×
10.08.2014
216.012.e835

Результат интеллектуальной деятельности: СМАЗОЧНАЯ КОМПОЗИЦИЯ

Вид РИД

Изобретение

Аннотация: Настоящее изобретение относится к смазочной композиции, содержащей минеральное масло и порошкообразный наполнитель, полученный при испарении и конденсации пара в плазменном испарителе, при этом масло в качестве порошкообразного наполнителя содержит смесь наноразмерного порошка латуни дисперсностью 10… 30 нм, ультрадисперсного порошка полититаната калия интеркалированного цинком дисперсностью 100… 300 нм и поверхностно-активное вещество, причем ультрадисперсный порошок полититаната калия интеркалированного цинком получен химическим методом, при следующем соотношении компонентов в масс.%: Техническим результатом настоящего изобретения является повышение антифрикционных и антизадирных свойств масла. 2 пр, 2 табл., 4 ил.
Основные результаты: Смазочная композиция, содержащая минеральное масло и порошкообразный наполнитель, полученный при испарении и конденсации пара в плазменном испарителе, отличающаяся тем, что масло в качестве порошкообразного наполнителя содержит смесь наноразмерного порошка латуни дисперсностью 10…30 нм, ультрадисперсного порошка полититаната калия интеркалированного цинком дисперсностью 100…300 нм и поверхностно активное вещество, причем ультрадисперсный порошок полититаната калия, интеркалированного цинком, получен химическим методом, при следующем соотношении компонентов в масс.%:

Предлагаемое изобретение относится к смазочным материалам и предназначается для использования в системе смазки дизельных и карбюраторных двигателей.

Известны смазочные масла, содержащие антифрикционные дисперсные материалы (графит, дисульфид молибдена, медь и др.), обеспечивающие высокие трибологические свойства (Виноградова И.Э. Противоизносные присадки к маслам. М., «Химия», 1972, с.24). Недостатком данных смазочных композиций является использование крупнодисперсных порошков (0,5… 100 мкм), обладающих низкой седиментационной устойчивостью в моторном масле.

Наиболее близкой к предлагаемому по составу, свойствам и применению является смазочная композиция (патент РФ №2123030, МПК С10М 125/00, С10М 125/00, С10М 125/04, С10М 125/22, С10М 125/24, C10N 30/06, опубликовано: 10.12.1998), содержащая, масс.%:

порошкообразный наполнитель, состоящий из
смеси ультрадисперсного порошка
латуни и ультрадисперсного
порошка сплава меди, серы и фосфора 0,15
минеральное масло 99,85

Однако известная смазочная композиция обладает сравнительно невысокими антифрикционными и антизадирными свойствами, т.к. данное сочетание компонентов порошкообразного наполнителя придает минеральному маслу в основном противоизносные свойства. Поэтому при использовании данной композиции в системе смазки двигателя сохраняется высокая вероятность образования задира и схватывания ответственных сопряжений в момент пуска и остановки двигателя.

Технической задачей изобретения является повышение антифрикционных и антизадирных свойств масла.

Поставленная задача решается в смазочной композиции, содержащей минеральное масло и порошкообразный наполнитель, полученный при испарении и конденсации пара в плазменном испарителе, отличающейся тем, что масло в качестве порошкообразного наполнителя содержит смесь наноразмерного порошка латуни дисперсностью 10... 30 нм, ультрадисперсного порошка полититаната калия, интеркалированного цинком, дисперсностью 100… 300 нм и поверхностно-активное вещество, причем ультрадисперсный порошок полититаната калия интеркалированного цинком получен химическим методом, при следующем соотношении компонентов, масс.%:

порошкообразный наполнитель, состоящий из
смеси наноразмерного порошка латуни,
ультрадисперсного порошка полититаната
калия, интеркалированного цинком, и
поверхностно-активного вещества 0,2
минеральное масло 99,8

Наноразмерные и ультрадисперсные порошки были получены раздельно. Наноразмерный порошок латуни был получен из смеси крупнодисперсных порошков латуни Л60 (ГОСТ 2060-73). Ультрадисперсный порошок полититаната калия, интеркалированного цинком, ПТКZnТУ 2146-021-96961827-2008 был получен химическим методом.

Способом производства наноразмерного порошка латуни выбрана плазменная технология, основанная на испарении сырья (крупнодисперсного порошка или прутка) в плазменном потоке с температурой 5000-6000 К и конденсации пара до частиц требуемого размера (патент РФ №2068400, МПК С06В 25/24, H05H 1/00, опубликовано: 27.10.1996).

Принципиальная схема установки приведена на фиг.1. В схеме используется замкнутый газовый цикл. Заполнение системы инертным газом (аргоном) производится из баллона 1. Циркуляция газа по схеме осуществляется при помощи компрессора 3.

