×
20.08.2014
216.012.ec07

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДАТЧИКА КОНЦЕНТРАЦИИ КИСЛОРОДА ИЛИ ВОДОРОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к ядерной энергетике и может быть использовано в датчиках для измерения содержания кислорода или водорода в энергетических установках. Способ изготовления чувствительного элемента (ЧЭ) датчика кислорода или водорода включает изготовление пробки из твердого электролита и трубки из электроизоляционной керамики с последующим их диффузионным соединением. Перед диффузионным соединением на поверхности пробки, сопрягаемой с поверхностью трубки, выполняют профилированные канавки определенного размера. Изобретение позволяет добиться увеличения выхода годных ЧЭ, а также увеличить ресурс работы датчиков с ЧЭ за счет увеличения надежности и герметичности соединения трубки из электроизоляционной керамики (АlO, MgO) и пробки из твердого электролита (ZrO, YO). 1 з.п. ф-лы, 2 ил.

Изобретение относится к ядерной энергетике и может быть использовано в ядерной технике в датчиках для измерения содержания кислорода или водорода в энергетических установках.

В датчиках определения наличия газов, таких как кислород или водород, соединения керамического изолятора с твердым электролитом производят посредством герметизирующих составов. Однако такое соединение приводит к возникновению нежелательного шунтирующего тока и, кроме того, взаимодействие в процессе эксплуатации герметика с компонентами электрохимической ячейки (ЭХЯ) и рабочими средами приводит к ее разрушению (Стеклогерметики для газовой герметизации твердооксидных топливных элементов. В.В.Куранов, С.П.Дровосеков, И.В.Попов. Российский федеральный ядерный центр - ВНИИ технической физики имени академика Е.И.Забабахина, г.Снежинск).

Известен датчик водорода с ЭХЯ, чувствительный элемент (ЧЭ) которого представляет собой соединение трубчатого изолятора (Аl2O3 и MgO) с пробкой

[(ZrO2)0,9(Y2O3)0,1] (патент RU №2 334979, МПК G01N 27/417, опубл. 27.09.2008).

Недостаток известного технического решения заключается в том, что имеет место малый процент выхода годных ЭХЯ из-за отсутствия герметичности соединения пробка-трубка на стадии изготовления. Одной из причин является различие коэффициентов температурного расширения (КТР). Причем, это различие не должно превышать 0,3×10-6 1/°С (Стеклогерметики для газовой герметизации твердооксидных топливных элементов. В.В.Куранов, С.П.Дровосеков, И.В.Попов. Российский федеральный ядерный центр - ВНИИ технической физики имени академика Е.И.Забабахина, г.Снежинск), что практически нереально для известных материалов, применяемых в ЭХЯ. Кроме того, известно, что циркониево-иттриевый твердый раствор устойчив к действию Аl2O3, что не способствует герметичному соединению трубка-пробка (А.А.Кортель, Г.М.Судиловская, Т.М.Сараева, С.А.Суворов, В.И.Страхов - Спекаемость и технические свойства циркониево-шпинельных и циркониево-корундовых огнеупоров - Огнеупоры. - 1997, - №4, - с.22-24).

Наиболее близким известным техническим решением, принятым за прототип, является способ изготовления чувствительного элемента (ЧЭ) датчика концентрации кислорода, включающий изготовление пробки из твердого электролита и трубки из электроизоляционной керамики, размещение пробки в трубке с последующим диффузионным соединением путем постепенного нагрева до температуры 1500°С, последующей выдержки и постепенного охлаждения (патент RU №2 167 415, МПК G01N 27/409, опубл. 20.05.2001).

Однако данное техническое решение также имеет недостатки, поскольку в процессе охлаждения разница КТР материалов пробки (ZrO2, Y2O3) и трубки из электроизоляционного материала (Аl2O3, MgO) приводит к расслоениям в соединении и, следовательно, к потере герметичности и небольшому проценту выхода годных изделий (ЧЭ). Помимо этого в процессе спекания имеет место значительная усадка материала трубчатого изолятора, которую ограничивает пробка, практически не имеющая усадки. Вследствие этого в соединении возникают напряжения, которые могут превысить допустимые, что приводит к разрушению - растрескиванию, расслоению и т.п. (В.Л.Балкевич - Техническая керамика: Учеб. пособие для втузов. - 2-е изд., перераб. и доп. - М.: Стройиздат, 1984, - 256 с., стр.14).

