере двумя модулями фаз, которые имеют соответствующие верхнюю и нижнюю ветвь вентилей, которые имеют соответствующее множество электрически последовательно соединенных двухполюсных подмодулей, которые имеют соответствующий униполярный накопительный конденсатор, с которым электрически параллельно включена схема последовательного соединения из двух отключаемых полупроводниковых переключателей с соответствующим антипараллельно включенным диодом.

Выпрямитель переменного тока с распределенными накопителями энергии известен из DE 101 03 031 А1 и схематично представлен на фиг.1. Согласно этому представлению этот выпрямитель 2 переменного тока имеет три модуля 41, 42 и 43 фаз, которые имеют соответственно верхнюю и нижнюю ветвь P1 и N1, или P2 и N2, или P3 и N3 вентилей. Эти обе ветви P1, N1, или P2, N2, или P3, N3 вентилей каждого модуля 41, 42 и 43 фаз включены с образованием ветви моста. Точка соединения верхней и нижней ветви P1 и N1, или P2 и N2, или P3 и N3 вентилей выведена как вывод L1, L2, L3 стороны переменного напряжения модуля 41, 42 и 43 фаз. К этим выводам L1, L2, L3 стороны переменного напряжения подключен трехфазный двигатель 6 или сеть электроснабжения. Модули 41, 42 и 43 фаз включены электрически параллельно друг к другу и к непоказанному устройству питания постоянного напряжения, которое подключено к выводам P0 и N0 постоянного напряжения выпрямителя 2 переменного тока с распределенными накопителями CSM энергии. Между этими выводами P0 и N0 постоянного напряжения существует сформированное постоянное напряжение Udc.

Из этого представления выпрямителя 2 переменного тока с распределенными накопителями CSM энергии также можно видеть, что каждая ветвь P1, N1, P2, N2, P3, N3 вентилей содержит множество электрически последовательно соединенных двухполюсных подмодулей SM1, SM2,…, SMn. Каждый двухполюсный подмодуль SM1, SM2,…, SMn содержит согласно представлению подмодуля SM1 униполярный накопительный конденсатор CSM, два отключаемых полупроводниковых переключателя S1 и S2 и два диода D1 и D2. Оба отключаемых полупроводниковых переключателя S1 и S2 включены электрически последовательно, и эта схема последовательного соединения включена электрически параллельно к униполярному накопительному конденсатору CSM. Антипараллельно к отключаемым полупроводниковым переключателям S1 и S2 включен соответствующий диод D1 или D2. Эти диоды D1 и D2 образуют соответственно безынерционный диод. Точка соединения обоих отключаемых полупроводниковых переключателей S1 и S2 выведена как вывод Х2 модуля. Отрицательный вывод униполярного накопительного конденсатора CSM образует второй вывод Х1 модуля. Если униполярный накопительный конденсатор CSM заряжен, то на нем падает конденсаторное напряжение USM.

Эти конденсаторные напряжения USM1, USM2, …, USMn двухполюсных подсистем SM1, SM2,…, SMn каждой ветви P1, N1, P2, N2, P3, N3 вентилей суммируются соответственно в вентильные напряжения UZP1, UZN1, UZP2, UZN2, UZP3, UZN3. Суммирование соответствующих двух вентильных напряжений UZP1, UZN1, или UZP2, UZN2, или UZP3, UZN3 модуля 41, 42 или 43 фазы дает постоянное напряжение Udc, существующее между выводами P0 и N0 постоянного напряжения.

За счет выполнения каждой двухполюсной подсистемы SM выпрямителя 2 переменного тока с распределенными накопителями CSM энергии можно каждым подмодулем SM управлять в трех состояниях переключения, а именно в состояниях переключения I, II и III. В состоянии переключения I отключаемый полупроводниковый переключатель S1 находится в состоянии включения, а отключаемый полупроводниковый переключатель S2 - в состоянии выключения. При этом на выводах Х2 и Х1 подмодуля SM существует в качестве клеммного напряжения UX2X1 конденсаторное напряжение USM независимо от направления протекающего тока iZ ветви. В состоянии переключения II отключаемый полупроводниковый переключатель S1 находится в состоянии выключения, а отключаемый полупроводниковый переключатель S2 - в состоянии включения, при этом на выводах Х2 и Х1 подмодуля SM существует клеммное напряжение UX2X1 с амплитудой, равной нулю, также независимо от направления протекающего тока iZ ветви. В состоянии переключения III оба отключаемых полупроводниковых переключателя S1 и S2 находятся в состоянии выключения. Амплитуда клеммного напряжения UX2X1 каждого подмодуля SM в состоянии переключения III зависит от направления протекающего тока iZ ветви. Если ток ветви больше нуля, то амплитуда клеммного напряжения UX2X1 подмодуля SM соответствует амплитуде конденсаторного напряжения USM этого подмодуля SM. Если, напротив, ток ветви меньше нуля, то амплитуда клеммного напряжения равна нулю. Если не протекает никакой ток iZ ветви и деление напряжения через отключаемые полупроводниковые переключатели S1 и S2 подмодуля SM является симметричным, то амплитуда клеммного напряжения UX2X1 соответствует половинной амплитуде конденсаторного напряжения USM подмодуля SM.

