×
10.08.2014
216.012.e854

Результат интеллектуальной деятельности: СПОСОБ РАФИНАЦИИ РАСТИТЕЛЬНОГО МАСЛА (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к масложировой промышленности и может быть использовано для очистки растительных масел. Способ предусматривает гидратацию раствором электролита, отделение фосфатидной эмульсии от масла, нейтрализацию электролизатом воды с рН>7 с добавлением соли с получением активированного раствора соли с концентрацией 0,1-1% и отделение нейтрализованного масла. Затем масло подвергают гидратации путем перемешивания с образованием центробежных потоков с завихрениями внутри них, отстаивают, сушат и подвергают деаэрации в вакууме при давлении 40-50 кПа. Причем сначала масло заливают в реактор и добавляют анолит воды с рН<7 в количестве 1-8% от объема масла, нагревают смесь до температуры 65-80°C, вакуумируют реактор до давления 40-50 кПа. В другом варианте способа после нагревания реактор заполняют инертным газом. После чего одновременно проводят смешивание воды и масла в вакуумированном реакторе ротором со скоростью вращения 2000-20000 об/мин и вибрационное воздействие на корпус реактора. Причем частота вибрационного воздействия формирует четное число длин волн, укладывающихся по длине диаметра реактора. Это обеспечивает создание дополнительных поперечных вихревому потоку колебаний смеси до образования ультрадисперсной эмульсии с частицами размером 0,1-0,5 мкм. Изобретение позволяет уменьшить окисление масла в процессе рафинации и увеличить выход масла. 2 н.п. ф-лы, 1 табл., 4 пр.

Изобретение относится к масложировой промышленности и может быть использовано для очистки растительных масел.

Природные масла представляют собой сложную многокомпонентную систему, состоящую в основном из триацилглицеринов (триглицеридов) различного состава, строения и степени непредельности, из разнообразных сопутствующих веществ, молекулярно- и коллоидно-растворимых в глицеридах. Для повышения пищевого достоинства и технологических свойств масел их подвергают различной степени очистки - рафинации.

В настоящее время технология рафинации растительных масел в отечественной и зарубежной практике реализуется путем удаления из масел сопутствующих им веществ. Существуют различные способы очистки или рафинирования масла: физические (отстаивание, центрифугирование, фильтрование), химические (гидратация, щелочная рафинация и др.) и физико-химические (отбеливание, дезодорация и др.). При этом с целью удаления фосфолипидов применяется процесс гидратации, осуществляемый путем взаимодействия масел с водой, а процесс нейтрализации свободных жирных кислот осуществляется путем воздействия на них водного раствора едкого натра. Для удаления красящих веществ (пигментов) растительных масел применяются твердые активированные адсорбенты. Эти процессы проводятся раздельно с использованием многочисленных аппаратов, обеспечивающих указанные технологические процессы, при которых образуются большие отходы и потери растительного масла. Кроме того, отработанный адсорбент отправляется в отвал.

Известен способ дистилляционной или физической рафинации масел, включающий две основные стадии. Первая заключается в подготовке масел к дистилляционной рафинации путем максимального извлечения из них фосфолипидов, пигментов, металлов, а вторая представляет собой собственно отгонку свободных жирных кислот острым паром, совмещенную с процессом удаления одорирующих веществ в условиях глубокого вакуума и высокой температуры. Этот способ рафинации является комплексным и состоит из следующих модулей: гидратация (удаление фосфолипидов путем кислотной гидратации); адсорбционная рафинация (удаление пигментов, остатков фосфатидов, кислоты); винтеризация (удаление восковых веществ); дезодорация (удаление свободных жирных кислот, одорирующих веществ и продуктов окисления) (см. Технология переработки жиров. Под ред. С.Арутюняна и др. М.: Пищепромиздат, 1998, стр.123-134).

Недостатками данного способа являются многостадийность процесса, недостаточно высокое качество получаемых масел вследствие накопления значительного количества первичных продуктов окисления (перекисей) на стадии первой кислотной обработки, а также уменьшение выхода масел и увеличение их себестоимости.