Задача настоящего изобретения заключается в увеличении выхода годных изделий, увеличении ресурса работы датчиков с ЭХЯ (ЧЭ) за счет увеличения надежности и герметичности соединения трубки из электроизоляционной керамики (Аl2O3, MgO) и пробки из твердого электролита (ZrO2, Y2O3), т.к. ЧЭ является основным рабочим элементом аналогичных датчиков.

Это достигается тем, что в способе изготовления чувствительного элемента датчика концентрации кислорода или водорода, включающем изготовление пробки из твердого электролита и трубки из электроизоляционной керамики, размещение пробки в трубке и их последующее диффузионное соединение путем постепенного нагрева до температуры 1500°С, последующей выдержки и постепенного охлаждения, в котором согласно изобретению перед диффузионным соединением на поверхности пробки, сопрягаемой с поверхностью трубки, выполняют профилированные канавки шириной ,

где δ - натяг между боковыми гранями профилированных канавок, определяемый прочностью соединяемых материалов и обусловленный разностью их коэффициентов температурного расширения Δα;

Т - температура перехода соединяемых материалов из упругопластического состояния в хрупкое;

с шагом (1,5-2,0) b и глубиной, составляющей (1,1-1,2) от величины усадки материала трубки.

После охлаждения чувствительный элемент подвергают термоциклированию в диапазоне температур от 400 до 1000 градусов, что позволяет снять остаточные напряжения в материалах пробки и трубки, возникающие от усадки трубки по краям канавок в местах уплотнения.

Сущность данного технического решения иллюстрируется графическими изображениями.

На фиг.1 приведен чертеж пробки с вариантами выполнения формы канавок.

На фиг.2 изображена выполненная на пробке канавка с натекшим в нее материалом трубки.

При изготовлении ЧЭ датчика концентрации газа (кислорода или водорода) герметичность соединения твердоэлектролитной пробки и электроизоляционной трубки в конечном итоге определяет процент выхода годных изделий. При совместном нагревании до температуры 1500°С со скоростью нагрева порядка 150°С/час заготовки электроизоляционной трубки и вставленной в нее твердоэлектролитной пробки, которая практически не имеет усадки при спекании, происходит их герметичное соединение за счет термодиффузионного взаимодействия по контактирующим сопряженным поверхностям. Такими поверхностями являются боковые грани профилированных канавок на пробке (фиг.1) и материала трубчатого изолятора, натекшего в канавки от усадки (фиг.2). Размер b (фиг.1) между гранями профилированных канавок на пробке из-за разности ТКР Δα [пробки (ZrO2,Y2O32 и трубчатого изолятора (Аl2O3, MgO)α1] при остывании уменьшается больше, чем размер натекшего в канавки изолятора, что создает натяг δ, благодаря которому формируются герметичные уплотнения, так называемые «замки», по краям канавок. Это повышает надежность соединения ЧЭ. Ширину канавок определяют из соотношения , где T - температура перехода из упругопластического состояния в хрупкое в диапазоне температур от 1100°С до 1300°С (Ю.Л.Красулин и др. - Пористая конструкционная керамика. - М.: Металлургия, 1980. - 100 с., стр.9). Выбор указанной температуры обусловлен тем, что в этом диапазоне температур материал еще не стал хрупким, а разность ТКР Δα материалов при этом наибольшая. Натяг δ также вызывает напряженное состояние в перемычке В, ширина которой определяется из условия ее прочности при изгибно-растягивающих напряжениях, которые составляют (0,1-0,3)δсж и находится в пределах (0,5-1)b. При этом канавки выполняют с шагом (1,5-2)b.

