×
20.08.2014
216.012.ea84

Результат интеллектуальной деятельности: СПОСОБ ТЕПЛОРАДИОТЕХНИЧЕСКИХ ИСПЫТАНИЙ РАДИОПРОЗРАЧНЫХ ОБТЕКАТЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологиям создания радиопрозрачных обтекателей (РПО), защищающих самолетную и ракетную бортовую аппаратуру в полете. Достигаемый технический результат - прогнозирование процессов искажения электродинамических характеристик исследуемого образца РПО под воздействием высокотемпературного нагревания. Согласно предложенному способу измерения радиотехнических характеристик (РТХ) исследуемого образца РПО проводят не только в холодном состоянии РПО, после его нагревания, но и в процессе изменения (повышения или понижения) температуры, благодаря чему появляется возможность измерять РТХ исследуемого образца РПО при предельно высоких температурах и определять динамические параметры процесса нагревания РПО, то есть зависимость изменения РТХ исследуемого образца РПО от величины и скорости изменения температуры, что позволяет затем скомпенсировать возникающие в полете искажения РТХ РПО. 7 ил.
Основные результаты: Способ проведения теплорадиотехнических испытаний радиопрозрачных обтекателей (РПО) летательных аппаратов, включающий измерения радиотехнических характеристик (РТХ) РПО с использованием встроенной в имитатор рабочего отсека летательного аппарата с исследуемым образцом РПО, установленным на стапеле с опорно-поворотным механизмом, измерительной бортовой радиолокационной аппаратуры после завершения процесса нагревания поверхности РПО теплонагревательными приборами (ТЭНами) с заданным распределением температур, имитирующим разогрев РПО нестационарным встречным потоком воздуха в полете, отличающийся тем, что имитатор рабочего отсека с исследуемым образцом РПО оснащают радиоизмерительной аппаратурой с активной фазовой антенной решеткой (АФАР), а рабочий отсек с исследуемым образцом РПО в процессе проведения измерений периодически разворачивают на 180° с перемещением рабочей области исследуемого образца РПО из зоны нагрева в измерительную зону стенда и обратно, при этом внутри измерительной зоны отсек с исследуемым образцом РПО вращают в пределах углового сектора ±30° синхронно с перемещением луча АФАР.

Изобретением является способ теплорадиотехнических испытаний радиопрозрачных обтекателей (РПО) летательных аппаратов.

Изобретение относится к области авиационной техники и радиолокации, а более конкретно к технологиям создания РПО, защищающих бортовую аппаратуру в полете.

Особенно высокие тепловые и механические нагрузки РПО должен выдерживать в составе высокоскоростных летательных аппаратов. РПО выполняет две основные функции: он должен обеспечивать эффективную тепломеханическую защиту аппаратуры летательного аппарата при высоких температурах и давлении, создаваемых встречным нестационарным потоком воздуха в полете, а с другой стороны - должен сохранять неизменными заданные радиотехнические характеристики (РТХ) РПО, обеспечивающие высокоточные измерения кинематических характеристик цели бортовым радиолокатором, в частности угловые измерения, в различных режимах и условиях полета летательного аппарата.

РТХ РПО большого удлинения, обычно устанавливаемого на высокоскоростных летательных аппаратах, заметно ухудшаются (радиопрозрачность падает, ошибки угловых измерений растут), если РПО неравномерно нагревается встречным аэродинамическим потоком. Величина и законы изменения температуры на боковой поверхности РПО в результате аэродинамического нагрева зависят от ряда физических факторов: скорости и высоты полета, теплофизических свойств материала, конструкции отсека, конфигурации РПО и т.д.

Важное значение для обеспечения высоких РТХ РПО приобретают теплорадиотехнические испытания (ТРТИ), которые нужно проводить как в холодном состоянии РПО, после высокотемпературного нагревания, так и в процессе его высокотемпературного нагревания, для установления зависимостей изменения РТХ РПО от внешних воздействий.

В процессе проведения ТРТИ РПО исследуют:

- коэффициент радиопрозрачности РПО;

- точность угловых измерений (погрешности коэффициента преломления луча электромагнитной волны);

- искажения пространственной диаграммы направленности (ДН) антенной системы (АС), включая боковые лепестки АС;

- искажения пеленгационной характеристики АС;

- градиенты ошибок угловых измерений;

- крутизну пеленгационной характеристики, определяющую качественные показатели режима сопровождения цели.

Базовыми физическими (электродинамическими) параметрами, определяющими РТХ РПО, являются:

- диэлектрическая проницаемость ε;

- тангенс угла потерь tg (σ).

Задачей изобретения является разработка способа проведения исследований зависимости РТХ РПО от внешних (в данном случае тепловых) воздействий с целью получения данных для прогнозирования процессов ухудшения электродинамических характеристик РПО под воздействием высокотемпературного нагревания.