Известен способ очистки жидких масел, включающий смешивание масла с водой, перемешивание его с химическими и нейтрализующими агентами и последующее отделение продуктов взаимодействия от масла, при этом при смешивании масла с водой, химическим и нейтрализующим агентами получают реакционную смесь, а в качестве химического агента используют флокулянт типа поликатионита (см. RU 2144561 С1, С11В 3/00, 20.01.2000).

Недостатками данного способа являются сложность процесса очистки масел и использование поликатионита в качестве флокулянта, который при взаимодействии с нейтрализующими агентами, маслом и водой образует хлопья, которые содержат в своем составе большое количество растительного масла, а также при одновременном воздействии химическим и нейтрализующим агентами на масло не происходит полная нейтрализация жирных кислот.

Известен способ рафинации жиров и масел, включающий обработку жиров и масел концентрированной фосфорной кислотой для удаления фосфоросодержащих веществ в количестве 0,05-0,1% от массы жира, нейтрализацию жирных кислот водным раствором щелочи (едкого натра) и промывку нейтрализованных жиров и масел водным раствором с кислотными свойствами (раствором лимонной кислоты) (Руководство по технологии получения и переработки растительных масел и жиров. ВНИИЖ, т.II, 1973, с.68-89).

Недостатком известного способа является то, что для проведения процесса очистки масел и жиров требуется использование фосфорной кислоты и дополнительный расход избытка щелочи на нейтрализацию остатков ее в жирах и маслах после обработки, на связывание фосфатидов, обладающих кислотными свойствами, и последующее их удаление с соапстоком. При этом имеются потери нейтральных жиров в соапсток за счет омыления их щелочью. Кроме того, после отделения соапстока дважды проводимая промывка жиров большим количеством воды увеличивает потери жиров в отходы, а также для удаления из жиров остатков мыла требуется расход дорогой лимонной кислоты.

Наиболее близким к предлагаемому является способ рафинации масел (патент №2145341, С11В 3/00, 10.02.2000 - прототип), включающий гидратацию раствором электролита, отделение фосфатидной эмульсии от масла, нейтрализацию и отделение нейтрализованного масла, гидратацию проводят путем перемешивания с образованием центробежных потоков с завихрениями внутри них, в качестве раствора электролита используют электролизат воды с рН<7, а нейтрализацию проводят электролизатом воды с рН>7. Перемешивание проводят до получения эмульсии с дисперсностью частиц 0,1-1,0 мкм, а масло перед гидратацией нагревают до температуры 45-90°С. Завихрения внутри потоков имеют вид затопленных вращающихся струй. Электролизат воды используют в количестве 1-10% от объема масла. Кроме того, электролизат воды дополнительно содержит хлористый натрий, и/или нитрат натрия, и/или сульфат натрия при следующем соотношении компонентов, вес.%: хлористый натрий, и/или нитрат натрия, и/или сульфат натрия - 0,7-1,0. Вода - остальное.

Недостатком данного способа является захват верхними слоями потока кислорода воздуха при завихрении затопленных вращающихся струй масла и его активное окисление, перемещение внутрь окисленных молекул и их замещение на поверхности более свежими неокисленными, т.е. значительно большая окисляемость всего объема масла, чем без вращения, и создаваемых завихренных потоков. Кроме того, используемый способ позволяет получать недостаточно высокую (0,1-1,0 мкм) степень дисперсности частиц.

Техническим результатом является создание высокотехнологичного способа рафинации, который позволяет получить продукт повышенного качества за счет уменьшения окисления масла в процессе его рафинации, увеличить его выход и снизить себестоимость.

