×
10.08.2014
216.012.e780

Результат интеллектуальной деятельности: СПОСОБ ИСПЫТАНИЙ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к авиации, в частности к способу определения настроечного значения температуры газа для выключения охлаждения турбины при испытаниях и эксплуатации газотурбинного двигателя. При реализации заявленного способа испытаний газотурбинного двигателя повышается точность подсчета температуры газа выключения охлаждения турбины за счет учета поправки на угол установки направляющего аппарата компрессора высокого давления, что обеспечит синхронное выключение охлаждения.
Основные результаты: Способ испытаний газотурбинного двигателя, заключающийся в измерении частоты вращения ротора высокого давления и температуры газа за турбиной и определении по ним настроечных значений регулятора и ограничителя режимов двигателя, отличающийся тем, что предварительно прогревают двигатель с принудительно включенным охлаждением турбины, затем переводят двигатель на режим малого газа, выключают охлаждение турбины и выводят двигатель на режим по частоте вращения ротора высокого давления на 1,0…1,5% ниже момента включения охлаждения по сигналу предельного значения частоты вращения ротора высокого давления, далее при выключенном охлаждении измеряют температуру газа за турбиной, угол установки регулируемых направляющих аппаратов компрессора высокого давления, затем определяют настроечное значение температуры газа для выключения охлаждения турбины по зависимости:Т=Т+ΔТ+К(α-α),гдеТ - настроечное значение температуры газа для выключения охлаждения турбины;Т - измеренное значение температуры газа за турбиной на режиме по частоте вращения ротора высокого давления на 1,0…1,5% ниже момента включения охлаждения по сигналу предельного значения частоты вращения ротора высокого давления при включенном охлаждении;ΔТ - экспериментально-расчетная величина поправки температуры, пропорциональная разница между предельным значением частоты вращения ротора высокого давления при выключенном охлаждении и частотой вращения, на которой производилось измерение температуры газа за турбиной;α - измеренное значение угла установки положения регулируемых направляющих аппаратов компрессора высокого давления;α - исходное значение угла установки регулируемых направляющих аппаратов компрессора высокого давления при частоте вращения ротора высокого давления, на которой производилось измерение температуры газа за турбиной, для условия стандартной температуры атмосферного воздуха, равной +15°C;К - экспериментально-расчетный коэффициент, учитывающий влияние изменения угла установки регулируемых направляющих аппаратов компрессора высокого давления на температуру газа в зависимости от температуры атмосферного воздуха при неизменной величине частоты вращения ротора высокого давления, на которой производится измерение температуры газа за турбиной, определяемый по зависимости: ,гдеΔt - разница между измеренными температурами газа за турбиной при исходном и вновь установленном на повторном запуске произвольном, отличном от исходного углами установки регулируемых направляющих аппаратов компрессора высокого давления;Δα - разница между исходным и вновь установленным на повторном запуске произвольным, отличным от исходного углами установки регулируемых направляющих аппаратов компрессора высокого давления;

Изобретение относится к авиации, в частности, к способу определения настроечного значения температуры газа для выключения охлаждения турбины при испытаниях и эксплуатации газотурбинного двигателя.

Известен способ испытаний газотурбинного двигателя, заключающийся в измерении частоты вращения ротора высокого давления и температуры газа за турбиной и определении по ним настроечных значений регулятора и ограничителя режимов двигателя (Ю.А. Литвинов, В.О. Боровик. Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей. Москва, «Машиностроение», 1979 г., стр.113). Данный способ испытаний газотурбинного двигателя выбран в качестве наиболее близкого аналога к настоящему изобретению.

Недостатком известного способа является то, что при реализации указанных законов регулирования (ограничения) не учитывается положение угла установки направляющих аппаратов компрессора высокого давления, который зависит от температуры воздуха на входе в двигатель и позволяет более точно определить температуру газа выключения охлаждения турбины. Кроме того, в полете на двухмоторном самолете не обеспечивается синхронное выключение охлаждения турбины на обоих двигателях. При не синхронном выключении охлаждения турбины двигателя на одном из двигателей, где охлаждение турбины выключилось, происходит падение температуры газа перед турбиной, что в свою очередь ведет к уменьшению тяги на этом двигателе и появлению разнотяговости, что приводит к развороту самолета.

Техническим результатом, объективно достигаемым при использовании заявленного способа, является повышение точности подсчета температуры газа выключения охлаждения турбины путем учета поправки на угол установки направляющего аппарата компрессора высокого давления.