Для решения поставленной задачи большой интерес представляют технические решения, представленные в патентах: ЕР 2264472 G01R 31/12; 2009 г. - на устройство для измерения потерь; ЕР 2264480 G01S 7/40, 2009 г. - на устройство для оценки данных; US 7839137 G01R 19/60 2006 г. - на распределенную систему определения мощности СВЧ-сигнала; JP 4488177 G01S 3/06, 2004 г. - на устройство для угловых измерений; US 7761756 G01R 31/28, 2000 г. - на схему с последовательным тестированием - прототип настоящего изобретения.

Недостатком рассмотренных выше изобретений является недостаточно полная оценка электродинамических параметров исследуемого образца РПО, в частности отсутствие измерений в процессе изменения температуры в условиях высокотемпературного нагревания и при достижении сверхвысоких температур.

Предметом настоящего изобретения является способ проведения ТРТИ РПО, отличающийся тем, что он позволяет производить измерения РТХ как в холодном состоянии РПО, после нагревания, так и в процессе изменения (повышения или понижения) температуры, благодаря чему не только появляется возможность исследовать РТХ РПО при предельно высоких температурах, но и исследовать динамические параметры процесса нагревания РПО, то есть определить искомую зависимость изменений РТХ РПО от величины и скорости изменения температуры, что позволяет в дальнейшем скомпенсировать искажения РТХ РПО, возникающие в полете.

Пониманию функциональных особенностей изобретения способствуют фиг. от 1 до 7.

Для реализации предложенного способа измерений РТХ РПО создан специальный стенд (фиг.1), обеспечивающий выполнение следующих действий. Испытываемый образец РПО (6) устанавливают в имитатор рабочего (штатного) отсека (4), закрепляемый на опорно-поворотном устройстве (ОПУ) стапеля (3), и сопрягают с инструментальной (измерительной) головкой самонаведения (ГСП) (5), снабженной антенной системой типа АФАР, которая юстируется относительно линии визирования радиотехнического имитатора цели (РИЦ) (10). При включении стенда инструментальная ГСН, установленная в имитаторе штатного отсека с исследуемым РПО, излучает зондирующий сигнал, который отражается РИЦ и принимается ГСН ГПКР. Радиотехническая аппаратура ГСН анализирует параметры принятого отраженного РИЦ зондирующего сигнала и определяет исследуемые РТХ в одной точке поверхности РПО, через которую в данный момент в обоих направлениях проходит луч электромагнитной МПК: G01N 33/00 волны, излучаемой и принимаемой инструментальной ГСН. При вращении имитатора отсека летательного аппарата относительно оси, проходящей через фазовый центр антенной системы ГСН, синхронно с перемещением луча АФАР из одной измерительной точки на поверхности РПО в другую, измерения проводятся уже на множестве точек боковой поверхности РПО одновременно, что позволяет исследовать состояние разных областей боковой поверхности РПО с разной интенсивностью изменения температуры, а также снимать диаграмму направленности (измерять боковые лепестки) антенной системы, пеленгационную характеристику и ряд других параметров, определяющих РТХ РПО.

Обычно для обеспечения псевдонепрерывного контроля РТХ РПО при непрерывном изменении температуры в процессе нагревания или охлаждения исследуемого образца РПО с обеспечением вращения корпуса имитатора отсека с РПО в секторе углов ±30° в целях исключения искажений электромагнитного поля в раскрыве антенны инструментальной ГСП посторонними металлическими предметами (ТЭНы и их кабельная сеть) необходимо периодически отводить ТЭНы на определенное расстояние или разводить их на требуемый угол, что требует относительно больших затрат энергии и времени, в результате чего происходят трудно учитываемые нестационарные процессы остывания испытываемого образца РПО. Кроме того, из-за значительных размеров и массы используемых для нагревания ТЭНов эти операции становятся неоправданно сложными и сопряжены с большими потерями времени, что приводит к ухудшению точности измерений.

Предложенный способ проведения ТРТИ РПО обеспечивает значительное сокращение потерь времени на непроизводительные операции и базируется на выполнении периодически повторяющихся операций нагревания образца РПО в зоне нагревания (фиг.4) - и измерения РТХ РПО (фиг.2 и 3) в измерительной зоне, куда исследуемый РПО поступает в результате быстрого разворота имитатора отсека с исследуемым РПО вокруг оси стенда на 180° в горизонтальной плоскости без отвода ТЭНов (фиг 5). В зоне проведения измерений тот же поворотный механизм выполняет несколько циклов сканирования выбранных точек боковой поверхности исследуемого РПО радиолучом для определения распределения искажений РТХ по боковой поверхности исследуемого РПО, после чего с минимальными потерями времени, сопряженными с инерционными свойствами теплоотдачи материала РПО, стенд осуществляет разворот имитатора отсека с исследуемым РПО в зону нагрева. Благодаря использованию данного способа проведения измерений стенд ТРТИ позволяет собирать наиболее достоверную информацию о процессах изменения РТХ исследуемых РПО без необходимости учитывать нестационарные процессы остывания образцов в процессе проведения измерений.

