×
20.08.2014
216.012.ec0b

Результат интеллектуальной деятельности: СПОСОБ ТЕРМОПОДГОТОВКИ К ЭКСПОЗИЦИИ ТЕРМОЛЮМИНЕСЦЕНТНОГО ДЕТЕКТОРА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерению высоких доз поглощенного излучения. Сущность изобретения заключается в том, что способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия включает термообработку, при этом после считывания высокодозной (более 2 Гр) дозиметрической информации термолюминесцентный детектор подвергают термообработке при температуре 900÷1000°C в течение 1-3 часов. 2 н.п. ф-лы, 1 ил.

Изобретение характеризует способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия. Подготовленный детектор может быть использован для измерения высоких доз поглощенного излучения, находящихся, в частности, в пределах, от 2 до 30 кГр, используемых в радиационных технологиях, а также на атомных станциях, при радиационных испытаниях материалов, в аварийных ситуациях на предприятиях атомной промышленности.

Известен способ отжига детектора типа ТЛД-500К на основе оксида алюминия для снятия запасающего действия дневного света, содержащий нагрев детектора в кварцевой ампуле до 800°С на воздухе, выдержку в течение 15 мин и естественное охлаждение до комнатной температуры [Технические условия ТУ2655-006-02069208-95, пп.5.1 и 4.9.3.2]. При неконтролируемом воздействии дневного света на детектор перед его использованием происходит переселение носителей заряда с энергетически глубоких ловушек на центры захвата, ответственные за основной дозиметрический пик термостимулированной люминесценции (ТЛ) детектора. Это неконтролируемо увеличивает измеренный детектором полезный сигнал после его облучения, что снижает точность определения поглощенной дозы. Рассматриваемый способ обеспечивает освобождение центров захвата дозиметрического пика ТЛ от неконтролируемого переноса носителей заряда, повышая точность измерения поглощенной дозы.

Известный способ предназначен для детекторов на основе оксида алюминия, используемых для индивидуальной дозиметрии персонала АЭС, медицинских учреждений и для радиационного мониторинга окружающей среды и применяется в диапазоне поглощенных доз 10-6-1 Гр при постоянной чувствительности [п.1.2.6 ТУ2655-006-02069208-95].

Недостатком способа является невозможность обеспечения стабильной чувствительности детектора при его высокодозном облучении.

В патенте РФ 2346296, являющемся прототипом, описан способ измерения дозы ионизирующего излучения, включающий операцию термообработки детектора при 900÷950°C в течение 10-15 мин перед облучением детектора. Способ обеспечивает поддержание стабильной чувствительности детектора в диапазоне доз до 1,7 Гр [фиг.4 к патенту РФ 2346296].

Недостатком прототипа является невозможность обеспечения стабильности чувствительности при высокодозном облучении (более 2 Гр).

Задачей предложенного изобретения является создание способа термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия, обеспечивающего стабильность его чувствительности после высокодозного облучения.

Для решения поставленной задачи предложенный способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия, включающий термообработку, отличается тем, что после считывания высокодозной (более 2 Гр) дозиметрической информации термолюминесцентный детектор подвергают термообработке при температуре 900-1000°C в течение 1÷3 часов.

Кроме того, способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия отличается тем, что термообработку детектора проводят в вакууме или в воздушной атмосфере.

Технический результат заключается в обеспечении стабильности чувствительности термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия после высокодозного облучения (более 2 Гр).

При облучении термолюминесцентного детектора высокодозным излучением его чувствительность повышается, так как в нем образуются дополнительные центры свечения, вызывающие увеличение интенсивности термолюминесценции, что приводит к завышению реального значения поглощенной детектором дозы. Соответственно возрастает погрешность измерения, уменьшается его точность. Термообработка детектора при температуре 900-1000°C в течение 1-3 часов перед очередным измерением поглощенной дозы устраняет дополнительные центры свечения, обеспечивая сохранение точности измерения и стабильности чувствительности детектора.

Термообработка детектора при температуре менее 900°C и времени нагрева менее одного часа не обеспечивает полное устранение дополнительных центров свечения, и чувствительность детектора не возвращается к исходной стабильной величине. Использование температуры термообработки детектора более 1000°C и времени нагрева более трех часов вызывает отжиг части дефектов, образующих центры люминесценции, что снижает чувствительность детектора.