Указанный технический результат достигается тем, что в способе испытаний газотурбинного двигателя, заключающемся в измерении частоты вращения ротора высокого давления и температуры газа за турбиной и определении по ним настроечных значений регулятора и ограничителя режимов двигателя, согласно изобретению, предварительно прогревают двигатель с принудительно включенным охлаждением турбины, затем переводят двигатель на режим малого газа, выключают охлаждение турбины и выводят двигатель на режим по частоте вращения ротора высокого давления на 1,0…1,5% ниже момента включения охлаждения по сигналу предельного значения частоты вращения ротора высокого давления, далее, при выключенном охлаждении измеряют температуру газа за турбиной, угол установки регулируемых направляющих аппаратов компрессора высокого давления, затем определяют настроечное значение температуры газа для выключения охлаждения турбины по зависимости:

Т4 выкл. охл4 изм+ΔТ4+К(α2 исх2 изм), где

Т4 выкл. охл - настроечное значение температуры газа для выключения охлаждения турбины;

Т4 изм - измеренное значение температуры газа за турбиной на режиме по частоте вращения ротора высокого давления на 1,0…1,5% ниже момента включения охлаждения по сигналу предельного значения частоты вращения ротора высокого давления при включенном охлаждении;

ΔТ4 - экспериментально-расчетная величина поправки температуры, пропорциональная разница между предельным значением частоты вращения ротора высокого давления при выключенном охлаждении и частотой вращения, на которой производилось измерение температуры газа за турбиной;

α2 изм - измеренное значение угла установки положения регулируемых направляющих аппаратов компрессора высокого давления;

α2 исх - исходное значение угла установки регулируемых направляющих аппаратов компрессора высокого давления при частоте вращения ротора высокого давления, на которой производилось измерение температуры газа за турбиной, для условия стандартной температуры атмосферного воздуха, равной +15°C;

К - экспериментально-расчетный коэффициент, учитывающий влияние изменения угла установки регулируемых направляющих аппаратов компрессора высокого давления на температуру газа в зависимости от температуры атмосферного воздуха при неизменной величине частоты вращения ротора высокого давления, на которой производится измерение температуры газа за турбиной, определяемый по зависимости:

,

где

Δt4 - разница между измеренными температурами газа за турбиной при исходном и вновь установленном на повторном запуске произвольном, отличном от исходного углами установки регулируемых направляющих аппаратов компрессора высокого давления;

Δα2 - разница между исходным и вновь установленным на повторном запуске произвольным, отличным от исходного углами установки регулируемых направляющих аппаратов компрессора высокого давления.

За счет того, что при выполнении настройки Т4 выкл. охл используется конкретная измеренная величина температуры газа за турбиной каждого двигателя с учетом поправки на величину установки угла направляющего аппарата компрессора высокого давления на каждом двигателе достигается вышеуказанный результат.

Заявленный способ реализуется следующим образом.

Следует отметить, что двигатель выводят на режим по частоте вращения ротора высокого давления на 1,0…1,5% ниже момента включения охлаждения по сигналу предельного значения частоты вращения ротора высокого давления для более точной работы агрегата включения охлаждения турбины, дабы избежать попеременного включения и выключения агрегата при одном и том же значении оборотов ротора высокого давления. Интервал выбран из следующих соображений - ниже одного процента не имеет смысла работать с включенным охлаждением, так как это приводит к ухудшению показателя удельного расхода топлива CR, выше 1,5 опасно не подавать охлаждающий воздух в сопловые аппараты и рабочие лопатки турбины.

Далее рассмотрим пример реализации заявленного способа испытаний газотурбинного двигателя

Настройка регулятора (ограничителя) выключения охлаждения турбины выполняется на приемосдаточных испытаниях перед поставкой двигателя заказчику. Для этого на испытаниях двигатель запускают и прогревают с принудительно включенным охлаждением турбины. Далее уходят с режима прогрева на режим малого газа, принудительно выключают охлаждение турбины, выводят двигатель на режим 1…1,5% ниже момента включения охлаждения турбины по оборотам ротора высокого давления и выполняют измерение температуры газа за турбиной Т4 изм (термопарами) и угла установки направляющих аппаратов компрессора высокого давления (α2 изм) (датчиками положения угла направляющих аппаратов).

ΔТ4 - экспериментально-расчетная величина определяется путем измерения термопарами Т4 на предельном значении частоты вращения ротора высокого давления при выключенном охлаждении. Измеряется температурой газа за турбиной Т4 изм при частоте вращения ротора высокого давления на 1…1,5% ниже предельной частоты вращения ротора высокого давления и вычисляется по зависимости ΔТ444 изм.

Для определения коэффициента К выполняем запуск (эксперимент) с исходным значением угла α2 исх и проводим измерение T4 исх (термопарами), далее выполняем переустановку угла α2 исх в любое отличное от него положение, запускаем двигатель и на тех же самых оборотах ротора высокого давления определяем температуру газа за турбиной низкого давления T4 per, тем самым определяем влияние поворота направляющего аппарата ротора высокого давления на температуру газа при постоянных оборотах ротора высокого давления.

