×
20.08.2014
216.012.ec0b

Результат интеллектуальной деятельности: СПОСОБ ТЕРМОПОДГОТОВКИ К ЭКСПОЗИЦИИ ТЕРМОЛЮМИНЕСЦЕНТНОГО ДЕТЕКТОРА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерению высоких доз поглощенного излучения. Сущность изобретения заключается в том, что способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия включает термообработку, при этом после считывания высокодозной (более 2 Гр) дозиметрической информации термолюминесцентный детектор подвергают термообработке при температуре 900÷1000°C в течение 1-3 часов. 2 н.п. ф-лы, 1 ил.

Изобретение характеризует способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия. Подготовленный детектор может быть использован для измерения высоких доз поглощенного излучения, находящихся, в частности, в пределах, от 2 до 30 кГр, используемых в радиационных технологиях, а также на атомных станциях, при радиационных испытаниях материалов, в аварийных ситуациях на предприятиях атомной промышленности.

Известен способ отжига детектора типа ТЛД-500К на основе оксида алюминия для снятия запасающего действия дневного света, содержащий нагрев детектора в кварцевой ампуле до 800°С на воздухе, выдержку в течение 15 мин и естественное охлаждение до комнатной температуры [Технические условия ТУ2655-006-02069208-95, пп.5.1 и 4.9.3.2]. При неконтролируемом воздействии дневного света на детектор перед его использованием происходит переселение носителей заряда с энергетически глубоких ловушек на центры захвата, ответственные за основной дозиметрический пик термостимулированной люминесценции (ТЛ) детектора. Это неконтролируемо увеличивает измеренный детектором полезный сигнал после его облучения, что снижает точность определения поглощенной дозы. Рассматриваемый способ обеспечивает освобождение центров захвата дозиметрического пика ТЛ от неконтролируемого переноса носителей заряда, повышая точность измерения поглощенной дозы.

Известный способ предназначен для детекторов на основе оксида алюминия, используемых для индивидуальной дозиметрии персонала АЭС, медицинских учреждений и для радиационного мониторинга окружающей среды и применяется в диапазоне поглощенных доз 10-6-1 Гр при постоянной чувствительности [п.1.2.6 ТУ2655-006-02069208-95].

Недостатком способа является невозможность обеспечения стабильной чувствительности детектора при его высокодозном облучении.

В патенте РФ 2346296, являющемся прототипом, описан способ измерения дозы ионизирующего излучения, включающий операцию термообработки детектора при 900÷950°C в течение 10-15 мин перед облучением детектора. Способ обеспечивает поддержание стабильной чувствительности детектора в диапазоне доз до 1,7 Гр [фиг.4 к патенту РФ 2346296].

Недостатком прототипа является невозможность обеспечения стабильности чувствительности при высокодозном облучении (более 2 Гр).

Задачей предложенного изобретения является создание способа термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия, обеспечивающего стабильность его чувствительности после высокодозного облучения.

Для решения поставленной задачи предложенный способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия, включающий термообработку, отличается тем, что после считывания высокодозной (более 2 Гр) дозиметрической информации термолюминесцентный детектор подвергают термообработке при температуре 900-1000°C в течение 1÷3 часов.

Кроме того, способ термоподготовки к экспозиции термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия отличается тем, что термообработку детектора проводят в вакууме или в воздушной атмосфере.

Технический результат заключается в обеспечении стабильности чувствительности термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия после высокодозного облучения (более 2 Гр).

При облучении термолюминесцентного детектора высокодозным излучением его чувствительность повышается, так как в нем образуются дополнительные центры свечения, вызывающие увеличение интенсивности термолюминесценции, что приводит к завышению реального значения поглощенной детектором дозы. Соответственно возрастает погрешность измерения, уменьшается его точность. Термообработка детектора при температуре 900-1000°C в течение 1-3 часов перед очередным измерением поглощенной дозы устраняет дополнительные центры свечения, обеспечивая сохранение точности измерения и стабильности чувствительности детектора.

Термообработка детектора при температуре менее 900°C и времени нагрева менее одного часа не обеспечивает полное устранение дополнительных центров свечения, и чувствительность детектора не возвращается к исходной стабильной величине. Использование температуры термообработки детектора более 1000°C и времени нагрева более трех часов вызывает отжиг части дефектов, образующих центры люминесценции, что снижает чувствительность детектора.

Термообработка облученного высокой дозой термолюминесцентного детектора возможна как в воздушной атмосфере, так и в вакууме. Использование воздушной атмосферы упрощает способ термообработки. Термообработка в вакууме требует наличия вакуумированного объема, в котором размещается детектор. При вакуумной термообработке снижается вероятность залечивания кислородных вакансий, которые являются центрами люминесценции. Термообработка в вакууме способствует поддержанию постоянной концентрации люминесцирующих дефектов, что обеспечивает стабильность чувствительности детектора.