Согласно DE 101 03 031 А1 только состояния переключения I и II подмодуля SM выпрямителя 2 переменного тока с распределенными накопителями CSM энергии применяются в регулярном режиме работы этого выпрямителя 2 переменного тока. Состояние переключения III применяется только в случаях неисправности, например короткого замыкания на его выводах P0 и N0 постоянного напряжения для целенаправленного холостого хода (прерывания режима работы выпрямителя 2 переменного тока) и для пренебрежимо коротких времен задержки отключаемых полупроводниковых переключателей S1 и S2 подмодуля SM при смене состояния переключения.

Общеизвестно, что так называемое импульсное запирание активируется, чтобы в критических состояниях функционирования, как, например, в случае сверхтока, сверхнапряжения, отказа управления, отказа регулирования, отказа коммуникации между вентилем выпрямителя переменного тока и модулятором …, выпрямитель переменного тока отключить таким образом, чтобы он после задействования импульсного запирания находился в безопасном состоянии. Согласно DE 10 2004 043 877 A1 это импульсное запирание реализуется таким образом, что все вентили переменного тока в автономном вентильном преобразователе (инверторе) запираются. Это осуществляется предпочтительным образом путем прерывания напряжения питания, отводимого от внешнего напряжения, для оптронов соответствующих схем управления.

Если в выпрямителе 2 переменного тока с распределенными накопителями CSM энергии инициируется импульсное запирание, то все сигналы управления отключаемых полупроводниковых переключателей S1 и S2 всех подмодулей SM1, SM2, …, SMn всех ветвей P1, N1, P2, N2, P3, N3 вентилей модулей 41, 42 и 43 фаз выпрямителя 2 переменного тока с распределенными накопителями CSM энергии по фиг.1 одновременно запираются.

На фиг.2A для выпрямителя 2 переменного тока с распределенными накопителями CSM энергии по фиг.1, в целях наглядности, более подробно показан только модуль 41 фазы. Подмодули SM1,…, SM4 верхней и нижней ветви P1 и N1 вентилей этого модуля 41 фазы показывают распределение состояний переключения во время нормального функционирования этого выпрямителя 2 переменного тока. Из четырех подмодулей SM1,…, SM4 верхней ветви P1 вентилей подмодули SM2-SM4 находятся в состоянии переключения I, а подмодуль SM1 - в состоянии переключения II. Из подмодулей SM1,…, SM4 нижней ветви N1 вентилей подмодули SM1 - SM3 находятся в состоянии переключения II, а подмодуль SM4 - в состоянии переключения I. Таким образом, для постоянного напряжения Udc, существующего на выводах P0 и N0 постоянного напряжения выпрямителя 2 переменного тока, справедливо соотношение по амплитуде Udc=4·USM. Для напряжения UZP верхней ветви P1 вентилей относительно виртуальной средней точки справедливо соотношение UZP=3·USM, в то время как для напряжения UZN нижней ветви N1 вентилей справедливо соотношение UZN=1·USM.

После того как импульсное запирание инициировано, все подмодули SM1-SM4 верхней и нижней ветви P1 и N1 вентилей переводятся в состояние переключения III. Модуль 41 фазы с подмодулями SM1 - SM4 в состоянии переключения III показан на фиг.2B. Установка импульсного запирания может, с одной стороны, вызываться возникающей неисправностью (например, сверхтоком) от непоказанного подробно устройства управления и регулирования выпрямителя 2 переменного тока, а с другой стороны, независимо также может вызываться подмодулями SM1-SM4 (помеха или обрыв связи, сверхнапряжение). Так как момент времени установки импульсного запирания невозможно предсказать, напряжения uZP и uZN или их изменения duZP/dt и duZN/dt на ветвях P1 и N1 вентилей модуля 41 фазы определяются только направлением соответствующего тока iZP1 и iZN1 ветви при установке импульсного запирания.

В предположении, что сумма обоих напряжений uZP и uZN ветвей фазы 41, или 42, или 43 в нормальном режиме работы в среднем соответствует постоянному напряжению Udc, получаются следующие приведенные в таблице напряжения или изменения напряжений после установки импульсного запирания.