Особенностью реализации предложенного способа является также то, что при вращении корпуса в пределах заданной зоны углов лучи, сформированные радиотехническими отражателями РИК, пропускаются одновременно через измерительные точки не одного, а нескольких продольных сечений конуса РПО, что позволяет сократить время исследований и делает их более подробными (см. фиг.6).

Вся собранная первичная и выходная дополнительно обработанная информация записывается в базу данных стенда, что позволяет осуществлять комплексные исследования и применять методы компенсации искажений РТХ РПО для каждой точки корпуса РПО индивидуально.

На фиг.7 показан примерный график нагревания одной из областей боковой поверхности исследуемого РПО, на котором показаны точки, в которых процесс нагревания РПО кратковременно прерывается для быстрого разворота имитатора отсека с исследуемым РПО с перемещением его в измерительную зону стенда для проведения измерений РТХ, из которой имитатор отсека с исследуемым РПО опять возвращается в зону нагревания.

Способ проведения теплорадиотехнических испытаний радиопрозрачных обтекателей (РПО) летательных аппаратов, включающий измерения радиотехнических характеристик (РТХ) РПО с использованием встроенной в имитатор рабочего отсека летательного аппарата с исследуемым образцом РПО, установленным на стапеле с опорно-поворотным механизмом, измерительной бортовой радиолокационной аппаратуры после завершения процесса нагревания поверхности РПО теплонагревательными приборами (ТЭНами) с заданным распределением температур, имитирующим разогрев РПО нестационарным встречным потоком воздуха в полете, отличающийся тем, что имитатор рабочего отсека с исследуемым образцом РПО оснащают радиоизмерительной аппаратурой с активной фазовой антенной решеткой (АФАР), а рабочий отсек с исследуемым образцом РПО в процессе проведения измерений периодически разворачивают на 180° с перемещением рабочей области исследуемого образца РПО из зоны нагрева в измерительную зону стенда и обратно, при этом внутри измерительной зоны отсек с исследуемым образцом РПО вращают в пределах углового сектора ±30° синхронно с перемещением луча АФАР.
СПОСОБ ТЕПЛОРАДИОТЕХНИЧЕСКИХ ИСПЫТАНИЙ РАДИОПРОЗРАЧНЫХ ОБТЕКАТЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ
СПОСОБ ТЕПЛОРАДИОТЕХНИЧЕСКИХ ИСПЫТАНИЙ РАДИОПРОЗРАЧНЫХ ОБТЕКАТЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ
СПОСОБ ТЕПЛОРАДИОТЕХНИЧЕСКИХ ИСПЫТАНИЙ РАДИОПРОЗРАЧНЫХ ОБТЕКАТЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ
СПОСОБ ТЕПЛОРАДИОТЕХНИЧЕСКИХ ИСПЫТАНИЙ РАДИОПРОЗРАЧНЫХ ОБТЕКАТЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ
СПОСОБ ТЕПЛОРАДИОТЕХНИЧЕСКИХ ИСПЫТАНИЙ РАДИОПРОЗРАЧНЫХ ОБТЕКАТЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ
СПОСОБ ТЕПЛОРАДИОТЕХНИЧЕСКИХ ИСПЫТАНИЙ РАДИОПРОЗРАЧНЫХ ОБТЕКАТЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ
СПОСОБ ТЕПЛОРАДИОТЕХНИЧЕСКИХ ИСПЫТАНИЙ РАДИОПРОЗРАЧНЫХ ОБТЕКАТЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ
Источник поступления информации: Роспатент

Показаны записи 101-104 из 104.
18.05.2019
№219.017.5663

Модульная многоместная корабельная пусковая установка вертикального пуска

Изобретение относится к области ракетной техники, в частности к пусковым установкам (ПУ) надводных кораблей (НК), предназначенным для хранения, транспортировки и запуска ракет из транспортно-пусковых контейнеров (ТПК). На верхнем горизонтальном поясе ферменного каркаса ПУ смонтированы плиты,...
Тип: Изобретение
Номер охранного документа: 0002393409
Дата охранного документа: 27.06.2010
18.05.2019
№219.017.5a55

Транспортный модуль боевой машины грунтового ракетного комплекса

Изобретение относится к ракетной технике, в частности к грунтовым ракетным комплексам. Сущность изобретения заключается в том, что настил пола кузова транспортного модуля (ТМ) боевой машины, наружная обшивка его бортовых и торцевых стенок и створки крыши кузова выполнены в виде каркаса с...
Тип: Изобретение
Номер охранного документа: 0002404401
Дата охранного документа: 20.11.2010
19.06.2019
№219.017.85f2