Для достижения технического результата по варианту 1 в способе рафинации растительных масел, включающем гидратацию раствором электролита, отделение фосфатидной эмульсии от масла, нейтрализацию электролизатом воды с рН>7 с добавлением соли с получением активированного раствора соли с концентрацией 0,1-1% и отделение нейтрализованного масла, гидратацию путем перемешивания с образованием центробежных потоков с завихрениями внутри них, отстаивание, сушку и деаэрацию масла в вакууме при давлении 40-50 кПа, согласно изобретению масло заливают в реактор, добавляют анолит воды с рН<7 в количестве 1-8% от объема масла, нагревают смесь до температуры 65-80°C, вакуумируют реактор до давления 40-50 кПа и одновременно проводят смешивание воды и масла в вакуумированном реакторе ротором со скоростью вращения 2000-20000 об/мин и вибрационное воздействие на корпус реактора с частотой, формирующей четное число длин волн, укладывающихся по длине диаметра реактора для обеспечения создания дополнительных поперечных вихревому потоку колебаний смеси до образования ультрадисперсной эмульсии с частицами размером 0,1-0,5 мкм, по варианту 2 в способе рафинации растительных масел, включающем гидратацию раствором электролита, отделение фосфатидной эмульсии от масла, нейтрализацию электролизатом воды с рН>7 с добавлением соли с получением активированного раствора соли с концентрацией 0,1-1% и отделение нейтрализованного масла, гидратацию путем перемешивания с образованием центробежных потоков с завихрениями внутри них, отстаивание, сушку и деаэрацию масла в вакууме при давлении 40-50 кПа, согласно изобретению масло заливают в реактор, добавляют анолит воды с рН<7 в количестве 1-8% от объема масла, нагревают смесь до температуры 65-80°C, заполняют реактор инертным газом и одновременно проводят смешивание воды и масла в реакторе ротором со скоростью вращения 2000-20000 об/мин и вибрационное воздействие на корпус реактора с частотой, формирующей четное число длин волн, укладывающихся по длине диаметра реактора для обеспечения создания дополнительных поперечных вихревому потоку колебаний смеси до образования ультрадисперсной эмульсии с частицами размером 0,1-0,5 мкм.

По данным научно-технической и патентной литературы не обнаружена аналогичная заявляемой совокупность признаков, позволяющая получить технический результат, который ранее не достигался известными средствами, что позволяет судить о соответствующем уровне заявляемого предложения. Предложенное техническое решение соответствует критерию «промышленная применимость», поскольку воспроизводимо и в исполнении доступно и может быть использовано при рафинации растительного масла. Способ рафинации растительных масел осуществляется следующим образом.

По варианту 1 масло заливают в реактор, добавляют анолит воды с рН<7 в количестве 1-8%, нагревают смесь до температуры 65-80°С, вакуумируют реактор до давления 40-50 кПа и одновременно проводят смешивание воды и масла в вакуумированном реакторе ротором со скоростью вращения 2000-20000 об/мин и вибрационное воздействие на корпус реактора с частотой, формирующей четное число длин волн, укладывающихся по длине диаметра реактора для обеспечения создания дополнительных поперечных вихревому потоку колебаний смеси до образования ультрадисперсной эмульсии с частицами размером 0,1-0,5 мкм.

По варианту 2 масло заливают в реактор, добавляют анолит воды с рН<7 в количестве 1-8%, нагревают смесь до температуры 65-80°С, заполняют реактор инертным газом и одновременно проводят смешивание воды и масла в реакторе ротором со скоростью вращения 2000-20000 об/мин и вибрационное воздействие на корпус реактора с частотой, формирующей четное число длин волн, укладывающихся по длине диаметра реактора для обеспечения создания дополнительных поперечных вихревому потоку колебаний смеси до образования ультрадисперсной эмульсии с частицами размером 0,1-0,5 мкм.