Направление токов iZP1/iZN1 ветви Положит./
положит.
Положит./
Отриц.
Отриц./
полож.
Отриц./отриц.
uZP Udc Udc 0 0
uZN Udc 0 Udc 0
uZP+uZN 2Udc Udc Udc 0
Δ(uZP+uZN)* +Udc 0 0 -Udc
*Допущение: средняя сумма напряжений ветви перед импульсным запиранием (uZP+uZN)=Udc

Кроме того, принимается, что конденсаторные напряжения USM каждого подмодуля SM в среднем имеют значение USM=Udc/nsub, причем nsub представляет число последовательно включенных подмодулей SM1, …, SMn на каждую ветвь P1, N1, P2, N2, P3, N3 вентилей выпрямителя 2 переменного тока с распределенными накопителями CSM энергии.

Из этой таблицы можно видеть, что в отношении изменения напряжения в ветвях фазы при установке импульсного запирания возникают два сценария наихудшего случая. Максимальное изменение напряжения суммы напряжений uZP и uZN ветвей модуля 41, 42 и 43 фазы составляет ± Udc и проявляется, когда оба тока iZP1 и iZN1 ветви модуля 4 фазы имеют одинаковые знаки. Это состояние остается так долго, пока токи ветви не будут переключены в нуль.

За счет включения состояния переключения III в подмодулях SM2, SM3, SM4 верхней ветви P1 вентилей и подмодуле SM4 нижней ветви N1 вентилей модуля 41 фазы происходит коммутация отключаемого полупроводникового переключателя S1 на диод D2 названного подмодуля, когда перед установкой импульсного запирания сумма напряжений uZP и uZN ветвей модуля 41 фазы в среднем равна постоянному напряжению Udc между выводами P0 и N0 постоянного напряжения, и токи iZP и iZN ветвей имеют отрицательный знак. В подмодуле SM1 верхней ветви P1 вентилей и подмодулях SM1, SM2, SM3 нижней ветви N1 вентилей модуля 41 фазы при включении состояния переключения III не происходит никаких коммутаций, когда перед установкой импульсного запирания сумма напряжений uZP и uZN ветвей модуля 41 фазы в среднем равна постоянному напряжению Udc и токи iZP и iZN ветвей имеют отрицательный знак, так как перед включением состояния переключения III диод D2 проводил соответствующий ток ветви.

Напротив, за счет включения состояния переключения III в подмодуле SM1 верхней ветви P1 вентилей и подмодулях SM1, SM2, SM3 нижней ветви N1 вентилей модуля 41 фазы происходят коммутации отключаемого полупроводникового переключателя S2 на диод D1 названных подмодулей, когда перед установкой импульсного запирания сумма напряжений uZP и uZN ветвей модуля 41 фазы в среднем равна постоянному напряжению Udc между выводами P0 и N0 постоянного напряжения и токи iZP и iZN ветвей имеют положительный знак. В подмодулях SM2, SM3, SM4 верхней ветви P1 вентилей и подмодуле SM4 нижней ветви N1 вентилей модуля 41 фазы при включении состояния переключения III не происходит никаких коммутаций, когда перед установкой импульсного запирания сумма напряжений uZP и uZN ветвей модуля 41 фазы в среднем равна постоянному напряжению Udc и токи iZP и iZN ветвей имеют отрицательный знак, так как перед включением состояния переключения III диод D1 проводил соответствующий ток ветви.

Для каждого изменения напряжения, которое возникает во время процесса коммутации, на каждый подмодуль SM принимается скорость изменения напряжения отключаемого полупроводникового переключателя S1 или S2, которая может составлять, например, 4 кВ/мкс. Тогда получается скорость изменения напряжения через обе ветви Р1 и N1 вентилей модуля 41 фазы, равная 16 кВ/мкс, так как четыре подмодуля SM модуля 41 фазы перед установкой импульсного запирания находятся в состоянии переключения I. Чем больше подмодулей SM применяется на каждую ветвь P1, N1, P2, N2, P3, N3 вентилей выпрямителя 2 переменного тока с распределенными накопителями CSM энергии, тем выше значение изменения напряжения на каждый модуль 41, 42 и 43 фазы.

Чтобы получить по возможности синусоидальную характеристику выходного напряжения uL10, или uL20, или uL30, на выходе L1, или L2, или L3 модуля 41, или 42, или 43 фазы выпрямителя 2 переменного тока с распределенными накопителями CSM энергии, применяются, например, двенадцать или более подмодулей SM на ветвь P1, N1, P2, N2, P3, N3 вентилей. При двенадцати подмодулях SM на ветвь P1, N1, P2, N2, P3, N3 вентилей скорость изменения напряжения составляет уже 48 кВ/мкс.