Компрессированный газ (до 2 кг/см2) через ресивер 2 поступает на рампу ротаметров 4, через которую распределяется по узлам схемы. В качестве головного аппарата-реактора используется электродуговой плазмотрон 6 линейной конструкции типа ЭДП-104, к которому присоединена реакционная камера 7 с закалочным узлом 8. Процесс переконденсации осуществляется следующим образом. Порошковое сырье из дозатора 5 газовым потоком подается на срез плазмотрона, в плазменную струю. В реакционной камере порошок испаряется в струе горячего газа и затем на выходе из камеры резко охлаждается струями холодного газа в закалочном узле 8 и в трубчатом холодильнике 9. Крупные частицы, в том числе частицы непереработанного сырья, отделяются от наноразмерных порошков в классификаторе инерционного типа 10. Улавливание наноразмерных порошков осуществляется в рукавном фильтре 11, а очищенный газ через ресивер 2 снова поступает в компрессор 3. По мере накопления в фильтре 11 наноразмерный порошок выгружается в тару 12.

Ультрадисперсный порошок НТК синтезируется в расплаве солей при обработке порошка оксида титана в солевом расплаве. Реакционную смесь выдерживают в алундовом (A12O3) тигле в муфельной печи (Thermoline 2510) при температуре 500°С в течение 2 ч. Полученный продукт отмывают от водорастворимых соединений в дистиллированной воде и отфильтровывают с помощью бумажного фильтра Whathman №40.

Интеркаляцию полититаната калия осуществляют в термостатированном сосуде при 23°С, который наполнен водным раствором соли Zn-ZnCl2 из расчета 0,01 моль соли на 10 г полититаната калия. Полученную суспензию перемешивают с помощью магнитной мешалки и отфильтровывают с помощью фильтровальной бумаги Whathman №42. Полученные после фильтрования порошки просушивают при 40°С в сушильном шкафу.

Сопоставительный анализ с прототипом позволяет сделать вывод, что заявляемый состав смазочной композиции отличается от известного введением нового компонента, а именно ультрадисперсного порошка полититаната калия, интеркалированного цинком.

Новым в изобретении является то, что состав порошкообразного наполнителя способствует формированию поверхностей трения с повышенными антифрикционными и антизадирными свойствами в различных условиях трения.

Наличие ультрадисперсного порошка полититаната калия, интеркалированного цинком, способствует образованию с металлами структуры с малым сдвиговым сопротивлением, что эффективно снижает коэффициент трения и уменьшает вероятность образования задира.

Наноразмерный порошок латуни обладает высокой пластичностью, что способствует интенсивному формированию трушихся поверхностей за счет заполнения впадин шероховатости и дефектов.

Данные преимущества порошкообразного наполнителя повышают антифрикционные, противоизносные и антизадирные свойства масла.

На фиг.2 изображена зависимость изменения момента трения в процессе испытания.

На фиг.3 изображена величина износа испытываемых образцов.

СРАВНИТЕЛЬНЫЕ ДАННЫЕ ЭКСПЛУАТАЦИОННЫХ СВОЙСТВ ЗАЯВЛЯЕМОГО ТЕХНИЧЕСКОГО РЕШЕНИЯ И ПРОТОТИПА

Изобретение иллюстрируется следующими примерами. В примерах приводятся результаты испытаний, проведенных по методике: эксплуатационные свойства смазочной композиции оценивались исследованиями на машине трения МИ-1 по схеме "ролик-колодка". Продолжительность каждого опыта - 6 ч, частота вращения вала машины трения - 300 мин-1, нагрузка на колодку - 650 Н. Образцы пар трения изготавливали из материалов, применяемых в ДВС. Колодки и ролики изготавливали из серого чугуна СЧ-25 (ГОСТ 1412-85) одной плавки. Твердость образцов составляла НВ 190… 220. Шероховатость рабочей поверхности ролика Ra=0,32 мкм. Перед проведением испытаний образцы пары трения подвергались приработке в течение 3 ч при режимах основного испытания.

Смазка образцов в процессе испытаний обеспечивалась погружением ролика на 1/3 в масляную ванну.

Износ образцов определялся методом взвешивания на аналитических весах марки ВЛА-200 М с точностью измерения 1·10-4 г. В процессе экспериментов непрерывно регистрировалась сила момента трения с помощью самопишущего устройства машины трения.

Антизадирные свойства определяли по нагрузке схватывания образцов трения при ее ступенчатом увеличении. За нагрузку схватывания принимали нагрузку, при которой происходит "холодное" сваривание поверхностей образцов трения. Этот процесс сопровождается резким увеличением момента трения.

Пример 1. Влияние концентрации смазочной композиции на ее антифрикционные и противоизносные свойства.