На фигуре изображены кривые термолюминесценции (ТЛ) детектора, полученные предложенным и известными способами. По вертикальной оси отложена интенсивность ТЛ в относительных единицах (отн.ед.), по горизонтальной - температура (°C). Арабскими цифрами на фигуре обозначены:

1 - исходный уровень интенсивности ТЛ детектора до высокодозного облучения (645 отн.ед., штрихпунктирная линия);

2 - ТЛ пик, полученный без термообработки (максимум 2448,5 отн.ед.);

3 - ТЛ пик, полученный с термообработкой при 650°C в течение 1 часа (максимум 1970,5 отн.ед.);

4 - ТЛ пик, полученный предложенным способом при 980°C в течение 2 часов (максимум 647 отн.ед).

Измерения ТЛ образцов по пунктам 2, 3 и 4 фигуры проведены для детекторов, облученных высокодозным излучением (30 кГр), после нагрева детекторов до 400°C с целью снятия дозиметрической информации и последующего облучения одинаковой тестовой дозой малой величины (8 мГр). Исходный уровень интенсивности ТЛ детектора 145 отн.ед. (по пункту 1 фигуры) определен для образца, который не облучался высокой дозой, а был облучен только тестовой дозой малой величины (8 мГр), после нагрева детектора до 400°C с целью снятия дозиметрической информации.

Термообработка проводилась на воздухе в электропечи. Использовались образцы детекторов ТЛД-500К (ТУ 2655-006-02069208-95), в виде дисков толщиной 1 мм, диаметром 5 мм.

Предложенный способ осуществляют следующим образом.

Термоподготовку к последующей экспозиции детектора осуществляют после его высокодозного (доза более 2 Гр) облучения ионизирующим излучением и последующего нагрева до 300-400°C, производимого при измерении поглощенной дозы.

При термоподготовке нагревают детектор до температуры 900-4000°C со скоростью 1-10 град/с и выдерживают при установленной температуре в течение 1-3 часов. Указанную термообработку проводят с использованием электропечи в воздушной атмосфере. После окончания времени выдержки производят естественное охлаждение детектора на воздухе до комнатной температуры. Термообработка может быть проведена в вакууме, для чего детектор помещают на столике в камере вакуумной печи, в которой при откачке обеспечивают разрежение 10-3-10-4 Торр, а затем производят нагрев до требуемой температуры. После термообработки детектор охлаждают вместе с печью естественным образом или при охлаждении столика водой.

После термообработки детектора он используется для последующего экспонирования в высокодозных радиационных полях. Поглощенную дозу измеряют термолюминесцентным способом путем нагревания детектора до определенной температуры, например до 300-400°C с заданной скоростью, в частности, выбранной в диапазоне 0,5-5 град/с. Образующийся в процессе нагрева световой поток, несущий дозиметрическую информацию, регистрируется с помощью термолюминесцентного считывателя, включающего, кроме нагревательного элемента, фотоэлектронный умножитель (например, ФЭУ-142), электронный модуль для регистрации и обработки сигнала с ФЭУ и персональный компьютер, управляющий работой считывателя и использующийся также для ведения баз данных дозиметрических измерений.

В таблице приведены режимы и результаты осуществления термоподготовки к экспозиции пяти образцов термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия. Термоподготовка образца №1 осуществлена при значениях температуры и времени, которые меньше нижних граничных значений предложенного способа. Термообработка образцов № 2-4 произведена предложенным способом. Образец №5 обработан при значениях температуры и времени, превышающих верхние граничные значения предложенного способа. Кроме того, в таблице приведено значение исходного уровня интенсивности ТЛ образца №6, не подвергавшегося воздействию высокой дозы, облученного только тестовой дозой малой величины (8 мГр).

Таблица
Температура Время Интенсивность Номер, обозначенный
образца отжига отжига пика ТЛ после
облучения тестовой дозой
на фигуре
(°C) (мин) (отн.ед.)
1 650 60 1970,5 3
2 900 60 671 -
3 980 120 647 4
4 1000 180 620 -
5 1200 240 605 -
6 Отжиг не проводился 645 1

При проведении термоподготовки термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия предложенным способом (образцы №2÷4) чувствительность подготовленных образцов восстанавливается до уровня исходной чувствительности образца №6 (645 отн.ед.), находясь в диапазоне 613-677 отн.ед. с учетом допустимой погрешности ±5%. Термоподготовка образцов термолюминесцентного детектора ионизирующих излучений на основе оксида алюминия при параметрах, выходящих за пределы параметров предложенного способа (образцы № 1 и 5), ведет к недопустимым изменениям чувствительности детектора (соответственно, 1970,5 и 605 отн.ед.).