Если постоянное напряжение Udc, приложенное к выводам P0 и N0 постоянного напряжения выпрямителя 2 переменного тока с распределенными накопителями CSM энергии, принимается в качестве постоянного, то названная скорость изменения напряжения воздействует как на дроссель LZ ветви, так и на паразитный дроссель Ldc в цепи постоянного тока. Эта нагрузка напряжением дросселя LZ ветви приводит к большим конструктивным габаритам из-за применения усиленной изоляции.

Относительно выходных напряжений uL10, uL20, uL30 выпрямителя 2 переменного тока с распределенными накопителями CSM энергии по сравнению с внутренними для выпрямителя тока напряжениями uZP и uZN возникают другие условия наихудшего случая. На основе фиг.3A и 3B более подробно поясняется наихудший случай относительно изменений напряжения в напряжениях uL10 фазы модуля 41 фазы выпрямителя 2 переменного тока по фиг.1.

Согласно распределению состояний переключения подмодулей SM1-SM4 ветвей P1 и N1 вентилей этого модуля 41 фазы выпрямителя 2 переменного тока с распределенными накопителями CSM энергии по фиг.1, подмодули SM1-SM4 верхней ветви P1 вентилей все находятся в состоянии переключения II. В противоположность этому подмодули SM1-SM4 нижней ветви N1 вентилей все находятся в состоянии переключения I. Напряжение uL10 фазы, которое равно половинной разности напряжений uZP и uZN вентилей, составляет Udc/2. Если теперь вводится импульсное запирание, то получается зависимое от мгновенного направления тока для токов iZP1 и iZN1 ветви изменение напряжения uL10 фазы. Обзор напряжений или изменений напряжения uL10 фазы для ветвей P и N вентилей модуля 4 фазы после установки импульсного запирания приведен в следующей таблице:

Импульсное запирание Направление токов iZP1/iZN1 ветви Положит./
положит.
Положит./
Отриц.
Отриц./
полож.
Отриц./
отриц.
Перед uZP 0 0 0 0
uZN Udc Udc Udc Udc
uL10 Udc/2 Udc/2 Udc/2 Udc/2
После uZP Udc Udc 0 0
uZN Udc 0 Udc 0
uL10 0 -Udc/2 Udc/2 0
ΔuL10 -Udc/2 -Udc 0 -Udc/2
Δ(uZP+uZN)* Udc 0 0 -Udc
*Допущение: конденсаторное напряжение подмодуля USM,x=Udc/nsub.

Наихудший случай относительно изменения напряжения в напряжении uL10, или uL20, или uL30 фазы после установки импульсного запирания возникает тогда, когда перед импульсным запиранием имеются следующие условия:

- все подмодули ветви вентилей, например ветви N1 вентилей модуля фазы, находятся в состоянии переключения I,

- все подмодули соответствующей ветви вентилей, например ветви Р1 вентилей модуля фазы, находятся в состоянии переключения II,

- ток ветви, например ток iZN ветви в ветви вентилей с подмодулями, находящимися в состоянии переключения I, имеет отрицательный знак, и

- ток ветви, например ток iZP ветви в ветви вентилей с подмодулями, находящимися в состоянии переключения II, имеет положительный знак.

При этих условиях напряжение uL10 фазы перескакивает от Udc/2 на -Udc/2 или от -Udc/2 на Udc/2. Изменение напряжения uL10 фазы составляет таким образом при этих условиях ± Udc. Если исходить из того, что в каждом подмодуле SM1-SM4 каждой ветви P1 и N1 вентилей модуля 41 фазы на основе коммутации отключаемых полупроводниковых переключателей S1 или S2 на диод D2 или D1 устанавливается скорость изменения напряжения, например 4 кВ/мкс на каждом подмодуле SM модуля 41 фазы, то для скорости изменения напряжения uL10/dt, или uL20/dt, или uL30/dt получается значение 16 кВ/мкс при четырех подмодулях SM на ветвь P и N вентилей и значение 48 кВ/мкс при двенадцати подмодулях SM на ветвь P и N вентилей модуля 41 фазы.

Это означает для связанного напряжения uL1L2 в наихудшем случае, при котором два напряжения фазы перескакивают в противоположном направлении на ±Udc, что на выходном импедансе (обмотке статора подключенного трехфазного двигателя 6) устанавливается изменение напряжения ΔuL1L2=2Udc, а также скорость изменения напряжения 32 кВ/мкс, когда применяются четыре подмодуля SM на ветвь P и N вентилей модуля 41 фазы, или 96 кВ/мкс, когда применяются двенадцать подмодулей SM на ветвь P и N вентилей модуля 41 фазы. Для того чтобы питание постоянным напряжением на стороне сети и трехфазный двигатель 6, подключенный на стороне нагрузки, при возникновении наихудших случаев не слишком подвергались негативным воздействиям, эти компоненты должны рассчитываться на намного более высокую скорость изменения напряжения, что обуславливает дополнительные затраты заметной величины.