Усадка трубки сопровождается натеканием материала трубки в канавки пробки. Величина усадки составляет (10-12)% (Бакунов B.C. - Керамика из высокоогнеупорных окислов. - М.: Металлургия, 1977, - 304 с., стр.180). При этом глубина канавки d должна быть больше на (10-15)% (см. фиг.2) для свободного натекания материала трубки в канавки пробки и возможности размещения выделяющихся газов в свободную часть канавок. Наличие профилированных канавок способствует снижению напряжений в соединении из-за уменьшения контактной площади соприкосновения пробки и трубки, что пропорционально снижает напряжения в соединении.

Поскольку рабочая температура для ЧЭ в энергетических установках находится в диапазоне от 400°С до 600°С, то для снятия остаточных напряжений в материалах пробки и трубки, появляющихся от усадки трубки в местах уплотнения по краям канавок, после охлаждения проводят термоциклирование в диапазоне температур (400-1000)°С до 5 раз, которое обеспечивает размерную стабильность ЧЭ. После термоциклирования ЧЭ подвергается испытанию на герметичность.

Пример конкретного осуществления.

Для ЧЭ датчика концентрации кислорода или водорода изготавливалась пробка из диоксида циркония, стабилизированного оксидом иттрия [(ZrO2)0,84(Y2O3)0,16] диаметром D=4 мм и длиной 6,2 мм. КТР пробки, выполненной из данного материала, составляет α2=12×10-6 1/°С (см. Рутман Д.С., Торопов Ю.С., Плинер С.Ю. и др. Высокоогнеупорные материалы из диоксида циркония. - М.: Металлургия, 1985. - 136 с., стр.48). Допустимые напряжения для пробки при температуре 1300°С составляют δсж=103 МН/м2, а δраст=102 МН/м2 (Бакунов B.C. - Керамика из высокоогнеупорных окислов. - М.: Металлургия, 1977, - 304 с., стр.148).

Трубка изготавливалась из алюмомагнезиальной шпинели (MgAl2O4), диаметром 10 мм, длиной 50 мм, внутренний диаметр 4 мм. Величина усадки трубки составила 10%. КТР трубки, выполненной из данного материала, составляет α1=10,3×10-6 1/°С (см. Бакунов B.C. - Керамика из высокоогнеупорных окислов. - М.: Металлургия, 1977, - 304 с., стр.188).

Разность КТР материалов Δα=(α21)=17×10-6 1/°С.

Величина натяга выбиралась по допустимым напряжениям в соединяемых материалах и обеспечению плотности соединения. При натяге δ=2×10-3 мм максимальные напряжения в соединении по приближенным расчетам для указанных материалов не превышали допустимые. Ширина канавки, определенная из соотношения и при указанных выше данных, составила 1 мм. На длине пробки 6,2 мм разместили три канавки шириной 1 мм с перемычками между ними 0,8 мм.

Канавки на пробке изготавливали нарезкой алмазным инструментом после окончательного спекания и шлифовки по наружному диаметру. Возможно изготовление канавок шликерным литьем.

Спекание ЧЭ проводили при температуре 1500°С со скоростью нагрева 150°С/ч, при которой находящийся в упругопластическом состоянии материал трубки натекал в канавки пробки и образовывал натяг по ее боковым граням (фиг.2). Натекание в канавки шириной 1 мм пробки диаметром 4 мм материала трубки составило h=(0,15-0,20) мм (см. фиг.2), при этом глубина канавки была изготовлена больше h на 0,05 мм и составила d=0,25 мм для свободного натекания материала трубки в канавки пробки и свободного размещения выделяющихся из керамических материалов газов. Затем ЧЭ выдерживали при этой температуре 5 часов. По мере снижения температуры и прохождения зоны упругопластического состояния (1100-1300)°С и переходе в хрупкое на гранях канавок пробки с материалом трубки, из-за разности КТР и наличия натяга сформировались герметичные уплотнения - «замки». Благодаря ряду таких «замков» повышается надежность соединения, увеличивая выход годных изделий пропорционально числу «замков».

Для снижения напряжений в материалах пробки и трубки, появляющихся от усадки трубки в местах уплотнения по краям канавок и обеспечения размерной стабильности после охлаждения, проводилось пятикратное термоциклирование при температуре 600°С. Такое термоциклирование обеспечивает большую надежность работы ЧЭ.

Чувствительные элементы, полученные в соответствии с заявленным изобретением, обеспечивают вакуум-плотное соединение пробки из твердого электролита и трубки из электроизоляционной керамики.