Для повышения степени дисперсности частиц вибрационное воздействие на корпус реактора осуществляют посредством технического решения (а.с. №480898 - «Устройство для предотвращения образования накипи», опубликовано 15.08.1975, Бюллетень №30 от 22.10.75) с частотой, формирующей четное число длин волн, укладывающихся по длине диаметра реактора для обеспечения создания дополнительных колебаний, поперечных вихревому потоку и способствующих дополнительному диспергированию частиц до 0,1-0,5 мкм. Устройство состоит из обоймы, закрытой с двух сторон фланцами с отверстиями, которые скреплены между собой патрубком, имеющим канал для подачи сжатого воздуха при помощи впаянного в него в радиальном направлении изогнутого сопла. Сжатый воздух под давлением 2-5 атм подается по каналу в патрубок через сопло и приводит шарик в движение с возрастающей скоростью по дорожке обоймы. Скорость движения шарика в течение нескольких секунд достигает значительной величины. Упругие колебания, возникающие в обойме вследствие соударения шарика о беговую дорожку обоймы и при значительных скоростях, носящих ударный характер (процесс в каждой точке длится менее 0,001 с), передаются при помощи ножевого волновода, приваренного к внешней боковой поверхности реактора, на поверхность реактора. Упругие колебания металлической поверхности реактора передаются внутрь и, распространяясь через систему, отражаются от противоположной стенки реактора. Сложение встречных упругих колебаний в системе при определенных условиях может приводить к явлению интерференции и резкому возрастанию амплитуды колебаний. В результате циркуляционного воздействия вращающихся затопленных струй и вибрационных поперечных колебаний в обрабатываемой смеси масло-вода происходит интенсивное ее нагревание за счет трения частиц ультрадисперсной эмульсии, многократная сепарация ультрадисперсной эмульсии в вихревых вращающихся и колеблющихся затопленных струях, а также приобретение частицами эмульсии трибоэлектрического заряда, что приводит к процессу расслоения эмульсии на масло и коагуляты.

После 100-120 сек интенсивного воздействия происходящие при этом физико-химические процессы приводят к выделению фосфатидов, фосфатидопротеидов, а также белков, свободных жирных кислот, слизистых веществ и других примесей с образованием хлопьев осадка, который легко отделяется от масла. Вторичное воздействие на масло католитом воды, имеющим рН>7, вызывает связывание свободных жирных кислот, снижает кислотное число масла, способствует коагуляции оставшихся примесей в масле с образованием плотных хлопьев осадка, который легко удаляется из масла любым гравитационным способом. Использование в качестве рабочих растворов активированных растворов солей концентрации 0,1-1% приводит, кроме химического воздействия на комплексные вещества масла, к более быстрому осаждению хлопьев осадка за счет увеличения объемной массы коагулянта осадка по отношению к маслу.

Электролизат воды в необходимых объемах получают в блоке подготовки - промышленном активаторе (заявка на полезную модель «Промышленная установка для электрохимической активации воды», авторы Красавцев Б.Е., Цатурян А.С., Симкин В.Б., Александров А.Б., принята к рассмотрению 01.03.2012, входящий №011945. Регистрационный №2012107923), представляющем собой комплекс, состоящий из собственно реакторов по электрохимической активации воды (ЭХАВ), шкафа управления/силового электрического оборудования, системы подачи воды, сборных емкостей для активированной воды, насосного оборудования для ее транспортировки и системы вентиляции. Под действием электрического тока в активаторе происходит образование электролизатов воды: а) анолита с избытком протонов Н+ и рН<7; б) католита с избытком гидроксид-ионов ОН- и pH>7. Далее масло поступает в термостат-реактор для экспозиции. Очищенное масло с хлопьями осадка направляется в гравитационный отстойник, где отделяется от осадка. После отстоя масло направляется в теплообменный аппарат, где оно сушится и деаэрируется в вакууме при давлении 40-50 кПа. В процессе очищения описанным способом масло не содержит мыла - трудноудаляемого технологического вещества, получаемого при рафинации известными способами. Указанная концентрация солей 0,1-1% и объем электролизата, составляющий 1-8% от объема масла, подобраны эмпирическим путем. При концентрации солей менее 0,1% уменьшается степень очистки масла, при концентрации 10% образуется мыло, которое требует дополнительной очистки масла.

Эффективность способа подтверждается данными, описанными в нижеследующих примерах.