Имея все измеренные и полученные заранее данные подставляем их в формулу: Т4 выкл.охл=T4 изм+ΔТ4+К (α2 исх2 изм) и определяем Т4 выкл. охл.

Далее полученное значение вводим в систему управления двигателем, которая обеспечивает работу агрегата переключения охлаждения турбины и настраиваем его таким образом, что при достижении полученной в результате вычислений Т4 выкл.охл для каждого двигателя система управления двигателем обеспечит синхронное выключение охлаждения.

Способ испытаний газотурбинного двигателя, заключающийся в измерении частоты вращения ротора высокого давления и температуры газа за турбиной и определении по ним настроечных значений регулятора и ограничителя режимов двигателя, отличающийся тем, что предварительно прогревают двигатель с принудительно включенным охлаждением турбины, затем переводят двигатель на режим малого газа, выключают охлаждение турбины и выводят двигатель на режим по частоте вращения ротора высокого давления на 1,0…1,5% ниже момента включения охлаждения по сигналу предельного значения частоты вращения ротора высокого давления, далее при выключенном охлаждении измеряют температуру газа за турбиной, угол установки регулируемых направляющих аппаратов компрессора высокого давления, затем определяют настроечное значение температуры газа для выключения охлаждения турбины по зависимости:Т=Т+ΔТ+К(α-α),гдеТ - настроечное значение температуры газа для выключения охлаждения турбины;Т - измеренное значение температуры газа за турбиной на режиме по частоте вращения ротора высокого давления на 1,0…1,5% ниже момента включения охлаждения по сигналу предельного значения частоты вращения ротора высокого давления при включенном охлаждении;ΔТ - экспериментально-расчетная величина поправки температуры, пропорциональная разница между предельным значением частоты вращения ротора высокого давления при выключенном охлаждении и частотой вращения, на которой производилось измерение температуры газа за турбиной;α - измеренное значение угла установки положения регулируемых направляющих аппаратов компрессора высокого давления;α - исходное значение угла установки регулируемых направляющих аппаратов компрессора высокого давления при частоте вращения ротора высокого давления, на которой производилось измерение температуры газа за турбиной, для условия стандартной температуры атмосферного воздуха, равной +15°C;К - экспериментально-расчетный коэффициент, учитывающий влияние изменения угла установки регулируемых направляющих аппаратов компрессора высокого давления на температуру газа в зависимости от температуры атмосферного воздуха при неизменной величине частоты вращения ротора высокого давления, на которой производится измерение температуры газа за турбиной, определяемый по зависимости: ,гдеΔt - разница между измеренными температурами газа за турбиной при исходном и вновь установленном на повторном запуске произвольном, отличном от исходного углами установки регулируемых направляющих аппаратов компрессора высокого давления;Δα - разница между исходным и вновь установленным на повторном запуске произвольным, отличным от исходного углами установки регулируемых направляющих аппаратов компрессора высокого давления;
СПОСОБ ИСПЫТАНИЙ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 121-123 из 123.
17.02.2018
№218.016.2a88

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы РВД и РНД модуля газогенератора и вал ротора...
Тип: Изобретение
Номер охранного документа: 0002642955
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.2ead

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы роторов высокого давления (РВД) и роторов...
Тип: Изобретение
Номер охранного документа: 0002644497
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.3176

Способ испытания авиационного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний турбореактивных двигателей (ТРД). Способ испытания ТРД включает подогрев и наддув воздуха на входе в двигатель. Для двигателя, содержащего топливно-масляный теплообменник, предварительно создают математическую...
Тип: Изобретение
Номер охранного документа: 0002645066
Дата охранного документа: 15.02.2018
Показаны записи 141-150 из 171.
17.03.2019
№219.016.e2a9

Способ настройки осевой нагрузки на упорный подшипник опоры ротора газотурбинного двигателя

Изобретение относится к способам определения осевой нагрузки, действующей на упорный подшипник, в частности к способам, позволяющим настроить эту нагрузку на опорах работающих газотурбинных двигателей. Способ настройки осевой нагрузки на упорный подшипник опоры ротора газотурбинного двигателя...
Тип: Изобретение
Номер охранного документа: 0002682215
Дата охранного документа: 15.03.2019
29.03.2019
№219.016.ed01

Способ испытания газотурбинного двигателя

Изобретение относится к авиадвигателестроению, а именно к способам испытаний газотурбинных двигателей (ГТД). Способ испытания ГТД включает приведение значений параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части...
Тип: Изобретение
Номер охранного документа: 0002682978
Дата охранного документа: 25.03.2019
29.03.2019
№219.016.ed9b