СПОСОБ ИЗГОТОВЛЕНИЯ ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДАТЧИКА КОНЦЕНТРАЦИИ КИСЛОРОДА ИЛИ ВОДОРОДА
СПОСОБ ИЗГОТОВЛЕНИЯ ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДАТЧИКА КОНЦЕНТРАЦИИ КИСЛОРОДА ИЛИ ВОДОРОДА
Источник поступления информации: Роспатент

Показаны записи 41-50 из 79.
10.03.2016
№216.014.c110

Способ переработки кремнийсодержащих отходов уранового производства

Изобретение относится к области гидрометаллургии урана и его соединений и может быть использовано в технологии переработки урансодержащих материалов, а именно отходов уранового производства с низким (менее 3 мас.%) содержанием урана и с высоким (до 15 мас.%) содержанием кремния. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002576819
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.cc3e

Способ получения таблетированного диоксида урана

Изобретение относится к области ядерной техники и может быть использовано при получении таблеток из диоксида урана для высокотемпературных вентилируемых твэлов преимущественно термоэмиссионных реакторов-преобразователей (ТРП) встроенного типа. Способ получения таблетированного диоксида урана...
Тип: Изобретение
Номер охранного документа: 0002577272
Дата охранного документа: 10.03.2016
10.05.2016
№216.015.3b63

Способ определения внутренних параметров и выходных характеристик цилиндрического термоэмиссионного преобразователя

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую и может быть использовано при проектировании и испытаниях термоэмиссионных преобразователей (ТЭП) преимущественно для космических ядерных энергетических установок (ЯЭУ). Способ определения...
Тип: Изобретение
Номер охранного документа: 0002583891
Дата охранного документа: 10.05.2016
12.01.2017
№217.015.5d74

Способ осаждения монокристаллических сплавов на основе вольфрама

Изобретение относится к технологии получения вольфрама, легированного ниобием или танталом, и может быть использовано в электровакуумном приборостроении, электронике. Способ осаждения монокристаллических сплавов на основе вольфрама методом химических транспортных реакций на трубчатую...
Тип: Изобретение
Номер охранного документа: 0002590568
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.73e3

Многоэлементный электрогенерирующий канал термоэмиссионного реактора-преобразователя

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую и может быть использовано при создании многоэлементных электрогенерирующих каналов (ЭГК), встроенных в активную зону термоэмиссионного реактора-преобразователя (ТРП) космического назначения....
Тип: Изобретение
Номер охранного документа: 0002597875
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7861

Способ определения прочности покрытия из керамических наночастиц

Использование: для определения прочности покрытия из керамических наночастиц. Сущность изобретения заключается в том, что способ определения прочности покрытия из керамических наночастиц заключается в том, что подложку с нанесенным на ее поверхность покрытием из керамических наночастиц...
Тип: Изобретение
Номер охранного документа: 0002599334
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.82ec

Способ получения тетрафторида урана

Изобретение относится к атомной промышленности и химической технологии неорганических веществ и может быть использовано для получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана. Способ получения тетрафторида урана заключается в том, что смешивают...
Тип: Изобретение
Номер охранного документа: 0002601477
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.83a7

Способ получения высокодисперсных карбидов переходных металлов

Изобретение относится к области химической технологии неорганических веществ, конкретно - к получению высокодисперсных тугоплавких карбидов переходных металлов в гранулированном виде, в том числе смешанных композитов на их основе. Описан способ получения высокодисперсных карбидов переходных...
Тип: Изобретение
Номер охранного документа: 0002601484
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.b04f

Способ переработки уран-циркониевых отходов

Изобретение относится к области гидрометаллургии урана и может быть использовано при его регенерации в результате химической переработки отработанных, бракованных или невостребованных твэлов. Способ переработки уран-циркониевых отходов в виде твэлов заключается в том, что исходные твэлы...
Тип: Изобретение
Номер охранного документа: 0002613352
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.bd8a