Пример 1. В масло долили 3% анолита с рН 3,7, нагрели смесь до температуры 80°С, вакуумировали до давления 50 мПа, смешивали ротором со скоростью вращения 4000 об/мин при одновременном вибрационном воздействии в течение 100 сек, отделили масло от коагулянта, затем смешивали масло с католитом воды рН 9,7 (II стадия) в соотношении масло-элекртолизат 95:5 с добавлением 5 г/л хлористого натрия (NaCl), отстаивали, деаэрировали при разряжении 40 кПа. Полученное масло имело показатели, приведенные в таблице №1, опыт №1.

Пример 2. В масло долили 4% анолита с рН 4,2, нагрели смесь до температуры 75°С, вакуумировали до давления 45 кПф, смешивали ротором со скоростью вращения 10000 об/мин при одновременном вибрационном воздействии в течение 100 сек, отделили масло от коагулянта, затем смешивали масло с католитом воды (рН 9,7) в соотношении масло-электролизат 100:1 с добавлением 7 г/л азотнокислого натрия (NaNO3), отстаивали, деаэрировали при разряжении 40 кПа. Полученное масло имело показатели, приведенные в таблице №1, опыт №2.

Пример 3. В масло долили 5% анолита с рН 4,5, нагрели смесь до температуры 70°С, вакуумировали до давления 40 мПа, смешивали ротором со скоростью вращения 10000 об/мин при одновременном вибрационном воздействии в течение 120 сек, отделили масло от коагулянта, затем с католитом воды (рН 10,4) в соотношении масло-электролизат 93:7 с добавлением 5 г/л хлористого натрия (NaCl), отстаивали, деаэрировали при разряжении 45 кПа. Полученное масло имело показатели, приведенные в таблице №1, опыт №3.

Пример 4. В масло долили 5,5% анолита с рН 4,9, нагрели смесь до температуры 65°С, вакуумировали до давления 40 кПа, смешивали ротором со скоростью вращения 15000 об/мин при одновременном вибрационном воздействии в течение 110 сек, отделили масло от коагулянта, затем с католитом воды (рН 11,3) в соотношении масло-электролизат 94:6 с добавлением 5 г/л сернокислого натрия (Na2SO4), отстаивали, деаэрировали при разряжении 40 кПа. Полученное масло имело показатели, приведенные в таблице №1, опыт 4.

Применение данного способа позволяет повысить эффективность рафинации масел, уменьшить энергозатраты, а также улучшить экологическую обстановку на производстве и в окружающей среде за счет исключения едких жидкостей.

Таблица №1
Показатели качества масла после рафинации при разных условиях эксперимента
Показатели качества Опыт №1 Опыт №2 Опыт №3 Опыт №4
Цветное число, мг йода, не более 16 10 13 12
Кислотное число, мг КОН, не более 0,45 0,28 1.2 0,37
Массовая доля нежировых примесей, % 0,22 0,28 0,27 0,39
Массовая доля фосфоросодержащих веществ в пересчете на P2O5, не более 0,022 0,05 0,1 0,07
Массовая доля влаги и летучих веществ, % 0,14 0,21 0,17 0,28
Массовая доля,%: фосфолипидов, 0,021 0,018 0,014 0,019
неомыляемых липидов, 0,18 0,23 0,3 0,22
мыла 0,04 0,08 0,06 0,09
Степень прозрачности, фем, не более 225 227 223 225

Источник поступления информации: Роспатент

Показаны записи 351-360 из 541.
25.08.2017
№217.015.9cc3

Бетоносмеситель непрерывного действия

Изобретение относится к устройствам для приготовления растворов и бетонных смесей. Для расширения технологических возможностей, повышения производительности и качества продукции в бетоносмесителе непрерывного действия корпус закреплен на платформе, установленной упруго на станине. Корпус...
Тип: Изобретение
Номер охранного документа: 0002610486
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9ccf