Термообработка облученного высокой дозой термолюминесцентного детектора возможна как в воздушной атмосфере, так и в вакууме. Использование воздушной атмосферы упрощает способ термообработки. Термообработка в вакууме требует наличия вакуумированного объема, в котором размещается детектор. При вакуумной термообработке снижается вероятность залечивания кислородных вакансий, которые являются центрами люминесценции. Термообработка в вакууме способствует поддержанию постоянной концентрации люминесцирующих дефектов, что обеспечивает стабильность чувствительности детектора.

На фигуре изображены кривые термолюминесценции (ТЛ) детектора, полученные предложенным и известными способами. По вертикальной оси отложена интенсивность ТЛ в относительных единицах (отн.ед.), по горизонтальной - температура (°C). Арабскими цифрами на фигуре обозначены:

1 - исходный уровень интенсивности ТЛ детектора до высокодозного облучения (645 отн.ед., штрихпунктирная линия);

2 - ТЛ пик, полученный без термообработки (максимум 2448,5 отн.ед.);

3 - ТЛ пик, полученный с термообработкой при 650°C в течение 1 часа (максимум 1970,5 отн.ед.);

4 - ТЛ пик, полученный предложенным способом при 980°C в течение 2 часов (максимум 647 отн.ед).

Измерения ТЛ образцов по пунктам 2, 3 и 4 фигуры проведены для детекторов, облученных высокодозным излучением (30 кГр), после нагрева детекторов до 400°C с целью снятия дозиметрической информации и последующего облучения одинаковой тестовой дозой малой величины (8 мГр). Исходный уровень интенсивности ТЛ детектора 145 отн.ед. (по пункту 1 фигуры) определен для образца, который не облучался высокой дозой, а был облучен только тестовой дозой малой величины (8 мГр), после нагрева детектора до 400°C с целью снятия дозиметрической информации.

Термообработка проводилась на воздухе в электропечи. Использовались образцы детекторов ТЛД-500К (ТУ 2655-006-02069208-95), в виде дисков толщиной 1 мм, диаметром 5 мм.

Предложенный способ осуществляют следующим образом.

Термоподготовку к последующей экспозиции детектора осуществляют после его высокодозного (доза более 2 Гр) облучения ионизирующим излучением и последующего нагрева до 300-400°C, производимого при измерении поглощенной дозы.

При термоподготовке нагревают детектор до температуры 900-4000°C со скоростью 1-10 град/с и выдерживают при установленной температуре в течение 1-3 часов. Указанную термообработку проводят с использованием электропечи в воздушной атмосфере. После окончания времени выдержки производят естественное охлаждение детектора на воздухе до комнатной температуры. Термообработка может быть проведена в вакууме, для чего детектор помещают на столике в камере вакуумной печи, в которой при откачке обеспечивают разрежение 10-3-10-4 Торр, а затем производят нагрев до требуемой температуры. После термообработки детектор охлаждают вместе с печью естественным образом или при охлаждении столика водой.

После термообработки детектора он используется для последующего экспонирования в высокодозных радиационных полях. Поглощенную дозу измеряют термолюминесцентным способом путем нагревания детектора до определенной температуры, например до 300-400°C с заданной скоростью, в частности, выбранной в диапазоне 0,5-5 град/с. Образующийся в процессе нагрева световой поток, несущий дозиметрическую информацию, регистрируется с помощью термолюминесцентного считывателя, включающего, кроме нагревательного элемента, фотоэлектронный умножитель (например, ФЭУ-142), электронный модуль для регистрации и обработки сигнала с ФЭУ и персональный компьютер, управляющий работой считывателя и использующийся также для ведения баз данных дозиметрических измерений.

В таблице приведены режимы и результаты осуществления термоподготовки к экспозиции пяти образцов термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия. Термоподготовка образца №1 осуществлена при значениях температуры и времени, которые меньше нижних граничных значений предложенного способа. Термообработка образцов № 2-4 произведена предложенным способом. Образец №5 обработан при значениях температуры и времени, превышающих верхние граничные значения предложенного способа. Кроме того, в таблице приведено значение исходного уровня интенсивности ТЛ образца №6, не подвергавшегося воздействию высокой дозы, облученного только тестовой дозой малой величины (8 мГр).