Регулятор расхода сыпучего материала

Изобретение относится к оборудованию для технологических процессов, где требуется непрерывная регулируемая с высокой точностью подача сыпучего мелкодисперсного материала, и может быть использовано в порошковой металлургии, в химической и атомной промышленности, в частности в производстве...
Тип: Изобретение
Номер охранного документа: 0002616351
Дата охранного документа: 14.04.2017
Показаны записи 41-50 из 62.
10.03.2016
№216.014.c110

Способ переработки кремнийсодержащих отходов уранового производства

Изобретение относится к области гидрометаллургии урана и его соединений и может быть использовано в технологии переработки урансодержащих материалов, а именно отходов уранового производства с низким (менее 3 мас.%) содержанием урана и с высоким (до 15 мас.%) содержанием кремния. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002576819
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.cc3e

Способ получения таблетированного диоксида урана

Изобретение относится к области ядерной техники и может быть использовано при получении таблеток из диоксида урана для высокотемпературных вентилируемых твэлов преимущественно термоэмиссионных реакторов-преобразователей (ТРП) встроенного типа. Способ получения таблетированного диоксида урана...
Тип: Изобретение
Номер охранного документа: 0002577272
Дата охранного документа: 10.03.2016
10.05.2016
№216.015.3b63

Способ определения внутренних параметров и выходных характеристик цилиндрического термоэмиссионного преобразователя

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую и может быть использовано при проектировании и испытаниях термоэмиссионных преобразователей (ТЭП) преимущественно для космических ядерных энергетических установок (ЯЭУ). Способ определения...
Тип: Изобретение
Номер охранного документа: 0002583891
Дата охранного документа: 10.05.2016
12.01.2017
№217.015.5d74

Способ осаждения монокристаллических сплавов на основе вольфрама

Изобретение относится к технологии получения вольфрама, легированного ниобием или танталом, и может быть использовано в электровакуумном приборостроении, электронике. Способ осаждения монокристаллических сплавов на основе вольфрама методом химических транспортных реакций на трубчатую...
Тип: Изобретение
Номер охранного документа: 0002590568
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.73e3

Многоэлементный электрогенерирующий канал термоэмиссионного реактора-преобразователя

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую и может быть использовано при создании многоэлементных электрогенерирующих каналов (ЭГК), встроенных в активную зону термоэмиссионного реактора-преобразователя (ТРП) космического назначения....
Тип: Изобретение
Номер охранного документа: 0002597875
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7861

Способ определения прочности покрытия из керамических наночастиц

Использование: для определения прочности покрытия из керамических наночастиц. Сущность изобретения заключается в том, что способ определения прочности покрытия из керамических наночастиц заключается в том, что подложку с нанесенным на ее поверхность покрытием из керамических наночастиц...
Тип: Изобретение
Номер охранного документа: 0002599334
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.82ec

Способ получения тетрафторида урана

Изобретение относится к атомной промышленности и химической технологии неорганических веществ и может быть использовано для получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана. Способ получения тетрафторида урана заключается в том, что смешивают...
Тип: Изобретение
Номер охранного документа: 0002601477
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.83a7

Способ получения высокодисперсных карбидов переходных металлов

Изобретение относится к области химической технологии неорганических веществ, конкретно - к получению высокодисперсных тугоплавких карбидов переходных металлов в гранулированном виде, в том числе смешанных композитов на их основе. Описан способ получения высокодисперсных карбидов переходных...
Тип: Изобретение
Номер охранного документа: 0002601484
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.b04f

Способ переработки уран-циркониевых отходов

Изобретение относится к области гидрометаллургии урана и может быть использовано при его регенерации в результате химической переработки отработанных, бракованных или невостребованных твэлов. Способ переработки уран-циркониевых отходов в виде твэлов заключается в том, что исходные твэлы...
Тип: Изобретение
Номер охранного документа: 0002613352
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.bd8a

Регулятор расхода сыпучего материала

Изобретение относится к оборудованию для технологических процессов, где требуется непрерывная регулируемая с высокой точностью подача сыпучего мелкодисперсного материала, и может быть использовано в порошковой металлургии, в химической и атомной промышленности, в частности в производстве...
Тип: Изобретение
Номер охранного документа: 0002616351
Дата охранного документа: 14.04.2017
+ добавить свой РИД