СПОСОБ ТЕРМОПОДГОТОВКИ К ЭКСПОЗИЦИИ ТЕРМОЛЮМИНЕСЦЕНТНОГО ДЕТЕКТОРА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 119.
20.01.2014
№216.012.97f5

Способ получения люминофора в виде аморфной пленки диоксида кремния с ионами селена на кремниевой подложке

Изобретение к способу получения люминофора в виде аморфной пленки диоксида кремния с ионами селена, расположенной на кремниевой подложке. Способ включает имплантацию ионов селена с энергией ионов 300±30 кэВ при флюенсе 4÷6·10 ион/см в указанную пленку и первый отжиг при температуре 900÷1000°C...
Тип: Изобретение
Номер охранного документа: 0002504600
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9b8c

Способ получения анестезина

Изобретение относится к способу получения этилового эфира n-аминобензойной кислоты (анестезина) формулы который обладает местным анестезирующим действием и является полупродуктом в синтезе новокаина. Способ заключается в восстановлении этилового эфира n-нитробензойной кислоты с последующим...
Тип: Изобретение
Номер охранного документа: 0002505526
Дата охранного документа: 27.01.2014
20.02.2014
№216.012.a345

Способ изготовления модифицированного электрода для электрохимического анализа (варианты)

Использование: для контроля состава природных, сточных вод, биологических объектов, пищевых продуктов, диагностики заболеваний в химической, металлургической, пищевой промышленности, медицине, экологии. Сущность: способ изготовления модифицированного электрода включает синтез на поверхности...
Тип: Изобретение
Номер охранного документа: 0002507512
Дата охранного документа: 20.02.2014
20.04.2014
№216.012.bb33

Способ измерения поглощенной дозы ионизирующего излучения в термолюминесцентном детекторе на основе анионо-дефектного монокристалла оксида алюминия (варианты)

Изобретение относится к радиационной физике, а именно к способам измерения поглощенной дозы ионизирующего γ-излучения, или β-излучения, или импульсного потока электронов в термолюминесцентном детекторе на основе анионодефектного монокристалла оксида алюминия. Способ измерения поглощенной дозы...
Тип: Изобретение
Номер охранного документа: 0002513651
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c1b0

Термогравиметрическая установка

Термогравиметрическая установка предназначена для определения кислородной нестехиометрии в твердых оксидных материалах по изменению их массы в зависимости от температуры и парциального давления кислорода газовой атмосферы. Термогравиметрическая установка содержит измерительную систему,...
Тип: Изобретение
Номер охранного документа: 0002515333
Дата охранного документа: 10.05.2014
27.06.2014
№216.012.d5eb

Аппликатор магнитный

Изобретение относится к медицине, а именно к магнитотерапии, и может быть использовано для лечения различных заболеваний воздействием магнитных полей, создаваемых постоянным магнитом, размещаемым снаружи тела. Аппликатор магнитный содержит гибкую пластину из магнитомягкого эластомера на основе...
Тип: Изобретение
Номер охранного документа: 0002520541
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.df28

Аустенитно-ферритная сталь с высокой прочностью

Изобретение относится к области металлургии и может быть использовано для получения высокопрочной теплостойкой проволоки различных типоразмеров и листового материала. Предложенная сталь содержит компоненты в следующем соотношении, мас.%: углерод до 0,03, хром 8,0-16, никель 6-12, молибден 1-5,...
Тип: Изобретение
Номер охранного документа: 0002522914
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e3f2

Однофазная электрическая машина

Изобретение относится к электромеханике, а точнее к электрическим машинам с магнитами на статоре, и может быть использовано в электрических приводах машин и механизмов, а также в генераторах электрической энергии. Предлагаемая электрическая машина содержит зубчатый ротор, статор, включающий...
Тип: Изобретение
Номер охранного документа: 0002524144
Дата охранного документа: 27.07.2014
20.08.2014
№216.012.ec03

Способ определения загрязненности неметаллическими включениями стальных изделий

Использование: для определения загрязненности неметаллическими включениями стальных изделий. Сущность изобретения заключается в том, что выполняют отбор образцов, изготовление шлифов с полированной поверхностью, определение размеров и химического состава включений путем получения спектров...
Тип: Изобретение
Номер охранного документа: 0002526227
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ec78

Конвертер вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния sio на кремниевой подложке