В основе изобретения лежит задача создать способ запирания выпрямителя переменного тока с распределенными накопителями энергии, при котором для наихудших случаев нагрузка напряжения значительно снижается.

Эта задача в соответствии с изобретением решается этапами способа по пункту 1 формулы изобретения.

За счет того что не все подмодули выпрямителя переменного тока с распределенными накопителями энергии одновременно, а во времени каскадно управляются для переключения в состояние III, на каждом временном каскаде проявляется только нагрузка по напряжению соответственно скорости изменения напряжения одного подмодуля. Число временных каскадов соответствует числу подмодулей ветви вентилей выпрямителя переменного тока с распределенными накопителями энергии. Это означает, что на каждый временной каскад всегда только один подмодуль верхней и/или нижней ветви вентилей соответствующего модуля фазы управляется для переключения из текущего состояния переключения I или II в состояние переключения III. При четырех подмодулях на ветвь вентилей выпрямителя переменного тока с распределенными накопителями энергии требуется четыре временных каскада, чтобы полностью реализовать установленное импульсное запирание.

Существенное преимущество этого соответствующего изобретению способа состоит в том, что нагрузка напряжения максимально соответствует скорости изменения напряжения двух подмодулей. Это снижение нагрузки по напряжению тем больше, чем больше подмодулей предусмотрено для каждой ветви вентилей выпрямителя переменного тока с распределенными накопителями энергии. Для того чтобы выходные напряжения фаз выпрямителя переменного тока с распределенными накопителями энергии были в максимальной степени синусоидальными (большое число ступенек), число применяемых подмодулей на ветвь вентилей должно составлять двенадцать и более.

То, управляются ли подмодули модуля фазы в последовательности от внешнего к внутреннему или от внутреннего к внешнему для переключения в состояние переключения III, не изменяет ничего в значении снижения нагрузки напряжения и интервала времени для реализации импульсного запирания.

В предпочтительном выполнении способа минимальный интервал времени между двумя временными каскадами равен времени задержки выключения отключаемого полупроводникового переключателя подмодуля. Тем самым гарантируется, что по истечении минимального временного интервала двух следующих друг за другом временных каскадов один подмодуль верхней и нижней ветви вентилей каждого модуля фазы выпрямителя переменного тока с распределенными накопителями энергии завершает смену состояния переключения.

Для дополнительного разъяснения изобретения ссылки даются на чертежи, с помощью которых наглядно представлен способ, соответствующий изобретению.

Фиг.1 - эквивалентная схема известного выпрямителя переменного тока с распределенными накопителями энергии,

Фиг.2A, 2B - распределения состояний переключения подмодулей модуля фазы выпрямителя переменного тока согласно фиг.1 перед и после установки импульсного запирания,

Фиг.3A, 3B - распределения состояний переключения подмодулей модуля фазы выпрямителя переменного тока согласно фиг.1 перед и после установки импульсного запирания,

Фиг.4A-4E - соответствующие распределения состояний переключения подмодулей модуля фазы выпрямителя переменного тока согласно фиг.1, которые возникают посредством соответствующего изобретению способа.

С помощью фиг.4A-4E далее более подробно поясняется соответствующий изобретению способ для запирания выпрямителя 2 переменного тока с распределенными накопителями CSM энергии согласно фиг.1. Согласно соответствующему изобретению способу после установки импульсного запирания подмодули SM1-SM4 верхней и нижней ветви P1 и N1 вентилей каждого модуля 41, 42 и 43 фазы выпрямителя 2 переменного тока управляются не одновременно для переключения в состояние переключения III, а каскадно по времени. Это распределение по группам обработки устанавливаемого импульсного запирания представлено четырьмя распределениями состояний переключения подмодулей SM1-SM4 ветвей P1 и N1 вентилей модуля 41 фазы, причем стрелки между соответствующими двумя распределениями состояний переключения модуля 41 фазы согласно фиг.4B-4E соответственно символизируют промежуток времени Δt для каскадной по времени или распределенной по группам обработки установленного импульсного запирания.