Таблица
Температура Время Интенсивность Номер, обозначенный
образца отжига отжига пика ТЛ после
облучения тестовой дозой
на фигуре
(°C) (мин) (отн.ед.)
1 650 60 1970,5 3
2 900 60 671 -
3 980 120 647 4
4 1000 180 620 -
5 1200 240 605 -
6 Отжиг не проводился 645 1

При проведении термоподготовки термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия предложенным способом (образцы №2÷4) чувствительность подготовленных образцов восстанавливается до уровня исходной чувствительности образца №6 (645 отн.ед.), находясь в диапазоне 613-677 отн.ед. с учетом допустимой погрешности ±5%. Термоподготовка образцов термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия при параметрах, выходящих за пределы параметров предложенного способа (образцы № 1 и 5), ведет к недопустимым изменениям чувствительности детектора (соответственно, 1970,5 и 605 отн.ед.).


СПОСОБ ТЕРМОПОДГОТОВКИ К ЭКСПОЗИЦИИ ТЕРМОЛЮМИНЕСЦЕНТНОГО ДЕТЕКТОРА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 119.
20.01.2016
№216.013.a13f

Способ получения многослойных магнитных пленок

Изобретение относится к области изготовления многослойных магнитных пленочных материалов и может быть использовано в технологии получения сред для записи информации или при производстве датчиков. Способ получения многослойных магнитных пленок включает ионно-плазменное напыление, по крайней...
Тип: Изобретение
Номер охранного документа: 0002572921
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c3fc

Способ прокатки двутавровых профилей

Изобретение относится к области сортовой прокатки двутавровых профилей, преимущественно с параллельными гранями полок, на рельсобалочных прокатных станах, снабженных компактными непрерывно-реверсивными группами-тандем универсальных и двухвалковых клетей. Полученную в черновой клети разрезную...
Тип: Изобретение
Номер охранного документа: 0002574632
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c403

Способ производства биметаллического проката на основе низкоуглеродистой стали и алюминиевого сплава

Изобретение относится к производству двух-, трех- и многослойных материалов горячей прокаткой и может быть использовано при производстве биметаллического проката на основе низкоуглеродистой стали и алюминиевых сплавов. Способ включает предварительную механическую обработку поверхности стальной...
Тип: Изобретение
Номер охранного документа: 0002574948
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c7a2

Способ переработки цинковых кеков

Изобретение относится к цветной металлургии и может быть использовано при переработке серебросодержащих цинковых кеков, образующихся при извлечении цинка из сульфидных концентратов. Цинковые кеки при температуре 80-90°C подвергают сернокислотному выщелачиванию в присутствии восстановителя,...
Тип: Изобретение
Номер охранного документа: 0002578881
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.04f6

Кислотостойкая композиция для ремонта эмалевых покрытий

Изобретение относиться к средствам для ремонта повреждений и защиты от коррозии в месте повреждения стеклоэмалевых покрытий технологического оборудования химических предприятий, систем трубопроводов, другого оборудования технического назначения и может быть применено на предприятиях химической...
Тип: Изобретение
Номер охранного документа: 0002587678
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b7a

Способ получения полос из немерных отрезков труб

Изобретение относится к методам утилизации немерных концов труб предпочтительно из нержавеющей стали. Способ включает разделку исходной трубы на мерные и немерные отрезки, плющение отрезков с получением плоского профиля. Получение товарного продукта без применения энергоемких процессов...
Тип: Изобретение
Номер охранного документа: 0002579856
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c4c

Биобарабан для аэробной переработки сырья

Изобретение может быть использовано в биоэнергетике в качестве универсального аэробного реактора для переработки в удобрение навоза животных, помета птиц, зеленой массы, бытовых и других сельскохозяйственных и лесных отходов биосырья. Биобарабан содержит цилиндрический корпус на роликоопорах с...
Тип: Изобретение
Номер охранного документа: 0002579789
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d33

Способ продольной прокатки труб

Изобретение относится к обработке металлов давлением и может быть использовано при прокатке труб в станах продольной прокатки. Способ включает прокатку гильзы-трубы в валках с калибрами, придание гильзе овальной формы непосредственно перед валками стана продольной прокатки труб. Повышение...
Тип: Изобретение
Номер охранного документа: 0002579857
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2df0

Способ для измерения перемещений (варианты)

Способ измерения перемещений заключается в формировании на поверхности квадрантного фотоприемника двух световых потоков, преобразовании оптических сигналов в электрические и определении координат оптических сигналов по электрическим. При этом формируют два дополнительных световых потока на...
Тип: Изобретение
Номер охранного документа: 0002579812
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e03