Изобретение относится к люминесцентным материалам - конвертерам вакуумного ультрафиолетового излучения в излучение видимого диапазона, выполненным в виде аморфной пленки оксида кремния SiO на кремниевой подложке, предназначенным для создания функциональных элементов фотонных приборов нового...
Тип: Изобретение
Номер охранного документа: 0002526344
Дата охранного документа: 20.08.2014
Показаны записи 11-20 из 165.
20.03.2013
№216.012.301d

Способ определения аномалий на политермах свойств высокотемпературных металлических расплавов (варианты)

Изобретение относится к технической физике, а именно к способам контроля и измерения свойств веществ, и предназначено для определения аномалий на политермах свойств высокотемпературных металлических расплавов. Дополнительной сферой применения являются металлургические процессы, в частности...
Тип: Изобретение
Номер охранного документа: 0002477852
Дата охранного документа: 20.03.2013
10.04.2013
№216.012.3450

Способ определения точки кюри металлических высокотемпературных ферромагнитных сплавов

Изобретение относится к технической физике и может быть использовано при определении температурной зависимости вязкости высокотемпературных металлических ферромагнетиков - сплавов на основе Fe, Co, Ni. Для осуществления заявленного способа используют установку фотометрического определения...
Тип: Изобретение
Номер охранного документа: 0002478935
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.3ba1

Система управления знаниями для разрешения ситуаций

Изобретение относится к системам управления знаниями для разрешения ситуаций (СУЗ PC) и предназначено для поддержки разрешения проблемных ситуаций, связанных с неудовлетворительным качеством конкретных объектов. Технический результат заключается в улучшении характеристик обрабатываемой...
Тип: Изобретение
Номер охранного документа: 0002480826
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.3fd5

Устройство для профилирования труб

Изобретение относится к области обработки металлов давлением, и может быть использовано для профилирования труб. Используют неподвижные кольцевые профилирующие элементы и подвижный кольцевой профилирующий элемент, выполненный с возможностью смещения в плоскости, перпендикулярной оси...
Тип: Изобретение
Номер охранного документа: 0002481911
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.3fd6

Трубопрофильное устройство

Изобретение относится к области обработки металлов давлением, конкретно - к трубопрофильному производству. Тяговый узел устройства выполнен в виде цепного механизма, бесконечная цепь которого имеет профилирующие выступы и установлена на ведомой и ведущей звездочках. Промежуточные опорные...
Тип: Изобретение
Номер охранного документа: 0002481912
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.407f

Состав для получения безобжигового зольного гравия

Изобретение относится к технологиям производства безобжигового зольного гравия (БЗГ) на основе кислой золы и добавок. Технический результат состоит в повышении прочности и морозостойкости БЗГ посредством оптимизации состава, поступающего на грануляцию. Состав для получения безобжигового...
Тип: Изобретение
Номер охранного документа: 0002482081
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.4428

Способ переработки глиноземсодержащего сырья

Изобретение относится к области цветной металлургии. Способ переработки глиноземсодержащего сырья включает выщелачивание сырья, содержащего глинозем, с получением алюминатного раствора, отделение его от красного шлама и направление алюминатного раствора на стадию кристаллизации с получением...
Тип: Изобретение
Номер охранного документа: 0002483025
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.4896

Способ извлечения редкоземельных элементов из технологических и продуктивных растворов и пульп

Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов при комплексной переработке технологических и продуктивных растворов. Способ извлечения редкоземельных элементов из растворов, содержащих железо(III) и алюминий, включает сорбцию...
Тип: Изобретение
Номер охранного документа: 0002484162
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4c2e

Способ синтеза 2,3,6,7,10,11-трис-(9н,10н-антрацен-9,10-диил)трифенилена - мономолекулярного оптического сенсора для обнаружения нитроароматических соединений

Изобретение относится к способу синтеза 2,3,6,7,10,11-трис-(9Н,10Н-антрацен-9,10-диил)трифенилена 1-мономолекулярного оптического сенсора для обнаружения нитроароматических соединений путем взаимодействия генерируемого in situ аринового производного трифенилена с антраценом в атмосфере аргона...
Тип: Изобретение
Номер охранного документа: 0002485084
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4ca6

Способ термической обработки отливок из безуглеродистых жаропрочных никелевых сплавов для монокристаллического литья

Изобретение относится к области металлургии сплавов, а именно к термической обработке отливок из безуглеродистых жаропрочных никелевых сплавов с монокристаллической структурой, предназначенных преимущественно для производства литых турбинных лопаток авиационных, транспортных и промышленных...
Тип: Изобретение
Номер охранного документа: 0002485204
Дата охранного документа: 20.06.2013
+ добавить свой РИД