Смазочную композицию готовили следующим образом: предварительно готовили концентрированную присадку (на 4 кг смазочной композиции), 150 г чистого моторного масла подогревали в специальном приспособлении до температуры 60… 80°С, в него добавляется 7 г наноразмерного порошка латуни, ультрадисперсного порошка полититаната калия, интеркалированного цинком, и поверхностно-активного вещества с соотношением компонентов 50:40:10. Далее механическим способом производили перемешивание полученного состава в течение 0,5… 0,7 ч. Полученная присадка добавлялась в моторное масло до необходимой концентрации.

Для проведения опытов было подготовлено несколько проб с различной концентрацией порошкообразного наполнителя в смазочной композиции. Готовили 4 пробы при следующих значениях концентрации порошкообразного наполнителя в смазочной композиции, масс.%:

1-я проба: прототип

2-я проба: порошкообразный наполнитель 0,15

минеральное масло99,85

3-я проба: порошкообразный наполнитель 0,2

минеральное масло 99,8

4-я проба: порошкообразный наполнитель 0,25

минеральное масло 99,75

Результаты испытаний приведены в таблице 1 и на фиг.2, 3.

Критериями оптимизации при проведении испытаний были приняты: износ образцов (колодки) и сила момент трения.

Таблица 1
Результаты испытания смазочной композиции
Номер пробы Износ образцов, мг Момент трения, Н·м
Начальный После стабилизации
1 2,2 8,2 6,4
2 1,5 6,7 6,3
3 -0,2 4,2 2
4 0,6 6,1 5,5

Из таблицы 1 и фиг.2, 3 видно, что наименьший износ образцов и наименьшее значение силы момента трения достигаются при концентрации порошка в смазочной композиции 0,2%.

Пример 2. Влияние состава композиции на антизадирные свойства поверхностей трения образцов.

С целью выявления антизадирных свойств прототипа и предлагаемого состава смазочной композиции проводились испытания образцов на пробах №1, 2, 3, 4. Затем образцы устанавливали в машину трения и ступенчато нагружали без подвода масла во время проведения всего испытания. Масляная пленка на образцах создавалась путем их окунания в смазочную композицию перед установкой в машину трения. Нагружая образцы, выявляли зависимость момента трения от нагрузки. При этом устанавливали предельную нагрузку, при которой происходило схватывание и задир трущихся поверхностей образцов в режиме «сухого» трения.

Испытания проводили на машине трения МИ-1. Частота вращении ролика - 300 мин-1. Образцы нагружались ступенчато через 0,1 кН, считая первой ступенью нагрузку - 0,1 кН. Продолжительность испытания образцов на каждой ступени определяли стабилизацией момента трения и составила 10 минут.

Результаты испытания представлены в таблице 2 и на фиг 4.

Как видно из таблицы 2, лучшие антизадирные свойства показал образец №3, испытанный с применением предлагаемой смазочной композиции при концентрации наполнителя 0,2%, при этом предельная нагрузка схватывания увеличилась на 21% по сравнению с прототипом.

Таблица 2
Результаты испытания образцов на схватывание
Номер пробы Сила момента трения, Н·м
Ступени нагружения образцов, кН
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
1-ая проба 0,09 0,15 0,2 0,29 0,36 - схватывание
2-ая проба 0,08 0,13 0,16 0,23 0,29 0,34 - схватывание
3-ая проба 0,03 0,07 0,15 0,18 0,21 0,24 0,27 - схватывание
4-ая проба 0,05 0,09 0,11 0,15 0,18 0,3 - схватывание

Смазочная композиция, содержащая минеральное масло и порошкообразный наполнитель, полученный при испарении и конденсации пара в плазменном испарителе, отличающаяся тем, что масло в качестве порошкообразного наполнителя содержит смесь наноразмерного порошка латуни дисперсностью 10…30 нм, ультрадисперсного порошка полититаната калия интеркалированного цинком дисперсностью 100…300 нм и поверхностно активное вещество, причем ультрадисперсный порошок полититаната калия, интеркалированного цинком, получен химическим методом, при следующем соотношении компонентов в масс.%:
СМАЗОЧНАЯ КОМПОЗИЦИЯ
СМАЗОЧНАЯ КОМПОЗИЦИЯ
СМАЗОЧНАЯ КОМПОЗИЦИЯ
СМАЗОЧНАЯ КОМПОЗИЦИЯ
Источник поступления информации: Роспатент

Показаны записи 71-71 из 71.
09.06.2019
№219.017.7c8e

Способ получения титаната калия

Изобретение может быть использовано при получении неволокнистого титаната калия, применяемого в производстве наполнителей композиционных материалов. Способ получения титаната калия включает приготовление реакционной смеси из порошка оксида титана и соединений калия, ее последующую термическую...
Тип: Изобретение
Номер охранного документа: 0002326051
Дата охранного документа: 10.06.2008
Показаны записи 91-100 из 102.
15.11.2018
№218.016.9da3