На фиг.4A представлен модуль 41 фазы выпрямителя 2 переменного тока по фиг.1 со случайным распределением состояний переключения подмодулей SM1-SM4 его верхней и нижней ветви P1 и N1 вентилей. Из подмодулей SM1-SM4 ветвей P1 и N1 вентилей модуля 41 фаз подмодули SM1 и SM2 находятся в состоянии переключения II, в то время как подмодули SM3 и SM4 находятся в состоянии переключения I. Если теперь устанавливается импульсное запирание, то на первом этапе в момент времени t1 (фиг.4B) соответствующий подмодуль SM1 верхней и нижней ветви P1 и N1 вентилей управляется для переключения в состояние переключения III. По прошествии заданного временного интервала Δt, то есть к моменту времени t2 (фиг.4C), соответствующий другой подмодуль SM2 верхней и нижней ветви P1 и N1 вентилей модуля 41 фазы управляется для переключения в состояние переключения III. По прошествии заданного временного интервала Δt, то есть к моменту времени t3 (фиг.4D), соответствующий другой подмодуль SM3 верхней и нижней ветви P1 и N1 вентилей модуля 41 фазы управляется для переключения в состояние переключения III. По прошествии заданного временного интервала Δt, то есть к моменту времени t4 (фиг.4E), соответствующий другой подмодуль SM4 верхней и нижней ветви P1 и N1 вентилей модуля 41 фазы управляется для переключения в состояние переключения III. Таким образом, к моменту времени t4 все подмодули SM1-SM4 каждой ветви P1, N1, P2, N2, P3, N3 вентилей выпрямителя 2 переменного тока с распределенными накопителями CSM энергии находятся в состоянии переключения III, посредством чего установленное импульсное запирание в соответствии с изобретением реализуется каскадным образом.

Как временное каскадирование между отдельными этапами способа (фиг.4B-4E) возникает соответствующий заданный временной интервал Δt, который предпочтительным образом соответствует так называемому времени задержки отключаемого полупроводникового переключателя S1 или S2 подмодуля SM. Это время задержки отключаемого полупроводникового переключателя S1 или S2 подмодуля SM является минимальным интервалом времени Δt, который может быть реализован. По прошествии соответствующего минимального интервала времени Δt смена состояния переключения подмодуля SM завершается. Тем самым гарантируется, что при каждой временной ступеньке каскадной обработки установленного импульсного запирания нагрузка напряжения соответствует максимально только скорости изменения напряжения двух подмодулей SM.

При скорости изменения напряжения, например, 4 кВ/мкс на подмодуль SM максимальная нагрузка du/dt на смену состояния переключения составляет всего лишь 8 кВ/мкс по сравнению с 16 кВ/мкс при обычной обработке импульсного запирания. Это означает, что соответствующий изобретению способ по меньшей мере наполовину снижает нагрузку по напряжению для напряжений внутри выпрямителя переменного тока и выходных напряжений фаз.

При этой соответствующей изобретению каскадной обработке установленного импульсного запирания не требуется одновременно управлять соответствующим подмодулем SM верхней и нижней ветви для переключения в состояние переключения III, а может также только один подмодуль SM на модуль 41, 42 и 43 фаз управляться для переключения в состояние переключения III. С какого подмодуля SM модуля 41, 42 и 43 фаз следует начинать, не имеет значения. Также последовательность, согласно которой подмодули SM верхней и нижней ветви P1, N1, P2, N2, P3, N3 вентилей или модуля 41, 42 и 43 фазы управляются для переключения в состояние переключения III, не имеет значения для снижения нагрузки du/dt.

Важным является, что между сменами состояния переключения соответствующего подмодуля SM верхней и нижней ветви P1, N1, P2, N2, P3, N3 вентилей или модуля 41, 42 и 43 фазы имеется временной сдвиг.

Если только один подмодуль SM модуля 41, 42 и 43 фазы выпрямителя 2 переменного тока с распределенными накопителями CSM энергии по фиг.1 при каскадной по времени обработке установленного импульсного запирания управляется для переключения в состояние переключения III, вместо четырех временных ступеней согласно фиг.4 требуется вдвое большее количество временных ступеней, а именно восемь временных ступеней, пока не будет реализовано установленное импульсное запирание. В соответствии с этим для реализации установленного импульсного запирания требуется значительно больше времени. При количестве подмодулей, равном двенадцати и более, на ветвь P1, N1, P2, N2, P3, N3 вентилей выпрямителя 2 переменного тока по фиг.1 в зависимости от случая применения должно проверяться, могут ли выполняться защитные функции, которые инициализируются импульсным запиранием.

Импульсное запирание устанавливается, чтобы в критических состояниях функционирования, например при сверхтоке, сверхнапряжении или неисправности управления отключить выпрямитель 2 переменного тока с распределенными накопителями CSM энергии таким образом, чтобы он после задействования импульсного запирания находился в безопасном состоянии. Из-за таких случаев неисправности для отключения выпрямителя 2 переменного тока в распоряжении не имеется неограниченного времени.