Устройство для определения аэродинамических характеристик модели в сверхзвуковой аэродинамической трубе

Изобретение относится к измерительной технике, а именно к устройствам для определения аэродинамических характеристик моделей различных модификаций в сверхзвуковой аэродинамической трубе, по которым определяются суммарные аэродинамические характеристики натурного летательного аппарата,...
Тип: Изобретение
Номер охранного документа: 0002392601
Дата охранного документа: 20.06.2010
19.06.2019
№219.017.8728

Ракета с подводным стартом

Изобретение относится к крылатым ракетам, способным стартовать из-под воды. Ракета содержит маршевую ступень, разгонная двигательная установка которой состоит из ракетных двигателей большой и малой тяги. Двигатель малой тяги размещен в носовом обтекателе ракеты и выполнен в виде однокамерного...
Тип: Изобретение
Номер охранного документа: 0002352894
Дата охранного документа: 20.04.2009
Показаны записи 101-108 из 108.
18.05.2019
№219.017.5663

Модульная многоместная корабельная пусковая установка вертикального пуска

Изобретение относится к области ракетной техники, в частности к пусковым установкам (ПУ) надводных кораблей (НК), предназначенным для хранения, транспортировки и запуска ракет из транспортно-пусковых контейнеров (ТПК). На верхнем горизонтальном поясе ферменного каркаса ПУ смонтированы плиты,...
Тип: Изобретение
Номер охранного документа: 0002393409
Дата охранного документа: 27.06.2010
09.06.2019
№219.017.7655

Способ изготовления защитной панели летательного аппарата

Изобретение относится к области машиностроения, а именно к способу изготовления защитной панели летательного аппарата. Способ изготовления защитной панели летательного аппарата заключается в жестком закреплении плиток на внешней поверхности летательного аппарата. Плитки выполняются разрезкой...
Тип: Изобретение
Номер охранного документа: 0002690963
Дата охранного документа: 07.06.2019
25.07.2019
№219.017.b85d

Нагреватель для тепловых испытаний внешней поверхности отсека летательного аппарата

Изобретение относится к испытательной технике, определяющей тепловую стойкость конструкций изделия, в частности для имитации нагрева внешней поверхности отсека летательного аппарата (ЛА). Нагреватель для тепловых испытаний внешней поверхности отсека летательного аппарата (ЛА) содержит каркас,...
Тип: Изобретение
Номер охранного документа: 0002695516
Дата охранного документа: 23.07.2019
25.07.2019
№219.017.b8ac

Стенд для испытаний на нагрузки отсека летательного аппарата

Изобретение относится к испытательной технике элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового и силового воздействия на внутреннюю поверхность отсека летательного аппарата в наземных условиях. Устройство включает размещенный на основании...
Тип: Изобретение
Номер охранного документа: 0002695514
Дата охранного документа: 23.07.2019
13.11.2019
№219.017.e145

Блок рулевого привода ракеты

Изобретение относится к устройствам управления аэродинамическими поверхностями ракеты и может быть применено в аналогичных по условиям работы агрегатах в машиностроении. Блок рулевого привода ракеты состоит из аэродинамической поверхности, установленного в корпусе ракеты механизма поворота...
Тип: Изобретение
Номер охранного документа: 0002705637
Дата охранного документа: 11.11.2019
07.06.2020
№220.018.24de

Ракетный двигатель на твёрдом топливе

Изобретение относится к области машиностроения и может быть использовано в ракетно-космической технике при разработке ракетных двигателей твердого топлива (РДТТ). В ракетном двигателе на твердом топливе, содержащем корпус из композиционного материала, включающий днище с металлическим фланцем и...
Тип: Изобретение
Номер охранного документа: 0002722994
Дата охранного документа: 05.06.2020
12.06.2020
№220.018.2673

Ракетный двигатель на твёрдом топливе

Изобретение относится к ракетным двигателям твердого топлива (РДТТ). В ракетном двигателе на твердом топливе, содержащем корпус из композиционного материала, включающий днище с металлическим фланцем, расположенным в центральном отверстии днища, и соединенное с металлическим фланцем сопло с...
Тип: Изобретение
Номер охранного документа: 0002723276
Дата охранного документа: 09.06.2020
24.07.2020
№220.018.3719

Корпус ракетного двигателя на твёрдом топливе

Изобретение относится к области машиностроения и может быть использовано при создании ракетных двигателей на твердом топливе. Корпус ракетного двигателя на твердом топливе, содержащий силовую оболочку с теплозащитным покрытием, включающим кольцо из композиционного материала, расположенное у...
Тип: Изобретение
Номер охранного документа: 0002727216
Дата охранного документа: 21.07.2020
+ добавить свой РИД