Способ получения нанокристаллического порошка титан-молибденового карбида

Изобретение может быть использовано в металлургии при получении тугоплавкой основы безвольфрамовых твердых сплавов. Способ получения нанокристаллического порошка титан-молибденового карбида включает высокотемпературную обработку исходной смеси порошков соединения титана и молибдена с...
Тип: Изобретение
Номер охранного документа: 0002672422
Дата охранного документа: 14.11.2018
20.12.2018
№218.016.a965

Способ получения материала, фотоактивного в видимой области спектра

Изобретение относится к способам получения полупроводниковых материалов, фотоактивных в видимой области спектра солнечного излучения. Способ включает обработку титаната калия со слоистой структурой водным раствором соли марганца при отношении концентрации переходного металла в водном растворе в...
Тип: Изобретение
Номер охранного документа: 0002675547
Дата охранного документа: 19.12.2018
19.01.2019
№219.016.b184

Технология крашения текстильных материалов из натуральных волокон природными красителями беспротравным биохимическим способом

Изобретение относится к способу крашения текстильных материалов из натуральных волокон природными красителями беспротравным биохимическим способом. Задачей изобретения является разработка эффективного способа крашения природными красителями текстильных материалов из натуральных волокон, с целью...
Тип: Изобретение
Номер охранного документа: 0002677619
Дата охранного документа: 17.01.2019
17.02.2019
№219.016.bbc0

Установка для получения композиционных электролитических покрытий

Изобретение относится к области гальванотехники, а именно: к способам получения композиционных электролитических покрытий. Установка содержит ванну с рабочими электродами, блоки электропитания, систему циркуляции электролита, насос и перфорированный трубопровод, при этом дно ванны выполнено в...
Тип: Изобретение
Номер охранного документа: 0002680116
Дата охранного документа: 15.02.2019
04.04.2019
№219.016.fc7c

Способ получения кристаллического титаната калия

Изобретение относится к синтезу кристаллических титанатов калия - тетратитаната и гексатитаната калия, имеющих волокнистую структуру, и может быть использовано в производстве керамики и наполнителей композиционных материалов. Способ получения кристаллического титаната калия включает...
Тип: Изобретение
Номер охранного документа: 0002366609
Дата охранного документа: 10.09.2009
17.05.2019
№219.017.5337

Способ утилизации кислого отработанного раствора гальванического производства

Изобретение относится к химической промышленности, в частности к утилизации отработанных гальванических растворов никелирования. Способ включает обработку электролита щелочным реагентом, при этом в качестве щелочного реагента используют титанат щелочного металла, имеющий слоистую структуру и...
Тип: Изобретение
Номер охранного документа: 0002687622
Дата охранного документа: 15.05.2019
09.06.2019
№219.017.7c8e

Способ получения титаната калия

Изобретение может быть использовано при получении неволокнистого титаната калия, применяемого в производстве наполнителей композиционных материалов. Способ получения титаната калия включает приготовление реакционной смеси из порошка оксида титана и соединений калия, ее последующую термическую...
Тип: Изобретение
Номер охранного документа: 0002326051
Дата охранного документа: 10.06.2008
31.07.2019
№219.017.ba6f

Косилка роторная

Изобретение относится к сельскому хозяйству. Косилка роторная содержит ротор, на валу которого расположен дисковый держатель, к которому крепятся рабочие органы, причем механизм крепления рабочих органов выполнен в виде болтового соединения, болт которого имеет посадочное место для шарнирного...
Тип: Изобретение
Номер охранного документа: 0002695864
Дата охранного документа: 29.07.2019
02.10.2019
№219.017.cbb2

Способ одновременной диагностики и терапии онкологических заболеваний в эксперименте

Изобретение относится к экспериментальной медицине и может быть использовано при одновременной диагностике и терапии онкологических заболеваний. Для этого в организм животного осуществляют трансплантацию клеток опухоли, после чего интратуморально или внутривенно вводят суспензию кремниевых...
Тип: Изобретение
Номер охранного документа: 0002701106
Дата охранного документа: 24.09.2019
07.11.2019
№219.017.dedf

Устройство для измерения полного сопротивления параметрических датчиков

Изобретение относится к области контрольно-измерительной техники и может быть использовано для подключения параметрических датчиков различного типа (резистивных, индуктивных, емкостных, смешанного типа) к генератору сигнала и снятия информативных электрических сигналов для последующей обработки...
Тип: Изобретение
Номер охранного документа: 0002705179
Дата охранного документа: 05.11.2019
+ добавить свой РИД