По этой причине применяется соответствующий изобретению способ, при котором на каждую временную ступень одновременно переключаются два подмодуля, а именно один подмодуль в верхней ветви Р1, Р2, Р3 вентилей и один подмодуль SM в нижней ветви N1, N2, N3 вентилей управляются для переключения в состояние переключения III.


СПОСОБ ЗАПИРАНИЯ ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ
СПОСОБ ЗАПИРАНИЯ ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ
СПОСОБ ЗАПИРАНИЯ ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ
СПОСОБ ЗАПИРАНИЯ ВЫПРЯМИТЕЛЯ ПЕРЕМЕННОГО ТОКА С РАСПРЕДЕЛЕННЫМИ НАКОПИТЕЛЯМИ ЭНЕРГИИ
Источник поступления информации: Роспатент

Показаны записи 291-300 из 1 428.
20.11.2014
№216.013.06f6

Щелевая труба и способ изготовления такой трубы

Изобретение относится к щелевой трубе (39) и способу изготовления такой трубы. Гидравлическая машина и приводной мотор могут быть помещены в корпус, если в электромоторе между ротором и статором осуществляется разделение посредством трубчатой конструктивной части - так называемой щелевой трубы...
Тип: Изобретение
Номер охранного документа: 0002533183
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.08a0

Стабилизация пламени горелки

Горелка газовой турбины содержит реакционную камеру (5) и множество выходящих в реакционную камеру (5) реактивных сопел (6). Реактивными соплами (6) с помощью струи (2) флюида через выпускное отверстие (22) флюид подается в реакционную камеру (5). Реакционная камера (5) предназначена для...
Тип: Изобретение
Номер охранного документа: 0002533609
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.08dc

Способ реализуемого компьютером управления электрическим потреблением энергии множества потребителей энергии в электрической энергосети

Использование: в области электротехники. Технический результат - обеспечение децентрализованного управления энергопотреблением. Согласно способу сетевые узлы (Р1, Р2,…, Р8) оценивают на основе обмена информацией с по меньшей мере одним другим сетевым узлом (Р1, Р2,…, Р8) общее потребление (ТЕ,...
Тип: Изобретение
Номер охранного документа: 0002533669
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0935

Устройство и способ для измерения многофазного потока флюида

Изобретение относится к области измерительной техники и может найти применение в системах измерения скорости потока многофазной смеси флюида. Технический результат - повышение точности. Для этого устройство (1) содержит средство (2) излучения, средство (3) детектирования и средство (4) анализа....
Тип: Изобретение
Номер охранного документа: 0002533758
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0a3b

Устройство для преобразования электрического параметра, имеющее реактор с нулевой точкой

Изобретение относится к преобразовательной технике. Для того чтобы предоставить устройство (1) для преобразования электрического параметра в области передачи и распределения электроэнергии с преобразователем (2), переключаемым между сетью (11) переменного напряжения и контуром (7) постоянного...
Тип: Изобретение
Номер охранного документа: 0002534027
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0a40

Разрядник защиты от перенапряжений с изолирующей формованной оболочкой

Изобретение относится к импедансному устройству с первым (1) и вторым (2) арматурными телами, которые соединены между собой через импедансное тело, зажатое между арматурными телами (1, 2) посредством предохранительного элемента (4). Предохранительный элемент (4) имеет на конце радиально...
Тип: Изобретение
Номер охранного документа: 0002534032
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0a4a

Способ разрядки промежуточного конденсатора двухзвенного вентильного преобразователя напряжения

Изобретение относится в способу разрядки промежуточного конденсатора (C) двухзвенного вентильного преобразователя (2) напряжения, в котором расположенный на стороне сети преобразователь (4) электроэнергии имеет выключаемые силовые полупроводниковые приборы (А1, …, А6) и предназначен для...
Тип: Изобретение
Номер охранного документа: 0002534042
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0a9c

Способ и устройство для очистки загрязненного щелочного раствора соли аминокислоты

Изобретение относится к способу очистки загрязненного щелочного раствора соли аминокислоты. Сначала в раствор соли аминокислоты вводят диоксид углерода, в результате чего выпадает в осадок карбонат или его соли, которые отфильтровывают. Затем оставшийся фильтрат охлаждают, причем аминокислота...
Тип: Изобретение
Номер охранного документа: 0002534124
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0ad4

Сеть управления для рельсового транспортного средства

Изобретение относится к области управления транспортных средств. Сеть управления (1) для рельсового транспортного средства содержит устройства управления рельсового транспортного средства, которые кольцеобразно соединены друг с другом, по меньшей мере, двумя каналами связи. Первое устройство...
Тип: Изобретение
Номер охранного документа: 0002534180
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0ade