Бетоносмеситель

Изобретение относится к устройствам для приготовления растворов и бетонных смесей. В бетоносмесителе, содержащем упруго установленный на основании пустотелый корпус, собранный из секций, загрузочное и разгрузочное приспособления, корпус выполнен спиральным в виде пустотелого тоннеля с...
Тип: Изобретение
Номер охранного документа: 0002610489
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9f2c

Способ производства пшенично-ржаного солода

Изобретение относится к способу получения солода из пшеницы и ржи. Способ предусматривает составление солодовой смеси из зерна пшеницы и ржи в соотношении 1:1, промывку зерна пшеницы и ржи водопроводной водой в течение 4-8 минут, замачивание в анолите с рН 3,0-6,0 ед. и...
Тип: Изобретение
Номер охранного документа: 0002606024
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9f47

Способ получения ячменно-пшеничного солода

Изобретение относится к способу получения солода из смеси зерна ячменя и пшеницы. Способ включает составление смеси из зерна ячменя и пшеницы в соотношении 1:1, промывку смеси водопроводной водой в течение 4-8 минут, замачивание смеси анолитом с рН 3,0-6,0 ед. и окислительно-восстановительным...
Тип: Изобретение
Номер охранного документа: 0002606029
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9f97

Способ получения ячменного солода

Изобретение относится к способу получения солода из зерна ячменя. Способ предусматривает промывку зерна водопроводной водой в течение 4-8 минут, замачивание в анолите с рН 3,0-6,0 и окислительно-восстановительным потенциалом 970-1110 мВ, концентрацией кислорода 8,3-12,0 мг/л и хлора 0,006-0,01...
Тип: Изобретение
Номер охранного документа: 0002606020
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a18a

Способ профилактики и лечения желудочно-кишечных заболеваний у телят

Заявленное изобретение относится к области ветеринарии и предназначено для профилактики и лечения желудочно-кишечных заболеваний у телят. Способ включает использование смеси водно-спиртовой настойки из травы эхинацеи пурпурной и корневища девясила при приготовленной на основе 70% этилового...
Тип: Изобретение
Номер охранного документа: 0002606849
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a1eb

Аксиально-поршневой пресс для гранулирования кормов

Изобретение относится к оборудованию для прессования кормов в гранулы. Пресс содержит бункер с уплотнителем и корпус с расположенными по обе стороны от его оси входным и выходным окнами. Выходное окно снабжено матрицей в форме усеченного конуса с расположенными на ее боковой поверхности...
Тип: Изобретение
Номер охранного документа: 0002606827
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a72c

Малогабаритный станок для предпосевной обработки семян

Изобретение относится к области сельскохозяйственного машиностроения. Малогабаритный станок для предпосевной обработки семян содержит шлифовальный барабан, внутренняя поверхность которого покрыта слоем резины, бункер-дозатор и выгрузной лоток. При этом шлифовальный барабан смонтирован в...
Тип: Изобретение
Номер охранного документа: 0002608056
Дата охранного документа: 12.01.2017
25.08.2017
№217.015.a975

Способ уборки початков кукурузы молочно-восковой спелости

Изобретение относится к сельскому хозяйству. Способ уборки початков кукурузы молочно-восковой спелости включает отделение и сбор початков в стадии молочно-восковой спелости зерна и скашивание растений кукурузы. Затем листостебельную массу направляют в измельчитель, а после ее измельчения...
Тип: Изобретение
Номер охранного документа: 0002611834
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.a976

Измельчитель соломы для зерноуборочного комбайна

Изобретение относится к сельскохозяйственному машиностроению. Измельчающий аппарат зерноуборочного комбайна содержит корпус с закрепленными на нем клавишами соломотряса, за которыми установлен прутковый направитель. Под прутковым направителем расположена поперечная балка с опорами, в которых...
Тип: Изобретение
Номер охранного документа: 0002611829
Дата охранного документа: 01.03.2017
Показаны записи 351-360 из 700.
27.08.2015
№216.013.752c