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов,...
Тип: Изобретение
Номер охранного документа: 0002579766
Дата охранного документа: 10.04.2016
Показаны записи 81-90 из 165.
10.11.2014
№216.013.040b

Способ получения синтетического карналлита

Изобретение относится к области цветной металлургии. Способ получения синтетического карналлита включает очистку и концентрирование хлормагниевых растворов, их смешение с твердым измельченным калиевым электролитом магниевых электролизеров, нагрев с выделением газов и охлаждение смеси при...
Тип: Изобретение
Номер охранного документа: 0002532433
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0454

Способ термолучевой обработки вещества тл-осл твердотельного детектора ионизирующих излучений на основе оксида алюминия

Изобретение относится к способу обработки рабочих веществ твердотельных детекторов ионизирующих излучений, основанных на явлениях термостимулированной люминесценции (ТЛ) и оптически стимулированной люминесценции (ОСЛ). Способ термолучевой обработки вещества твердотельного детектора ионизирующих...
Тип: Изобретение
Номер охранного документа: 0002532506
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04d9

Минитеплоцентраль для выравнивания графика нагрузки в электрических сетях

Изобретение относится к электроэнергетике. Минитеплоцентраль содержит замкнутый контур низкокипящего рабочего тела, состоящий из теплообменника, турбины, конденсатора и циркуляционного насоса, причем к его теплообменнику подключен гидравлический теплоаккумулятор, оснащенный...
Тип: Изобретение
Номер охранного документа: 0002532639
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.05de

Способ синтеза 2-додецил-5-(2,3,7,8-бис-(9н,10н-антрацен-9,10-диил)пирен-1-ил)тиофена - мономолекулярного оптического сенсора для обнаружения нитроароматических соединений

Изобретение относится к способу получения 2-додецил-5-(2,3,7,8-бис-(9H,10H-антрацен-9,10-диил)пирен-1-ил)тиофена, который заключается во взаимодействии 1-бромпирена с 2-додецил-5-трибутилстаннилтиофеном по реакции Стилле с получением первого полупродукта 5-(пирен-1-ил)-2-додецилтиофена, с...
Тип: Изобретение
Номер охранного документа: 0002532903
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.05f1

Способ определения меди в природных и питьевых водах

Изобретение относится к способу определения меди в природных и питьевых водах. Способ включает концентрирование меди на сорбционном материале, помещенном в патрон, путем пропускания через него анализируемой пробы, элюирование меди азотной кислотой и определение меди методами атомной...
Тип: Изобретение
Номер охранного документа: 0002532922
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.07c2

Способ изготовления коррозионностойкого электрода

Изобретение относится к способу изготовления коррозионностойкого электрода, включающему изготовление биметаллической основы электрода, содержащей титановый корпус с медным сердечником внутри. Далее подготовку наружной поверхности титанового корпуса и нанесение на нее активирующего покрытия....
Тип: Изобретение
Номер охранного документа: 0002533387
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0866

Резистивный материал

Изобретение относится к радио- и микроэлектронике, а именно к резистивному материалу, содержащему халькогениды серебра, мышьяка и германия. При этом материал дополнительно содержит селенид меди согласно эмпирической формуле: (AgSe)·(CuSe)·(AsSe)·(GeSe), где 0,6≤х≤0,95. Материал обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002533551
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.08ac

Устройство для раскатки и раздачи труб

Изобретение относится к области обработки металлов давлением, а именно к трубопрофильному производству. Корпус устройства имеет присоединительную и рабочую части, центральный осевой канал, рабочие ролики, цилиндр и шток с возвратной пружиной. Цилиндр и шток имеют конические участки, являющиеся...
Тип: Изобретение
Номер охранного документа: 0002533621
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.09b0

Раствор для гидрохимического осаждения полупроводниковых пленок сульфида индия

Изобретение относится к технологии получения изделий оптоэлектроники и солнечной энергетики, а именно к раствору для гидрохимического осаждения полупроводниковых пленок сульфида индия(III). Раствор содержит соль индия(III), винную кислоту, тиоацетамид, гидроксиламин солянокислый при следующих...
Тип: Изобретение
Номер охранного документа: 0002533888
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0acd

Способ получения конвертера вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния sio на кремниевой подложке

Изобретение относится к способу получения люминесцентного материала - конвертера вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния SiO на кремниевой подложке, предназначенного для создания функциональных элементов фотонных приборов...
Тип: Изобретение
Номер охранного документа: 0002534173
Дата охранного документа: 27.11.2014
+ добавить свой РИД