Компрессорная рабочая лопатка для осевого компрессора

Изобретение относится к компрессорной рабочей лопатке (10) для компрессоров с осевым потоком предпочтительно стационарных газовых турбин. Предусмотрено, что для уменьшения потерь в радиальном зазоре средняя линия (32) расположенных на стороне вершины лопатки профилей (30) пера (12)...
Тип: Изобретение
Номер охранного документа: 0002534190
Дата охранного документа: 27.11.2014
Показаны записи 291-300 из 944.
27.09.2014
№216.012.f93f

Система и способ для определения состояния подшипника

Изобретение относится к измерительной технике, в частности для определения состояния подшипника электрической машины. Способ заключается в том, что посредством сенсорного блока (20) определяют измеренное значение (21). Измеренное значение передают на блок (22) моделирования. Посредством блока...
Тип: Изобретение
Номер охранного документа: 0002529644
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f9ba

Способ для генерации пара с высоким кпд

Изобретение относится к генерации пара из рабочего тела парогенератора, который предпочтительно выполнен как парогенератор на отходящем тепле. Предлагается способ преобразования в пар рабочего тела парогенератора, при котором в теплообменнике для преобразования в пар рабочего тела тепловая...
Тип: Изобретение
Номер охранного документа: 0002529767
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f9c0

Быстродействующая дистанционная защита для сетей энергоснабжения

Изобретение относится к способу для распознавания короткого замыкания (16) в линии (10) многофазной электрической сети энергоснабжения с заземленной нейтралью. Сущность: принимаются значения выборок тока и напряжения и формируется сигнал неисправности, если выполненная электрическим устройством...
Тип: Изобретение
Номер охранного документа: 0002529773
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fa7c

Топливная трубка для горелки

Топливная трубка для горелки, в частности для горелки газовой турбины, содержит конец, который имеет поверхность под форсунки, а также, по меньшей мере, две топливные форсунки. Поверхность под форсунки снабжена шлицами между топливными форсунками и выполнена в виде конической кольцевой...
Тип: Изобретение
Номер охранного документа: 0002529970
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fd46

Подставка для горелки камеры сгорания газовой турбины и газовая турбина

Изобретение относится к энергетике. Камера сгорания газовой турбины, у которой предусмотрены вставка для горелки, которая имеет стенку с холодной и горячей сторонами и край, ограничивающий стенку вставки для горелки. Край имеет, по меньшей мере, частично охватывающее, выступающее над холодной...
Тип: Изобретение
Номер охранного документа: 0002530684
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fe6c

Электрический контактный элемент с главной осью

Изобретение относится к электрическому контактному элементу. Электрический контактный элемент имеет главную ось (2). Главная ось (2) пересекает многоугольную базовую поверхность (1) контактного элемента. Вокруг главной оси (2) расположена контактная втулка (3). Входное отверстие контактной...
Тип: Изобретение
Номер охранного документа: 0002530988
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fed6

Переходный канал газотурбинного двигателя и способ его изготовления, а также газотурбинный двигатель

Переходный канал для соединения камеры сгорания и турбинной части газотурбинного двигателя содержит оболочку, включающую первую и вторую поверхности. Первая и вторая поверхности оболочки соединены пробиванием, а оболочка переходного канала выполнена по меньшей мере из одного листа,...
Тип: Изобретение
Номер охранного документа: 0002531094
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.00ed

Каскадный ускоритель

Заявленное изобретение относится к ускорительной технике. В заявленном каскадном ускорителе предусмотрено два набора конденсаторов, соответственно соединенных последовательно и включенных через диоды. Каскадный ускоритель содержит образованный посредством отверстий в электродах конденсаторов...
Тип: Изобретение
Номер охранного документа: 0002531635
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.011e

Устройство сепарации намагничиваемых частиц из суспензии

Изобретение относится к сепарации намагничиваемых частиц. Устройство сепарации намагничиваемых частиц из суспензии, представляющей собой поток веществ, содержащий металлические и неметаллические компоненты и обладающий заданным массовым потоком включает, в себя цилиндрически симметричный...
Тип: Изобретение
Номер охранного документа: 0002531684
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.013c

Система горелки для установки для сжигания топлива в виде текучей среды и способ работы такой системы горелки

Изобретение относится к области энергетики. Система горелки для сжигания топлива в виде текучей среды имеет ступицу, по меньшей мере один подводящий воздух канал и для каждого вида топлива по меньшей мере один подводящий топливо канал (9, 12, 13, 16), при этом по меньшей мере один подводящий...
Тип: Изобретение
Номер охранного документа: 0002531714
Дата охранного документа: 27.10.2014
+ добавить свой РИД