Вращающаяся печь для обжига шлама для приготовления цементного клинкера

Изобретение относится к технике обжига цементного шлама для приготовления цементного клинкера и может быть использовано в цементной промышленности. Вращающаяся печь для обжига шлама для приготовления цементного клинкера содержит установленный горизонтально и смонтированный из секций корпус,...
Тип: Изобретение
Номер охранного документа: 0002561571
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.764b

Способ обеззараживания животноводческих помещений от возбудителя псевдомоноза

Изобретение относится к ветеринарной медицине и может быть использовано при обеззараживании животноводческих помещений. Способ включает обработку животноводческих помещений озоно-воздушной смесью, обработку осуществляют в течение 120 мин с концентрацией озона в воздухе помещений 25 мг/м или в...
Тип: Изобретение
Номер охранного документа: 0002561872
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.779d

Устройство для очистки вод акваторий бухт и заливов с многоугольной внутренней винтовой поверхностью трубопроводов

Изобретение относится к гидротехнике. Устройство включает один и более изогнутых винтовых трубопроводов, соединенных между собой боковыми сторонами и смонтированных в одном блоке, который закреплен на пути потока прибрежных течений для изменения направления части потока воды, увеличения его...
Тип: Изобретение
Номер охранного документа: 0002562210
Дата охранного документа: 10.09.2015
10.10.2015
№216.013.807a

Установка для приготовления кормов в коническом винтовом барабане

Изобретение относится к устройствам для смешивания кормов, в частности к барабанным смесителям непрерывного действия. Установка содержит барабан с винтовыми поверхностями, загрузочную и разгрузочную цапфы. Барабан установлен горизонтально и изготовлен из трех или более полос трапециевидной...
Тип: Изобретение
Номер охранного документа: 0002564487
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.807e

Установка для непрерывного приготовления концентрированных кормов

Изобретение относится к устройствам для приготовления кормов. Установка содержит станину, установленный на ней с возможностью вращения барабан, состоящий из секций. Барабан выполнен расширяющимся по длине к его центру бочкообразной формы из четырех и более полос переменной ширины выпуклой...
Тип: Изобретение
Номер охранного документа: 0002564491
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.8080

Устройство для очистки застойных вод акваторий бухт и заливов трубопроводами с треугольной внутренней винтовой поверхностью

Изобретение относится к гидротехнике. Устройство включает блок из одного и более изогнутых трубопроводов, соединенных между собой боковыми сторонами и смонтированных в одном блоке, который закреплен на пути потока прибрежных течений для изменения направления части потоков воды, увеличения их...
Тип: Изобретение
Номер охранного документа: 0002564493
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.80b0

Малогабаритный вибрационный грохот

Изобретение относится к устройствам для грохочения пород, строительных материалов при подготовке к транспортировке, для выполнения дробильно-сортировочных операций, а также для классификации строительных материалов. Малогабаритный вибрационный грохот содержит просеивающую поверхность, привод,...
Тип: Изобретение
Номер охранного документа: 0002564541
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.80b1

Вибрационный грохот

Изобретение относится к устройствам для грохочения пород, строительных материалов при подготовке к транспортировке, для выполнения дробильно-сортировочных операций, а также для классификации строительных материалов. Вибрационный грохот содержит привод, загрузочное и разгрузочное приспособления,...
Тип: Изобретение
Номер охранного документа: 0002564542
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.815b

Бетоносмеситель

Изобретение относится к устройствам для приготовления растворов и бетонных смесей. Для расширения технологических возможностей, повышения производительности и упрощения конструкции корпус бетоносмесителя смонтирован из секций, поочередно соединенных друг с другом по его длине своими торцевыми...
Тип: Изобретение
Номер охранного документа: 0002564712
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.815c

Малогабаритный грохот вибрационный

Изобретение относится к устройствам для грохочения пород, строительных материалов при подготовке к транспортировке, для выполнения дробильно-сортировочных операций, а также для классификации строительных материалов. Малогабаритный грохот вибрационный содержит упруго установленную на основании,...
Тип: Изобретение
Номер охранного документа: 0002564713
Дата охранного документа: 10.10.2015
+ добавить свой РИД