Сопловый аппарат турбины высокого давления (твд) газотурбинного двигателя (варианты), сопловый венец соплового аппарата твд и лопатка соплового аппарата твд

Группа изобретений относится к авиадвигателестроению, а именно к конструкциям сопловых аппаратов ТВД и трактам воздушного охлаждения сопловых лопаток авиационных газотурбинных двигателей ГПА. Сопловый аппарат включает сопловый венец. Сопловый венец выполнен из 14 сопловых блоков. Каждый блок...
Тип: Изобретение
Номер охранного документа: 0002683053
Дата охранного документа: 26.03.2019
29.03.2019
№219.016.f5ec

Турбореактивный двигатель

Турбореактивный двигатель выполнен двухконтурным и содержит корпус, турбины с роторами, компрессоры, топливно-насосную группу, реактивные сопла с изменяющимся критическим сечением, охлаждаемую камеру сгорания и систему управления. Система управления выполнена с командным и исполнительными...
Тип: Изобретение
Номер охранного документа: 0002459099
Дата охранного документа: 20.08.2012
29.03.2019
№219.016.f601

Турбореактивный двигатель и способ испытания турбореактивного двигателя

Изобретение относится к турбореактивным двигателям и к системам управления топливоподачей совместно с управлением другими параметрами турбореактивного двигателя, а именно критического сечения реактивного сопла и давления на турбинах. Турбореактивный двигатель, выполненный двухконтурным,...
Тип: Изобретение
Номер охранного документа: 0002451278
Дата охранного документа: 20.05.2012
08.04.2019
№219.016.fe59

Газоперекачивающий агрегат (гпа), тракт всасывания воздуха гпа, воздуховод тракта всасывания гпа, камера всасывания воздуха гпа (варианты)

Группа изобретений относится к нефтегазовой области. Газоперекачивающий агрегат (ГПА) содержит последовательно сообщенные по рабочему телу: тракт всасывания воздуха, включающий КВОУ, всасывающий воздуховод и двухсекционную камеру всасывания воздуха; газотурбинную установку с входным устройством...
Тип: Изобретение
Номер охранного документа: 0002684294
Дата охранного документа: 05.04.2019
08.04.2019
№219.016.fe67

Способ охлаждения ротора турбины высокого давления (твд) газотурбинного двигателя (гтд), ротор твд и лопатка ротора твд, охлаждаемые этим способом, узел аппарата закрутки воздуха ротора твд

Способ охлаждения ротора турбины высокого давления газотурбинного двигателя осуществляют путем того, что ротор охлаждают вторичным потоком воздуха из камеры сгорания газогенератора двигателя, имеющим температуру более низкую, чем температура первичного потока рабочего тела из жаровой трубы...
Тип: Изобретение
Номер охранного документа: 0002684298
Дата охранного документа: 05.04.2019
08.04.2019
№219.016.feba

Газоперекачивающий агрегат (гпа), тракт выхлопа гпа (варианты), выхлопная труба гпа и блок шумоглушения выхлопной трубы гпа

Группа изобретений относится к нефтегазовой области. Газоперекачивающий агрегат (ГПА) содержит последовательно сообщенные по рабочему телу тракт всасывания воздуха, газотурбинную установку с входным устройством для подачи воздуха из камеры всасывания воздуха на вход в ГТД, тракт выхлопа...
Тип: Изобретение
Номер охранного документа: 0002684297
Дата охранного документа: 05.04.2019
10.04.2019
№219.016.fedf

Ротор турбины низкого давления (тнд) газотурбинного двигателя (варианты), узел соединения вала ротора с диском тнд, тракт воздушного охлаждения ротора тнд и аппарат подачи воздуха на охлаждение лопаток ротора тнд

Группа изобретений относится к области авиадвигателестроения. Ротор ТНД двигателя содержит вал РНД с цапфой и рабочее колесо ТНД, включающее диск и лопаточный венец с системой рабочих лопаток. Диск рабочего колеса снабжен аппаратом подачи воздуха на охлаждение лопаток, содержащим напорное...
Тип: Изобретение
Номер охранного документа: 0002684355
Дата охранного документа: 08.04.2019
19.04.2019
№219.017.31fd

Способ регулирования авиационного турбореактивного двигателя

Способ регулирования авиационного турбореактивного двигателя относится к способам регулирования, чувствительным к параметрам двигателя и внешней среды, в частности к температуре окружающего воздуха, и позволяет кратковременно на время, не меньшее чем время пробега самолета по палубе авианосца,...
Тип: Изобретение
Номер охранного документа: 0002456464
Дата охранного документа: 20.07.2012
+ добавить свой РИД